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Abstract: For any two vertices u and v of a graph G, d(u, v) is the length of the shortest path between the vertices u and v. D.
Reddy Babu and P.L.N. Varma introduced the concept of D-distance. D-distance considers the degree of all vertices

present in a path while defining its length. In this paper, D-eccentricity spectra of D-eccentricity matrix of some class of
graphs are computed.

MSC: 0512, 05C50

Keywords: Distance, D-distance, Eccentricity matrix, Spectrum.

© JS Publication.

1. Introduction

The theory of Linear Algebra, in particular theory of matrices is a powerful tool to study the spectral properties of the

graph spectra and in turn matrix properties of the graph can be recognized from the spectrum of its matrix.

By a graph G, we mean non-trivial, finite and undirected graph without multiple edges and loops.

In graph G, the usual distance d(u, v) is the length of the minimum path connecting the vertices u and v of G.

The D-distance dD(u, v) between two vertices of a connected graph G is defined as

dD(u, v) = min
{
d(u, v) + deg(u) + deg(v) +

∑
deg(w)

}

where sum runs over all the intermediate vertices w in the path and minimum is taken over all u− v paths in G [1].

The D-eccentricity of any vertex v, eD(v) is defined as the maximum D-distance from v to any other vertex, that is

eD(v) = max
{
dD(u, v) : u ∈ V (G)

}
, where V (G) is the vertex set of graph G [1].

Let β1 ≥ β2 ≥ β3 ≥ . . . ≥ βr denote different eigenvalues of the matrix Dε(G). Since, this matrix is real symmetric, all the

Dε eigen values are real Dε spectrum is denoted by specDε and defined as,

specDε =

β1 β2 β3 . . . βr

m1 m2 m3 . . . mr


Where mi is the algebraic multiplicity of the eigenvalues βi, for 1 ≤ i ≤ r.
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1.1. Definitions, notations and preliminary results

For a square matrix A of order n with real entries det(A), det(λI − A) and spec(A) denote the determinant, characteristic

polynomial and spectrum of A respectively.

Jn×n or Jn denotes the n× n matrix with all entries as 1 and In denotes n× n identity matrix.

Lemma 1.1 ([5]). If matrix A is an n × n matrix partitioned as A =

A11 A12

A21 A22

 where A11, A22 are square matrices.

If A11 is non singular matrix then, det(A) = det(A11) det(A22 − A21A
−1
11 A12). Also, if A22 is non singular matrix then,

det(A) = det(A22) det(A12 −A12A
−1
22 A21).

Lemma 1.2 ([5]). Let B is square matrix of order n. If each column sum of B is equal to one of the eigenvalues (say α)

of B, then

J1×n(λI −B)−1Jn×1 =
n

n− α.

Lemma 1.3 ([5]). Let B =

B0 B1

B1 B0

 be a symmetric 2× 2 block matrix with B0 and B1 are square matrices of the same

order. Then spectrum of B is the union of spectra (B0 +B1) and spectra (B0 −B1).

Lemma 1.4 ([3]). Let A and B be square matrices of order n. If spec(A) = {λ1, λ2, λ3, . . . , λn} and spec(B) =

{µ1, µ2, µ3, . . . , µn} then, spec(A⊗B) = {λiµj ; i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , n}, where ⊗ denotes tensor product.

Definition 1.5 ([4]). A star graph on n vertices is denoted by K1,n−1.

Definition 1.6 ([4]). The n-barbell graph Bn,n is a graph obtained by connecting two copies of Kn by a bridge.

Definition 1.7 ([7]). The corona G ◦H of G and H is defined as the graph obtained by taking one copy of G and n disjoint

copies of H, say H1, H2, . . . , Hn and joining the vertex vi of G to every vertex in Hi, the ith copy of H .

In this article, motivated by the definition of eccentricity matrix ε(G) of a connected graph G and spectra of eccentricity

matrix of some class of graphs [6, 8], we define D-eccentricity matrix Dε(G) and find D-eccentricity spectra specDε(G) of

some class of graphs.

2. Spectra of D-Eccentricity Matrix of Some Class of Graphs

For a graph G of order n, if u1, u2, u3, . . . , un ∈ V (G), D-eccentricity matrix is defined by,

Dε(G) =

d
D
ij if dD

ij = min{eD(ui), e
D(uj) }

0 if dD
ij < min{eD(ui), e

D(uj) }

The Dε spectrum of a graph consists of Dε eigenvalues of D-eccentricity matrix.

