
Int. J. Math. And Appl., 8(4)(2020), 75–83

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Some Applications of Chatterjea - Pata Type Fixed Point

Theorem in Modular Spaces

Shweta Wasnik1,∗ and Subhashish Biswas1

1 Department of Mathematics, Kalinga University, Raipur, Chhattisgarh, India.

Abstract: In this paper, we prove Chatterjea - Pata type fixed point theorem in modular spaces which generalizes and improves some
old results. Also we give an application for the existence of solutions of integral equations in modular function spaces.

MSC: 47H10, 34B15, 54H25.

Keywords: Fixed point, Modular spaces, Nonlinear integral equations.

© JS Publication.

1. Introduction and Preliminaries

Recently, V. Pata [19] improved the Banach principal. Using the idea of Pata, we prove a fixed point theorem in modular

spaces. Then we show that how our results generalize old ones. Also, we prepare an application of our main results to the

existence of solutions of integral equations in Musielak–Orlicz spaces.

In the first place, we recall some basic notions and facts about modular spaces.

Definition 1.1. Let X be an arbitrary vector space over K(= R or C),

(a). A function ρ : X → [0,+∞] is called a modular if

(i). ρ(x) = 0 if and only if x = 0;

(ii). ρ(αx) = ρ(x) for every scaler α with |α| = 1;

(iii). ρ(αx+ βy) ≤ ρ(x) + ρ(y) if α+ β = 1 and α ≥ 0, β ≥ 0,

for all x, y ∈ X.

(b). If (iii) is replaced by

(iv). ρ(αx+ βy) ≤ αρ(x) + βρ(y) if α+ β = 1 and α ≥ 0, β ≥ 0, we say that ρ is convex modular.

(c). A modular ρ defines a corresponding modular space, i.e. the vector space Xρ given by Xρ = {x ∈ X : ρ(λx)→ 0 as λ→

0}.

Example 1.2. Let (X, ‖.‖) be a norm space, then ‖.‖ is a convex modular on X. But the converse is not true.
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In general the modular ρ does not behave as a norm or a distance because it is not subadditive. But one can associate to a

modular the F−norm (see [16]).

Definition 1.3. The modular space Xρ can be equipped with the F−norm defined by

|x|ρ = inf
{
α > 0; ρ

(x
α

)
≤ α

}
.

Namely, if ρ be convex, then the functional

‖x‖ρ = inf
{
α > 0; ρ

(x
α

)
≤ 1
}
,

is a norm called the Luxemburg norm in Xρ which is equivalent to the F−norm |.|ρ.

Definition 1.4. Let Xρ be a modular space.

(a). A sequence {xn}n∈N in Xρ is said to be:

(i). ρ−convergent to x if ρ(xn − x)→ 0 as n→∞.

(ii). ρ−Cauchy if ρ(xn − xm)→ 0 as n,m→∞.

(b). Xρ is ρ−complete if every ρ−Cauchy sequence is ρ−convergent.

(c). A subset B ⊆ Xρ is said to be ρ−closed if {xn}n∈N ⊂ B with xn → x, then x ∈ B.

(d). A subset B ⊆ Xρ is called ρ−bounded if δρ(B) = sup{ρ(x− y) : x, y ∈ B} <∞, where δρ(B) is called the ρ−diameter

of B.

(e). We say that ρ has the Fatou property if ρ(x − y) ≤ lim inf ρ(xn − yn), whenever ρ(xn − x) → 0, ρ(yn − y) → 0 as

n→∞.

(f). ρ is said to satisfies the 42−condition if ρ(xn)→ 0⇒ ρ(2xn)→ 0 (as n→∞).

It is easy to check that for every modular ρ and x, y ∈ Xρ;

(1). ρ(αx) ≤ ρ(βx) for each α, β ∈ R+ with α ≤ β.

(2). ρ(x+ y) ≤ ρ(2x) + ρ(2y).

Now we recall some basic concepts about modular function spaces as formulated by Kozlowski [12].

