International Journal of Mathematics And its Applications

On Spectra of D-Eccentricity Matrix of Some Graphs

Prabhakar R. Hampiholi ${ }^{1}$, Anjana S. Joshi ${ }^{1}$ and Jotiba P. Kitturkar ${ }^{2, *}$
1 Department of Mathematics, KLS Gogte Institute of Technology, Belagavi, Karnataka, India.
2 Department of Mathematics, Maratha Mandal Engineering College, Belagavi, Karnataka, India.

Abstract

For any two vertices u and v of a graph $G, d(u, v)$ is the length of the shortest path between the vertices u and v. D. Reddy Babu and P.L.N. Varma introduced the concept of D-distance. D-distance considers the degree of all vertices present in a path while defining its length. In this paper, D-eccentricity spectra of D-eccentricity matrix of some class of graphs are computed.

MSC: 0512, 05C50

Keywords: Distance, D-distance, Eccentricity matrix, Spectrum.
(C) JS Publication.

1. Introduction

The theory of Linear Algebra, in particular theory of matrices is a powerful tool to study the spectral properties of the graph spectra and in turn matrix properties of the graph can be recognized from the spectrum of its matrix. By a graph G, we mean non-trivial, finite and undirected graph without multiple edges and loops. In graph G, the usual distance $d(u, v)$ is the length of the minimum path connecting the vertices u and v of G.

The D-distance $d^{D}(u, v)$ between two vertices of a connected graph G is defined as

$$
d^{D}(u, v)=\min \left\{d(u, v)+\operatorname{deg}(u)+\operatorname{deg}(v)+\sum \operatorname{deg}(w)\right\}
$$

where sum runs over all the intermediate vertices w in the path and minimum is taken over all $u-v$ paths in G [1].
The D-eccentricity of any vertex $v, e^{D}(v)$ is defined as the maximum D-distance from v to any other vertex, that is $e^{D}(v)=\max \left\{d^{D}(u, v): u \in V(G)\right\}$, where $V(G)$ is the vertex set of graph $G[1]$.

Let $\beta_{1} \geq \beta_{2} \geq \beta_{3} \geq \ldots \geq \beta_{r}$ denote different eigenvalues of the matrix $D_{\varepsilon}(G)$. Since, this matrix is real symmetric, all the D_{ε} eigen values are real D_{ε} spectrum is denoted by $\operatorname{spec} D_{\varepsilon}$ and defined as,

$$
\operatorname{spec} D_{\varepsilon}=\left\{\begin{array}{lllll}
\beta_{1} & \beta_{2} & \beta_{3} & \ldots & \beta_{r} \\
m_{1} & m_{2} & m_{3} & \ldots & m_{r}
\end{array}\right\}
$$

Where m_{i} is the algebraic multiplicity of the eigenvalues β_{i}, for $1 \leq i \leq r$.

[^0]
1.1. Definitions, notations and preliminary results

For a square matrix A of order n with real entries $\operatorname{det}(A), \operatorname{det}(\lambda I-A)$ and $\operatorname{spec}(A)$ denote the determinant, characteristic polynomial and spectrum of A respectively.
$J_{n \times n}$ or J_{n} denotes the $n \times n$ matrix with all entries as 1 and I_{n} denotes $n \times n$ identity matrix.
Lemma 1.1 ([5]). If matrix A is an $n \times n$ matrix partitioned as $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ where A_{11}, A_{22} are square matrices. If A_{11} is non singular matrix then, $\operatorname{det}(A)=\operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)$. Also, if A_{22} is non singular matrix then, $\operatorname{det}(A)=\operatorname{det}\left(A_{22}\right) \operatorname{det}\left(A_{12}-A_{12} A_{22}^{-1} A_{21}\right)$.