Theorem 2.1. Let K1,n−1be a star graph of n vertices then

det (Dε(K1,n−1)) = (n+ 3)n−2(−1)n−1(n+ 1)2(n− 1)

and

specDε(K1,n−1) =


(n+3)(n−2)±

√
(n+3)2(n−2)2+4(n−1)(n+1)2

2
−(n+ 3)

1 n− 2
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Proof. Let K1,n−1 be a star graph of n vertices {v1, v2, v3, . . . vn}, where v1 is the vertex of degree (n-1). Then,

Dε(K1,n−1) =

 0 (n+ 1)J1×(n−1)

(n+ 1)J(n−1)×1 (n+ 3)(Jn−1 − In−1)

 .
Since, (n+ 3)(Jn−1 − In−1) is a non singular matrix, by Lemma 1.1, we have

det (Dε(K1,n−1)) = det {(n+ 3) [Jn−1 − In−1]} det
[
0− (n+ 1) J1×(n−1)

{
((n+ 3) (Jn−1 − In−1))−1 (n+ 1) J(n−1)×1

}]
= (n+ 3)n−2(−1)n−2 (n− 2) (n+ 1)2 det

[
J1×(n−1)(In−1 − Jn−1)−1J(n−1)×1

]
= (n+ 3)n−2(−1)n−2 (n− 2) (n+ 1)2

[
n− 1

1− (n− 1)

]
= (n+ 3)n−2(−1)n−1(n+ 1)2 (n− 1) .

The characteristic polynomial of Dε(K1,n−1) is,

det [Dε(K1,n−1 − λIn)] = det

 −λ (n+ 1)J1×(n−1)

(n+ 1)J(n−1)×1 (n+ 3)(Jn−1 − In−1)− λIn−1


By Lemma 1.1,

det [Dε(K1,n−1 − λIn)] = (−λ) det
[
(n+ 3)(Jn−1 − In−1)− λIn−1 − (n+ 1)J1×(n−1)(−λ)−1(n+ 1)J(n−1)×1

]
= (−λ) det

[
(n+ 3)(Jn−1 − In−1)− λIn−1 +

(n+ 1)2

λ
Jn−1

]
= (−λ) det

[{
(n+ 3) +

(n+ 1)2

λ

}
Jn−1 − {(n+ 3) + λ} In−1

]
= (−λ)

[
(n− 1)

{
(n+ 3) +

(n+ 1)2

λ

}
− {(n+ 3) + λ}

]
[−(n+ 3)− λ]n−2

=

λ−
 (n− 2)(n+ 3)±

√
(n+ 3)2(n− 2)2 + 4(n− 1)(n+ 1)2

2


 [−(n+ 3)− λ]n−2

Therefore

specDε(K1,n−1) =


(n+3)(n−2)±

√
(n+3)2(n−2)2+4(n−1)(n+1)2

2
−(n+ 3)

1 n− 2



Corollary 2.2. If n ≥ 3 then the least eigenvalue of Dε(K1,n−1) is −(n+ 3).

Proof. Suppose it is not so, then

(n− 2)(n+ 3)−
√

(n− 2)2(n+ 3)2 + 4(n− 1)(n+ 1)2

2
< −(n+ 3)

(n− 2)(n+ 3) + 2(n+ 3) <

√
(n− 2)2(n+ 3)2 + 4(n− 1)(n+ 1)2

n(n+ 3) <

√
(n− 2)2(n+ 3)2 + 4(n− 1)(n+ 1)2

This implies, (n+ 3)2 < (n+ 1)2. This is not possible, hence −(n+ 3) is the least eigenvalue of Dε(K1,n−1).
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Example 2.3. For the Star graph K1,3 of Figure 1, D eccentricity matrix is

Figure 1: Star graph K1,3

Dε(K1,3) =



0 5 5 5

5 0 7 7

5 7 0 7

5 7 7 0


detDε(K1,3) = −3675

specDε(K1,3) = −7,−7,−4.1355, 18.1355.

The following Lemma 2.4 is proved for the sake of completeness, which is about spectrum of a kind of block matrix.

Lemma 2.4. Let A be a (n+1)×(n+1) matrix of the form A =

 0 aJ1×n

aJn×1 bJn

, then spec(A) =

 0
bn±
√

b2n2+4a2n

2

n− 1 1

,

where a, b > 0.

Proof. det [λIn+1 −A] = det

 λ −aJ1×n

−aJn×1 In − bJn

. By Lemma 1.1 and Lemma 1.2

det [λIn+1 −A] = det [λIn − bIn] .det
[
λ− a2(λIn − bJn)−1J1×n

]
= λn−1 (λ− bn) det

[
λ− a2n

λ− bn

]
= λn−1 [λ2 − bnλ− a2n

]

We use the Lemma 2.4 to prove the following theorem.