Let Ω be a nonempty set and Σ be a nontrivial σ−algebra of subsets of Ω. Let P be a δ−ring of subsets of Σ such that

E∩A ∈ P for any E ∈ P and A ∈ Σ. Let us assume that there is an increasing sequence of sets Kn ∈ P such that Ω =
⋃
Kn.

In other words, the family P plays the role of δ−ring of subsets of finite measure. By E we denote the linear space of all

simple functions with supports from P.

By M we will denote the space of all measurable functions, i.e. all functions f : Ω → R such that there exists a sequence

{gn} ∈ E , |gn| ≤ |f | and gn(w)→ f(w) for all w ∈ Ω. By 1A we denote the characteristic function of the set A.

Definition 1.5. A function ρ : E × Σ→ [0,+∞] is called a function modular if

(i). ρ(0, E) = 0 for any E ∈ Σ;

(ii). ρ(f,E) ≤ ρ(g,E) whenever |f(w)| ≤ |g(w)| for any w ∈ Ω, f, g ∈ E and E ∈ Σ;
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(iii). ρ(f, .) : Σ→ [0,+∞] is a σ−sub-additive measure for every f ∈ E;

(iv). ρ(α,A)→ 0 as α decreases to 0 for every A ∈ P, where ρ(α,A) = ρ(α1A, A);

(v). For any α > 0, ρ(α, .) is order continuous on P, that is ρ(α,An)→ 0 if {An} ∈ Pand decreases to φ.

The definition of ρ is then extended to f ∈M by

ρ(f,E) = sup{ρ(g,E); g ∈ E , |g(w)| ≤ |f(w)|, w ∈ Ω}.

For simplicity we write ρ(f) instead of ρ(f,Ω).

One can verify the functional ρ :M→ [0,+∞] is a modular in the sense of Definition 1.1. The modular space determined

by ρ will be called a modular function space and will be denoted by Lρ. Recall that

Lρ = {f ∈M : lim
α→0

ρ(αf) = 0}.

Example 1.6.

(1). The Orlicz modular is defined for every measurable real function f by the formula

ρ(f) =

∫
R
ϕ(|f(t)|)dµ(t),

where µ denotes the Lebesgue measure in R and ϕ : R → [0,∞) is continuous. We also assume that ϕ(u) = 0 if and

only if u = 0 and ϕ(t)→∞ as t→∞.

The modular space induced by the Orlicz modular, is a modular function space and called the Orlicz space.

(2). The Musielak–Orlicz modular spaces (See[14]). Let

ρ(f) =

∫
Ω

ϕ(ω, |f(ω)|)dµ(ω),

where µ is a σ−finite measure on Ω and ϕ : Ω× R→ [0,∞) satisfy the following:

(i). ϕ(ω, u) is a continuous even function of u which is non-decreasing for u > 0; such that ϕ(ω, 0) = 0, ϕ(ω, u) > 0

for u 6= 0 and ϕ(ω, u)→∞ as u→∞.

(ii). ϕ(ω, u) is a measurable function of ω for each u ∈ R;

(iii). ϕ(ω, u) is convex function of u for each ω ∈ Ω.

It is easy to check that ρ is a convex modular function and the corresponding modular space is called the Musielak–Orlicz

spaces and is denoted by Lϕ.

In the following we give some notions which will be used in the next sections.

Definition 1.7 (Banach [2]). There exists a number α, 0 ≤ α < 1, such that, for each x, y ∈ X,

d(f(x), f(y)) ≤ αd(x, y).

In 1972, Chatterjea [4] introduced the following contractive condition:
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Definition 1.8 (Chatterjea [4]). Let (X, d) be a metric space. A mapping T : X → X is said to be Chatterjea contraction

if it satisfies the following condition:

d(T (x), T (y)) ≤ k

2
[d(x, T (y)) + d(y, T (x))]

for all x, y ∈ X and some k ∈ [0, 1).

Remark 1.9. Note that Banachs contraction and Chatterjeas contraction are independent (see Rhoades paper [20]).

Definition 1.10 (Khamsi [13]). Let C be a subset of a modular function space Lρ. A mapping T : C → C is called ρ−strict

contraction if there exists λ < 1 such that:

ρ(Tf − Tg) ≤ λρ(f − g)

for all f, g ∈ C.