Lemma 1.2 ([5]). Let B is square matrix of order n. If each column sum of B is equal to one of the eigenvalues (say α) of B, then

$$
J_{1 \times n}(\lambda I-B)^{-1} J_{n \times 1}=\frac{n}{n-\alpha} .
$$

Lemma 1.3 ([5]). Let $B=\left[\begin{array}{ll}B_{0} & B_{1} \\ B_{1} & B_{0}\end{array}\right]$ be a symmetric 2×2 block matrix with B_{0} and B_{1} are square matrices of the same order. Then spectrum of B is the union of spectra $\left(B_{0}+B_{1}\right)$ and spectra $\left(B_{0}-B_{1}\right)$.

Lemma 1.4 ([3]). Let A and B be square matrices of order n. If $\operatorname{spec}(A)=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}\right\}$ and $\operatorname{spec}(B)=$ $\left\{\mu_{1}, \mu_{2}, \mu_{3}, \ldots, \mu_{n}\right\}$ then, $\operatorname{spec}(A \otimes B)=\left\{\lambda_{i} \mu_{j} ; i=1,2,3, \ldots, n, j=1,2,3, \ldots, n\right\}$, where \otimes denotes tensor product.

Definition 1.5 ([4]). A star graph on n vertices is denoted by $K_{1, n-1}$.
Definition 1.6 ([4]). The n-barbell graph $B_{n, n}$ is a graph obtained by connecting two copies of K_{n} by a bridge.
Definition 1.7 ([7]). The corona $G \circ H$ of G and H is defined as the graph obtained by taking one copy of G and n disjoint copies of H, say $H_{1}, H_{2}, \ldots, H_{n}$ and joining the vertex v_{i} of G to every vertex in H_{i}, the $i^{\text {th }}$ copy of H.

In this article, motivated by the definition of eccentricity matrix $\varepsilon(G)$ of a connected graph G and spectra of eccentricity matrix of some class of graphs $[6,8]$, we define D-eccentricity matrix $D_{\varepsilon}(G)$ and find D-eccentricity spectra spec $D_{\varepsilon}(G)$ of some class of graphs.

2. Spectra of D-Eccentricity Matrix of Some Class of Graphs

For a graph G of order n, if $u_{1}, u_{2}, u_{3}, \ldots, u_{n} \in V(G)$, D-eccentricity matrix is defined by,

$$
D_{\varepsilon}(G)=\left\{\begin{array}{cc}
d_{i j}^{D} & \text { if } d_{i j}^{D}=\min \left\{e^{D}\left(u_{i}\right), e^{D}\left(u_{j}\right)\right\} \\
0 & \text { if } d_{i j}^{D}<\min \left\{e^{D}\left(u_{i}\right), e^{D}\left(u_{j}\right)\right\}
\end{array}\right.
$$

The D_{ε} spectrum of a graph consists of D_{ε} eigenvalues of D-eccentricity matrix.
Theorem 2.1. Let $K_{1, n-1}$ be a star graph of n vertices then

$$
\operatorname{det}\left(D_{\varepsilon}\left(K_{1, n-1}\right)\right)=(n+3)^{n-2}(-1)^{n-1}(n+1)^{2}(n-1)
$$

and

$$
\operatorname{spec} D_{\varepsilon}\left(K_{1, n-1}\right)=\left\{\begin{array}{cc}
\frac{(n+3)(n-2) \pm \sqrt{(n+3)^{2}(n-2)^{2}+4(n-1)(n+1)^{2}}}{2} & -(n+3) \\
1 & n-2
\end{array}\right\}
$$

Proof. Let $K_{1, n-1}$ be a star graph of n vertices $\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$, where v_{1} is the vertex of degree ($\mathrm{n}-1$). Then,

$$
D_{\varepsilon}\left(K_{1, n-1}\right)=\left[\begin{array}{cc}
0 & (n+1) J_{1 \times(n-1)} \\
(n+1) J_{(n-1) \times 1} & (n+3)\left(J_{n-1}-I_{n-1}\right)
\end{array}\right] .
$$