Theorem 2.5. Let Bn,n be the n-barbell graph then,

specDε(Bn,n) =

 0
(4n+1)(n−1)±

√
(4n+1)2(n−1)2+4(3n+1)2(n−1)

2
− (4n+1)(n−1)±

√
(4n+1)2(n−1)2+4(3n+1)2(n−1)

2

2(n− 2) 1 1


Proof. Let Kn be the complete graph on n vertices with vertex set {v1,v2,v3,.......,vn} and let us consider a copy of Kn

with vertex set {w1,w2,..........,wn}. Let Bn,n be the barbell graph obtained by joining the vertices of v1 and w1 in the two
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copies of Kn. Then the D-eccentricity matrix of Bn,n is given by

Dε (Bn,n) =

0n×n An×n

An×n 0n×n


Where

An×n =

 0 (3n+ 1) J1×n−1

(3n+ 1)J1×n−1 (4n+ 1) Jn−1.

 .
Putting a = 3n+ 1 and b = 4n+ 1 in Lemma 2.4 we get,

spec (A) =

 0
(4n+1)(n−1)±

√
(4n+1)2(n−1)2+4(3n+1)2(n−1)

2

n− 2 1


for a = 3n+ 1 and b = 4n+ 1. By Lemma 1.3, the spectrum of Dε (Bn,n) is the union of eigenvalues A and −A. Hence,

specDε(Bn,n) =

 0
(4n+1)(n−1)±

√
(4n+1)2(n−1)2+4(3n+1)2(n−1)

2
− (4n+1)(n−1)±

√
(4n+1)2(n−1)2+4(3n+1)2(n−1)

2

2(n− 2) 1 1

 .

Example 2.6. For the Barbell graph G = B3×3 of Figure 2, D- eccentricity matrix is

Figure 2: Barbell graph G = B3×3

Dε (G) =



0 0 0 0 10 10

0 0 0 10 13 13

0 0 0 10 13 13

0 10 10 0 0 0

10 13 13 0 0 0

10 13 13 0 0 0


=

O3×3 A3×3

A3×3 O3×3



For,

A3×3 =

 0 10J1×2

10J2×1 13J2


specDε(G) =

0 −32.2094 32.2094 6.2094 −6.2094

2 1 1 1 1

 .
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Before, proceeding to next theorem, we use this definition.

Definition 2.7. Cocktail party graph is a regular graph on 2n vertices with degree 2n− 2.

Theorem 2.8. Let CPk be the cocktail party graph on k = 2n vertices, n ≥ 2 then,

specDε(CPk) =

2 + 3(2n− 2) − [2 + 3(2n− 2)]

n n

 .

Proof. Let CPk be the cocktail party graph on k = 2n vertices, n ≥ 2 then, the eccentricity matrix of CPk is

Dε(CPk) =

 On×n 2 + 3(2n− 2)In×n

2 + 3(2n− 2)In×n On×n


Therefore, by Lemma 1.3

specDε(CPk) =

2 + 3(2n− 2) − [2 + 3(2n− 2)]

n n

 .

Example 2.9. For the Cocktail party graph G = CP2 of Figure 3,

Figure 3: G = Cocktail Party Graph (CP2)

Dε (G) =



0 0 8 0

0 0 0 8

8 0 0 0

0 8 0 0


specDε (G) =

8 −8

2 2


We use this definition to proceed to next theorem,

Definition 2.10. Suppose CSk is a Crown graph with k vertices where k = 2n. Then the vertex set of CSk is partitioned

into two subsets V1 and V2 such that V1 ∪ V2 = V and V1 ∩ V2 = φ.
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Theorem 2.11. Let CSk is a Crown graph on k = 2n vertices for n > 2 then,

specDε (CSk) =

3 + 4 (n− 1) − [3 + 4 (n− 1)]

n n

 .

Proof. Let V = {v1,v2,v3,...vn} and W = {w1,w2,...wn} be two subsets of CSk and all vertices of v1 are correlated to each

vertex of v2 except paired ones. The eccentricity matrix of CSk is

Dε (CSk) =

 0n×n 3 + 4 (n− 1) In×n

3 + 4 (n− 1) In×n 0n×n

 .
By Lemma 1.3

spec Dε (CSk) =

3 + 4 (n− 1) − [3 + 4 (n− 1)]

n n

 .