Theorem 1.11 (Khamsi [13]). Let C be a ρ−complete, ρ−bounded subset of Lρ and T : C → C be a ρ−strict contraction.

Then T has a unique fixed point z ∈ C. Moreover z is the ρ−limit of the iterate of any point in C under the action of T .

Definition 1.12 (Taleb and Hanebaly [21]). The function u : I → Lϕ, where I = [0, A] for all A > 0, is said to be

continuous at t0 ∈ I if for tn ∈ I and tn → t0, then ρ(u(tn)− u(t))→ 0 as n→∞.

If we consider the Musielak–Orlicz modular with 42−condition then the continuity of u at t0 is equivalent to:

(tn → t0)⇒ ‖u(tn)− u(t0)‖ρ → 0 (as n→∞).

Let Cϕ = C(I, Lϕ) be the space of all continuous mappings from I = [0, A] in to Lϕ.

Proposition 1.13 (Taleb and Hanebaly [21]). Suppose that the Musielak–Orlicz modular ρ satisfies 42−condition and

B ⊂ Lϕ is a ρ−closed and convex subset of Lϕ. For a ≥ 0 let ρa(u) = sup{e−atρ(u(t)) : t ∈ I} for u ∈ Cϕ, then:

(1). (Cϕ, ρa) is a modular space, and ρa is a convex modular satisfying the Fatou property and the 42−condition.

(2). Cϕ is ρa−complete.

(3). Cϕ0 = C(I, B) is a ρa−closed, convex subset of Cϕ.

2. Main Results

Let Xρ be a modular function space, C be a nonempty, ρ−complete and ρ−bounded subset of Xρ, x0 be an arbitrary point

in C and ψ : [0,+∞) → [0,+∞) be an increasing function vanishing with continuity at zero. Also consider the vanishing

sequence depending on α ≥ 1, wn(α) =
(α
n

)α n∑
k=1

ψ
(α
k

)
. Let T : C → C be a mapping, for notational purposes, we define

Tn(x), x ∈ Xρ and n ∈ {0, 1, 2, · · · } inductively by T 0(x) = x and Tn+1(x) = T (Tn(x)).

Theorem 2.1. Let α ≥ 1, β > 0 and k ≥ 0 be fixed constants. If the inequality

ρ(Tx− Ty) ≤ (1− ε)[ρ(x− Ty) + ρ(y − Tx)] + εαψ(ε)([ρ(x− Ty) + ρ(y − Tx)] + k)β (1)

is satisfied for every ε ∈ [0, 1] and every x, y ∈ C, then T has a unique fixed point z = T (z) which is the ρ−lim of the iterate

of x0 under the action of T .
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Proof. We first show existence. Let ε = 0 in (1) thus we get

ρ(Tx− Ty) ≤ [ρ(x− Ty) + ρ(y − Tx)] (2)

for all x, y ∈ C. We construct a sequence {xn}∞n=0 such that xn = T (xn−1) for all n ∈ N. Now we claim {xn} is ρ−Cauachy

sequence in C. By (1), (2) for some m,n ∈ N we have

ρ(Txn − Txn+1) ≤ (1− ε)[ρ(xn − Txn+1) + ρ(xn+1 − Txn)] + εαψ(ε)(ρ(xn − Txn+1) + ρ(xn+1 − Txn) + k)β

ρ(xn+1 − xn+2) ≤ (1− ε)[ρ(xn − xn+2) + ρ(xn+1 − xn+1)] + εαψ(ε)(ρ(xn − xn+2) + ρ(xn+1 − xn+1) + k)β

ρ(xn+1 − xn+2) ≤ (1− ε)[ρ(xn − xn+1) + ρ(xn+1 − xn+2)] + εαψ(ε)(ρ(xn − xn+1) + ρ(xn+1 − xn+2) + k)β

ρ(xn+1 − xn+2) ≤ 1− ε
ε

ρ(xn − xn+1) +
εαψ(ε)

ε
(ρ(xn − xn+1) + ρ(xn+1 − xn+2) + k)β (3)

Let M := (2δρ(C) + k)β . Since C is ρ−bounded, M is finite and from (3) we have

ρ(xn+1 − xn+2) ≤ 1− ε
ε

ρ(xn − xn+1) + εα−1ψ(ε)M.