Since, $(n+3)\left(J_{n-1}-I_{n-1}\right)$ is a non singular matrix, by Lemma 1.1, we have

$$
\begin{aligned}
\operatorname{det}\left(D_{\varepsilon}\left(K_{1, n-1}\right)\right) & =\operatorname{det}\left\{(n+3)\left[J_{n-1}-I_{n-1}\right]\right\} \operatorname{det}\left[0-(n+1) J_{1 \times(n-1)}\left\{\left((n+3)\left(J_{n-1}-I_{n-1}\right)\right)^{-1}(n+1) J_{(n-1) \times 1}\right\}\right] \\
& =(n+3)^{n-2}(-1)^{n-2}(n-2)(n+1)^{2} \operatorname{det}\left[J_{1 \times(n-1)}\left(I_{n-1}-J_{n-1}\right)^{-1} J_{(n-1) \times 1}\right] \\
& =(n+3)^{n-2}(-1)^{n-2}(n-2)(n+1)^{2}\left[\frac{n-1}{1-(n-1)}\right] \\
& =(n+3)^{n-2}(-1)^{n-1}(n+1)^{2}(n-1) .
\end{aligned}
$$

The characteristic polynomial of $D_{\varepsilon}\left(K_{1, n-1}\right)$ is,

$$
\operatorname{det}\left[D_{\varepsilon}\left(K_{1, n-1}-\lambda I_{n}\right)\right]=\operatorname{det}\left[\begin{array}{cc}
-\lambda & (n+1) J_{1 \times(n-1)} \\
(n+1) J_{(n-1) \times 1} & (n+3)\left(J_{n-1}-I_{n-1}\right)-\lambda I_{n-1}
\end{array}\right]
$$

By Lemma 1.1,

$$
\begin{aligned}
\operatorname{det}\left[D_{\varepsilon}\left(K_{1, n-1}-\lambda I_{n}\right)\right] & =(-\lambda) \operatorname{det}\left[(n+3)\left(J_{n-1}-I_{n-1}\right)-\lambda I_{n-1}-(n+1) J_{1 \times(n-1)}(-\lambda)^{-1}(n+1) J_{(n-1) \times 1}\right] \\
& =(-\lambda) \operatorname{det}\left[(n+3)\left(J_{n-1}-I_{n-1}\right)-\lambda I_{n-1}+\frac{(n+1)^{2}}{\lambda} J_{n-1}\right] \\
& =(-\lambda) \operatorname{det}\left[\left\{(n+3)+\frac{(n+1)^{2}}{\lambda}\right\} J_{n-1}-\{(n+3)+\lambda\} I_{n-1}\right] \\
& =(-\lambda)\left[(n-1)\left\{(n+3)+\frac{(n+1)^{2}}{\lambda}\right\}-\{(n+3)+\lambda\}\right][-(n+3)-\lambda]^{n-2} \\
& =\left[\lambda-\left\{\frac{(n-2)(n+3) \pm \sqrt{(n+3)^{2}(n-2)^{2}+4(n-1)(n+1)^{2}}}{2}\right\}\right][-(n+3)-\lambda]^{n-2}
\end{aligned}
$$

Therefore

$$
\operatorname{spec} D_{\varepsilon}\left(K_{1, n-1}\right)=\left\{\begin{array}{cc}
\frac{(n+3)(n-2) \pm \sqrt{(n+3)^{2}(n-2)^{2}+4(n-1)(n+1)^{2}}}{2} & -(n+3) \\
1 & n-2
\end{array}\right\}
$$

Corollary 2.2. If $n \geq 3$ then the least eigenvalue of $D_{\varepsilon}\left(K_{1, n-1}\right)$ is $-(n+3)$.