Example 2.12. For the Crown graph G = CS3 of Figure 4,

Figure 4: G = Crown graph CS3

Dε(G) =



0 0 0 11 0 0

0 0 0 0 11 0

0 0 0 0 0 11

11 0 0 0 0 0

0 11 0 0 0 0

0 0 11 0 0 0


specDε(G) =

11 −11

3 3


Theorem 2.13. Let Kn1,n2,n3,...nkbe complete k-partite graph such that

k∑
i=1

ni = n; and ni ≥ 2 and k ≤ n− 1. Then,

specDε(Kn1,n2,n3,...nk ) =

−2 + 3(n− n1) 2 + 3(n− n1) {n1 − 1} 2 + 3(n− n2) {n2 − 1} . . . 2 + 3(n− nk) {nk − 1}

(n− k) 1 1 . . . 1


that is −[2 + 3(n− n1)] 2 + 3(n− n1) {n1 − 1}

n− k k


where n1 = n2 = n3 = . . . = nk = n1.

65



On Spectra of D-Eccentricity Matrix of Some Graphs

Proof. Dε (Kn1,n2,n3.........nk )

=



[2 + 3 (n− n1)] {Jn1 − In1} 0 0 · · · 0

0 [2 + 3 (n− n2)] {Jn2 − In2} 0 · · · 0

0 0 [2 + 3 (n− n3)] {Jn3 − In3} · · · 0

...
...

...
. . .

...

0 0 · · · [2 + 3 (n− nk)] {Jnk − Ink}


Hence, spectrum of Dε (Kn1,n2,n3.........nk ) is the union of eigenvalues of

[2 + 3 (n− n2)] {Jn1 − In1} , [2 + 3 (n− n2)] {Jn2 − In2} , . . . [2 + 3 (n− nk)] {Jnk − Ink} .

Example 2.14. For the complete 3-partite graph

Dε (G) =



0 20 20 0 0 0 0 0 0

20 0 20 0 0 0 0 0 0

20 20 0 0 0 0 0 0 0

0 0 0 0 20 20 0 0 0

0 0 0 20 0 20 0 0 0

0 0 0 20 20 0 0 0 0

0 0 0 0 0 0 0 20 20

0 0 0 0 0 0 20 0 20

0 0 0 0 0 0 20 20 0


spec Dε (G) =

−20 40

6 3

 .

Theorem 2.15. Let Kn be the complete graph on n-vertices and P2 be a path on two vertices. Then

spec Dε (KnOP2) =

0 −λ1 −λ2 λ1(n− 1) λ2(n− 1)

n n− 1 n− 1 1 1

 .

Here λ1 and λ2 are the roots of λ2 − 2bλ− 2a2 = 0, where a = 2n+ 6 and b = 2n+ 9.

Proof. Let Kn be the complete graph on n-vertices and P2 be a path on vertices. Then, the graph Kn ◦ P2 consists of

vertices of the complete graph Kn which are labeled as the index set {v1,v2,v3,.......,vn} and disjoint copies of P2. Each vertex

of Kn is joined to both the vertices of P2. The D-eccentricity matrix of Kn ◦ P2 is given by Dε(Kn ◦ P2) = A ⊗ B, where

A =

 0 (2n+ 6) J1×2

(2n+ 6)J2×1 (2n+ 9) J2

 and B = Jn − In. By Lemma 2.4

spec(A) =

0
(2n+9)2±

√
(2n+9)222(n−1)2+4.2(2n+6)2

2

1 1
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spec(B) =

 −1 (n− 1)

(n− 1) 1


Therefore, by Lemma 1.4,

specDε (A⊗B) =

0 −λ1 −λ2 −λ1(n− 1) −λ2(n− 1)

n n− 1 n− 1 1 1


Hence,

specDε (Kn ◦ P2) =

0 −λ1 −λ2 −λ1(n− 1) −λ2(n− 1)

n n− 1 n− 1 1 1



Example 2.16. For the graph G ∼= K3 ◦ P2 of Figure 5,

Figure 5: G ∼= K3 ◦ P2

Dε (G) =



0 0 0 0 12 12 0 12 12

0 0 0 12 0 12 12 0 12

0 0 0 12 12 0 12 12 0

0 12 12 0 15 15 0 15 15

12 0 12 15 0 15 15 0 15

12 12 0 15 15 0 15 15 0

0 12 12 0 15 15 0 15 15

12 0 12 15 0 15 15 0 15

12 12 0 15 15 0 15 15 0


specDε(G) =

0 −37.6495 7.6495 −15.2990 75.2990

3 2 2 1 1
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