Letting ε = 1−
(

n

2n+ 1

)α−1

, we have ε ≤ α− 1

2n+ 1
. Keeping in mind that ψ is an increasing function;

ρ(xn − xn+1) ≤ nα−1

(2n+ 1)α−1
[ρ(xn−1 − xn) + ρ(xn − xn+1)] +

(α− 1)α−1

(2n+ 1)α−1
ψ(

α− 1

2n+ 1
)M

⇒ [(2n+ 1)α−1 − nα−1]ρ(xn+1 − xn) ≤ nα−1ρ(xn − xn−1) + ααψ(
α

n+ 1
)M.

⇒ ρ(xn+1 − xn) ≤ nα−1

[(2n+ 1)α−1 − nα−1]
ρ(xn − xn−1) +

(α− 1)α−1

[(2n+ 1)α−1 − nα−1]
ψ(

α

n+ 1
)M. (4)

Letting rn := nα−1

[(2n+1)α−1−nα−1]
ρ(xn − xn−1).

Taking limit as n→∞ from both sides of (4), we get ρ(xn+1−xn)→ 0 as n→∞. In general ρ(xn+m−xn)→ 0 as n→∞.

Then {xn} is ρ−Cauachy sequence in C. Since C is ρ−complete there exists z ∈ C such that ρ(xn − z) → 0 as n → ∞.

From (1), we get;

ρ(
Tz − z

2
) ≤ ρ(Tz − xn) + ρ(xn − z)

≤ (1− ε)ρ(z − xn−1) + εαψ(ε)(ρ(z − xn−1) + k)β + ρ(xn − z).

Taking limit as ε→ 0 afterwards as n→∞ we get z is the ρ−lim of the iterate of x0 under the action of T .

To show uniqueness we suppose that y be another fixed point of T . Then from (1), we have

ρ(z − y) = ρ(Tz − Ty) ≤ (1− ε)2ρ(z − y) + εαψ(ε)(2ρ(z − y) + k)β . (5)

Then ρ(z− y) ≤ εα−1ψ(ε)(2ρ(z− y) + k)β → 0 as ε→ 0 therefore z = y. If for each ε ∈ (0, 1], strict inequality occurs in (5),

then

ε1−αρ(z − y) < ψ(ε)(2ρ(z − y) + k)β .

Taking limit as ε→ 0, we get contradiction unless ρ(z − y) = 0.
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3. Application

In this section, we will study the existence of solution of the following integral equation

u(t) = e−tf0 +

∫ t

o

es−tTu(s)ds, (6)

where

(H1). T : B → B is ρ-Lipschitz i.e,

∃ κ > 0, ρ(Tu− Tv) ≤ κ[ρ(u− Tv) + ρ(v − Tu)], (u, v ∈ B)

(H2). B is ρ−closed, ρ−bounded, convex subset of Musielak–Orlicz space Lϕ satisfying the 42−condition.

(H3). f0 ∈ B is fixed.

Theorem 3.1. Under the conditions H1−H3, for all A > 0, the integral equation (6) has a solution u ∈ Cϕ = C([0, A], Lϕ).

Proof. Define the operator S on Cϕ0 by

Su(t) = e−tf0 +

∫ t

o

es−tTu(s)ds

for all t ∈ I := [0, A].

1st step; first we show that S : Cϕ0 → Cϕ0 . Let u ∈ Cϕ0 and tn, t0 ∈ I for all n ∈ N with tn → t0 as n → ∞. We know u is

ρ−continuous thus ρ(u(tn)− u(t0)) → 0. From H1 we get ρ(Tu(tn)− Tu(t0)) → 0 as n → ∞, thus Tu is ρ−continuous at

t0. By 42−condition Tu is ‖.‖ρ−continuous at t0, therefore Su is ‖.‖ρ−continuous at t0 consequently is ρ−continuous at

t0. Also we have

∫ t

0

es−tTu(s)ds ∈
(∫ t

0

es−tds
)
co{Tu(s); 0 ≤ s ≤ t}

⊆ (1− e−t)coB,

where coB is the closed convex hull of B in (Lϕ, ‖.‖ρ). But B is convex and ρ−closed then coB = B ⊆ Bρ = B, hence

Su(t) ∈ e−tB + (1− e−t)B ⊆ B, (∀t ∈ I).