Proof. Suppose it is not so, then

$$
\begin{aligned}
\frac{(n-2)(n+3)-\sqrt{(n-2)^{2}(n+3)^{2}+4(n-1)(n+1)^{2}}}{2} & <-(n+3) \\
(n-2)(n+3)+2(n+3) & <\sqrt{(n-2)^{2}(n+3)^{2}+4(n-1)(n+1)^{2}} \\
n(n+3) & <\sqrt{(n-2)^{2}(n+3)^{2}+4(n-1)(n+1)^{2}}
\end{aligned}
$$

This implies, $(n+3)^{2}<(n+1)^{2}$. This is not possible, hence $-(n+3)$ is the least eigenvalue of $D_{\varepsilon}\left(K_{1, n-1}\right)$.

Example 2.3. For the Star graph $K_{1,3}$ of Figure 1, D eccentricity matrix is

Figure 1: Star graph $K_{1,3}$

$$
\begin{aligned}
D_{\varepsilon}\left(K_{1,3}\right) & =\left[\begin{array}{cccc}
0 & 5 & 5 & 5 \\
5 & 0 & 7 & 7 \\
5 & 7 & 0 & 7 \\
5 & 7 & 7 & 0
\end{array}\right] \\
\operatorname{det} D_{\varepsilon}\left(K_{1,3}\right) & =-3675 \\
\operatorname{spec} D_{\varepsilon}\left(K_{1,3}\right) & =-7,-7,-4.1355,18.1355
\end{aligned}
$$

The following Lemma 2.4 is proved for the sake of completeness, which is about spectrum of a kind of block matrix.
Lemma 2.4. Let A be $a(n+1) \times(n+1)$ matrix of the form $A=\left[\begin{array}{cc}0 & a J_{1 \times n} \\ a J_{n \times 1} & b J_{n}\end{array}\right]$, then $\operatorname{spec}(A)=\left\{\begin{array}{cc}0 & \frac{b n \pm \sqrt{b^{2} n^{2}+4 a^{2} n}}{2} \\ n-1 & 1\end{array}\right\}$, where $a, b>0$.
Proof. $\quad \operatorname{det}\left[\lambda I_{n+1}-A\right]=\operatorname{det}\left[\begin{array}{cc}\lambda & -a J_{1 \times n} \\ -a J_{n \times 1} & I_{n}-b J_{n}\end{array}\right]$. By Lemma 1.1 and Lemma 1.2

$$
\begin{aligned}
\operatorname{det}\left[\lambda I_{n+1}-A\right] & =\operatorname{det}\left[\lambda I_{n}-b I_{n}\right] \cdot \operatorname{det}\left[\lambda-a^{2}\left(\lambda I_{n}-b J_{n}\right)^{-1} J_{1 \times n}\right] \\
& =\lambda^{n-1}(\lambda-b n) \operatorname{det}\left[\lambda-\frac{a^{2} n}{\lambda-b n}\right] \\
& =\lambda^{n-1}\left[\lambda^{2}-b n \lambda-a^{2} n\right]
\end{aligned}
$$

We use the Lemma 2.4 to prove the following theorem.

Theorem 2.5. Let $B_{n, n}$ be the n-barbell graph then,

$$
\operatorname{spec} D_{\varepsilon}\left(B_{n, n}\right)=\left\{\begin{array}{ccc}
0 & \frac{(4 n+1)(n-1) \pm \sqrt{(4 n+1)^{2}(n-1)^{2}+4(3 n+1)^{2}(n-1)}}{2} & -\frac{(4 n+1)(n-1) \pm \sqrt{(4 n+1)^{2}(n-1)^{2}+4(3 n+1)^{2}(n-1)}}{2} \\
2(n-2) & 1 & 1
\end{array}\right\}
$$

Proof. Let K_{n} be the complete graph on n vertices with vertex set $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots, v_{n}\right\}$ and let us consider a copy of K_{n} with vertex set $\left\{w_{1}, w_{2}\right.$, \qquad $\left.w_{n}\right\}$. Let $B_{n, n}$ be the barbell graph obtained by joining the vertices of v_{1} and w_{1} in the two
copies of K_{n}. Then the D-eccentricity matrix of $B_{n, n}$ is given by

$$
\mathrm{D} \varepsilon\left(B_{n, n}\right)=\left[\begin{array}{ll}
0_{n \times n} & A_{n \times n} \\
A_{n \times n} & 0_{n \times n}
\end{array}\right]
$$