2st step; we show that Cϕ0 is ρa−complete and ρa−bounded. By Proposition 1.13, Cϕ0 is ρa−closed subset of ρa−complete

space Cϕ, hence Cϕ0 is ρa−complete too. Now let u, v ∈ Cϕ0 . By 1st step u(t), v(t) ∈ B for all t ∈ I, then

ρa(u− v) = sup{e−atρ(u(t)− v(t)); t ∈ I} ≤ δρ(B) <∞,

therefore

δρa(Cϕ0 ) = sup{ρa(u− v);u, v ∈ Cϕ0 } <∞.

3st step; for u, v ∈ Cϕ0 we have

ρa(Su− Sv) ≤ κ
(1− e−(1+a)A

1 + a

)
[ρa(u− Sv) + ρa(v − Su)]. (7)
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Let w ∈ Cϕ and {t0, t1, · · · , tn} be any division of [0, t]. Now suppose

sup{|ti+1 − ti|, i = 0, 1, · · · , n− 1} → 0

as n→∞, then

‖
n−1∑
i=0

(ti+1 − ti)eti−tw(ti)−
∫ t

0

es−tw(s)ds‖ρ → 0.

By 42−condition

ρ
( n−1∑
i=0

(ti+1 − ti)eti−tw(ti)−
∫ t

0

es−tw(s)ds
)
→ 0.

Using Fatou property, we get

ρ
(∫ t

0

es−tw(s)ds
)
≤ lim inf ρ

( n−1∑
i=0

(ti+1 − ti)eti−tw(ti)
)
. (8)

Furthermore
n−1∑
i=0

(ti+1 − ti)eti−t ≤
∫ t

0

es−tds ≤ 1− e−t ≤ 1− e−A < 1.

By the convexity of ρ, we have

ρ
( n−1∑
i=0

(ti+1 − ti)eti−tw(ti)
)
≤
n−1∑
i=0

(ti+1 − ti)eti−tρ(w(ti))

=

n−1∑
i=0

(ti+1 − ti)eti−teatie−atiρ(w(ti))

≤
n−1∑
i=0

(ti+1 − ti)e(1+a)ti−tρa(w)

≤
(∫ t

0

e(1+a)s−tds
)
ρa(w).

It follows from (8) that

ρ
(∫ t

0

es−tw(s)ds
)
≤
(eat − e−t

1 + a

)
ρa(w). (9)

On the other hand

ρ(Su(t)− Sv(t)) = ρ
(∫ t

0

es−t(Tu(s)− Tv(s)
)
ds.

Thus by (9), we have

ρ(Su(t)− Sv(t)) ≤
(eat − e−t

1 + a

)
ρa(Tu− Tv),

since T is ρ−Lipschitz, we have

ρ(Su(t)− Sv(t)) ≤
(eat − e−t

1 + a

)
sup
t∈I

e−atρ(Tu(t)− Tv(t))

≤
(eat − e−t

1 + a

)
κ sup
t∈I

e−at[ρ(u(t)− Tv(t)) + ρ(v(t)− Tu(t))]

=
(eat − e−t

1 + a

)
κ2ρa(u− v).

Therefore

e−atρ(Su(t)− Sv(t)) ≤ κ
(1− e−(1+a)t

1 + a

)
2ρa(u− v)
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≤ κ
(1− e−(1+a)A

1 + a

)
2ρa(u− v),

for all t ∈ I, this implies (7).

4st step; let α = β = 1, k = 0, a > 0 with;

e−(1+a)A >
κ− (1 + a)

κ
.

If we have

κ(1− e−(1+a)A)

1 + a
≤ (1− ε) + ε1+γK,

for all γ > 0, ε ∈ [0, 1] and a constant K, then (7) implies that the inequality (1) is satisfied by ψ(ε) = Kεγ . To this end

we define

F (ε) = (1− ε) + ε1+γK − κ(1− e−(1+a)A)

1 + a
.