Where

$$
A_{n \times n}=\left[\begin{array}{cc}
0 & (3 n+1) J_{1 \times n-1} \\
(3 n+1) J_{1 \times n-1} & (4 n+1) J_{n-1} .
\end{array}\right] .
$$

Putting $a=3 n+1$ and $b=4 n+1$ in Lemma 2.4 we get,

$$
\operatorname{spec}(A)=\left\{\begin{array}{cc}
0 & \frac{(4 n+1)(n-1) \pm \sqrt{(4 n+1)^{2}(n-1)^{2}+4(3 n+1)^{2}(n-1)}}{2} \\
n-2 & 1
\end{array}\right\}
$$

for $a=3 n+1$ and $b=4 n+1$. By Lemma 1.3, the spectrum of $\mathrm{D} \varepsilon\left(B_{n, n}\right)$ is the union of eigenvalues A and $-A$. Hence,

$$
\operatorname{spec} D_{\varepsilon}\left(B_{n, n}\right)=\left\{\begin{array}{cc}
0 & \frac{(4 n+1)(n-1) \pm \sqrt{(4 n+1)^{2}(n-1)^{2}+4(3 n+1)^{2}(n-1)}}{2}-\frac{(4 n+1)(n-1) \pm \sqrt{(4 n+1)^{2}(n-1)^{2}+4(3 n+1)^{2}(n-1)}}{2} \\
2(n-2) & 1
\end{array}\right\} .
$$

Example 2.6. For the Barbell graph $G=B_{3 \times 3}$ of Figure 2, D - eccentricity matrix is

Figure 2: Barbell graph $G=B_{3 \times 3}$

$$
D \varepsilon(G)=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 10 & 10 \\
0 & 0 & 0 & 10 & 13 & 13 \\
0 & 0 & 0 & 10 & 13 & 13 \\
0 & 10 & 10 & 0 & 0 & 0 \\
10 & 13 & 13 & 0 & 0 & 0 \\
10 & 13 & 13 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
O_{3 \times 3} & A_{3 \times 3} \\
A_{3 \times 3} & O_{3 \times 3}
\end{array}\right]
$$

For,

$$
\begin{aligned}
A_{3 \times 3} & =\left[\begin{array}{cc}
0 & 10 J_{1 \times 2} \\
10 J_{2 \times 1} & 13 J_{2}
\end{array}\right] \\
\operatorname{spec} D_{\varepsilon}(G) & =\left\{\begin{array}{ccccc}
0 & -32.2094 & 32.2094 & 6.2094 & -6.2094 \\
2 & 1 & 1 & 1 & 1
\end{array}\right\} .
\end{aligned}
$$

Before, proceeding to next theorem, we use this definition.

Definition 2.7. Cocktail party graph is a regular graph on $2 n$ vertices with degree $2 n-2$.

Theorem 2.8. Let $C P_{k}$ be the cocktail party graph on $k=2 n$ vertices, $n \geq 2$ then,

$$
\operatorname{spec} D_{\varepsilon}\left(C P_{k}\right)=\left\{\begin{array}{cc}
2+3(2 n-2) & -[2+3(2 n-2)] \\
n & n
\end{array}\right\} .
$$

Proof. Let $C P_{k}$ be the cocktail party graph on $k=2 n$ vertices, $n \geq 2$ then, the eccentricity matrix of $C P_{k}$ is

$$
D_{\varepsilon}\left(C P_{k}\right)=\left[\begin{array}{cc}
O_{n \times n} & 2+3(2 n-2) I_{n \times n} \\
2+3(2 n-2) I_{n \times n} & O_{n \times n}
\end{array}\right]
$$

Therefore, by Lemma 1.3

$$
\operatorname{spec} D_{\varepsilon}\left(C P_{k}\right)=\left\{\begin{array}{cc}
2+3(2 n-2) & -[2+3(2 n-2)] \\
n & n
\end{array}\right\}
$$