Now imposing the conditions on F which implies 0 ≤ F (ε) for all ε ∈ [0, 1], we obtain:

K =
γγ(1 + a)γ(

(1 + a)(1 + γ)
1+

1

γ − κ(1 + γ)
1+

1

γ (1− e−(1+a)A
)γ .

Therefore from steps 1 to 4 and Theorem 2.1, we conclude the existence of fixed point of S which is the solution of integral

equation (6).

Acknowledgement

Authors remain grateful to the honorable reviewers for their kind suggestions for improvement of our paper.

References

[1] M. Abbas, S.H. Khan and A. Razani, Fixed point theorems of expansive type mappings in modular function spaces,

Fixed Point Theory, 12(2)(2011), 235-240.

[2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math.,

3(1922), 133-181.

[3] B. A. Bin Dehaish and W. M. Kozlowski, Fixed point iteration processes for asymptotic pointwise nonexpansive mapping

in modular function spaces, Fixed Point Theory Appl., 2012(2012), 118, doi:10.1186/1687-1812-2012-118.

[4] S. K. Chatterjea, Fixed point theorems, C.R. Acad. Bulgare Sci., 25(1972), 727-730.

[5] S. Dhompongsa, T. Domınguez Benavides, A. Kaewcharoen and B. Panyanak, Fixed point theorems for multivalued

mappings in modular function spaces, Sci. Math. Jpn., 63(2)(2006), 161-169.

[6] A. P. Farajzadeh, M. Beyg Mohammadi and M. Aslam Noor, Fixed point theorems in modular spaces, Math. Commun.,

16(2011), 13-20.

[7] N. Hussain, M. A. Khamsi and A. Latif, Banach operator pairs and common fixed points in modular function spaces,

Fixed Point Theory Appl., 2011(2011), 75, doi:10.1186/1687-1812-2011-75.

[8] M. A. Khamsi, W. M. Kozlowski and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal.,

14(11)(1990), 935-953.

[9] M. A. Kutbi and A. Latif, Fixed points of multivalued maps in modular function spaces, Fixed Point Theory Appl.,

2009(2009), 786357, doi:10.1155/2009/786357.

82



Shweta Wasnik and Subhashish Biswas

[10] M. A. Khamsi, A. Latif and H. Al-Sulami, KKM and KY fan theorems in modular function spaces, Fixed Point Theory

Appl., 2011(2011), 57, doi:10.1186/1687-1812-2011-57.

[11] W. M. Kozlowski, Advancements in fixed point theory in modular function spaces, Arab J. Math., 1(2012), 477–494.

[12] W. M. Kozowski, Modular Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 122(1988).

[13] M. A. Khamsi, A convexity property in modular function spaces, Math. Japonica, 44(2)(1996), 269-279

[14] J. Musielak and W. Orlicz, On modular spaces, Studia Math., 18(1959), 49-65.

[15] Ch. Mongkolkeha and P. Kumam, Some fixed point results for generalized weak contraction mappings in modular spaces,

Int. J. Anal., (2013), 247378, doi:10.1155/2013/247378.

[16] J. Musielak, Orlicz spaces and Modular spaces, Lecture Notes in Math, 1034(1983).

[17] S. A. Al-Mezel, A. Al-Roqi and M. A. Khamsi, One–local retract and common fixed point in modular function spaces,

Fixed Point Theory Appl., 2012(2012), 109, doi:10.1186/1687-1812-2012-109.

[18] H. Nakano, Modular semi-ordered spaces, Tokyo Mathematical Book Series, Maruzen Co. Ltd, Tokyo, Japan, (1950).

[19] V. Pata, A fixed point theorem in metric spaces, Fixed Point Theory Appl., 10(2011), 299-305.

[20] B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226(1977),

257-290.

[21] A. Taleb and E. Hanebaly, A fixed point theorem and its application to integral equations in modular function spaces,

Proc. Amer. Math. Soc., 128(2)(2000), 419-426.

83


	Introduction and Preliminaries
	Main Results
	Application
	Acknowledgement
	References