Example 2.9. For the Cocktail party graph $G=C P_{2}$ of Figure 3,

Figure 3: $G=$ Cocktail Party Graph $\left(C P_{2}\right)$

$$
\begin{aligned}
D \varepsilon(G) & =\left[\begin{array}{llll}
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 8 \\
8 & 0 & 0 & 0 \\
0 & 8 & 0 & 0
\end{array}\right] \\
\operatorname{spec} D \varepsilon(G) & =\left\{\begin{array}{ll}
8 & -8 \\
2 & 2
\end{array}\right\}
\end{aligned}
$$

We use this definition to proceed to next theorem,

Definition 2.10. Suppose $C S_{k}$ is a Crown graph with k vertices where $k=2 n$. Then the vertex set of $C S_{k}$ is partitioned into two subsets V_{1} and V_{2} such that $V_{1} \cup V_{2}=V$ and $V_{1} \cap V_{2}=\phi$.

Theorem 2.11. Let $C S_{k}$ is a Crown graph on $k=2 n$ vertices for $n>2$ then,

$$
\operatorname{spec} D \varepsilon\left(C S_{k}\right)=\left\{\begin{array}{cc}
3+4(n-1) & -[3+4(n-1)] \\
n & n
\end{array}\right\}
$$

Proof. Let $V=\left\{v_{1}, v_{2}, v_{3}, \ldots v_{n}\right\}$ and $W=\left\{w_{1}, w_{2}, \ldots w_{n}\right\}$ be two subsets of $C S_{k}$ and all vertices of v_{1} are correlated to each vertex of v_{2} except paired ones. The eccentricity matrix of $C S_{k}$ is

$$
\mathrm{D} \varepsilon\left(C S_{k}\right)=\left[\begin{array}{cc}
0_{n \times n} & 3+4(n-1) I_{n \times n} \\
3+4(n-1) I_{n \times n} & 0_{n \times n}
\end{array}\right]
$$

By Lemma 1.3

$$
\operatorname{spec} \mathrm{D} \varepsilon\left(C S_{k}\right)=\left\{\begin{array}{cc}
3+4(n-1) & -[3+4(n-1)] \\
n & n
\end{array}\right\}
$$

Example 2.12. For the Crown graph $G=C S_{3}$ of Figure 4,

Figure 4: $G=$ Crown graph $C S_{3}$

$$
\begin{aligned}
D_{\varepsilon}(G) & =\left[\begin{array}{llllll}
0 & 0 & 0 & 11 & 0 & 0 \\
0 & 0 & 0 & 0 & 11 & 0 \\
0 & 0 & 0 & 0 & 0 & 11 \\
11 & 0 & 0 & 0 & 0 & 0 \\
0 & 11 & 0 & 0 & 0 & 0 \\
0 & 0 & 11 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{spec} D_{\varepsilon}(G) & =\left\{\begin{array}{cc}
11 & -11 \\
3 & 3
\end{array}\right\}
\end{aligned}
$$

Theorem 2.13. Let $K_{n_{1}, n_{2}, n_{3}, \ldots n_{k}}$ be complete k-partite graph such that $\sum_{i=1}^{k} n_{i}=n$; and $n_{i} \geq 2$ and $k \leq n-1$. Then,

$$
\operatorname{spec} D_{\varepsilon}\left(K_{n_{1}, n_{2}, n_{3}, \ldots n_{k}}\right)=\left\{\begin{array}{ccc}
-2+3\left(n-n_{1}\right) & 2+3\left(n-n_{1}\right)\left\{n_{1}-1\right\} & 2+3\left(n-n_{2}\right)\left\{n_{2}-1\right\} \\
(n-k) & 1 & 1
\end{array}\right\}
$$

that is

$$
\left\{\begin{array}{cc}
-\left[2+3\left(n-n_{1}\right)\right] & 2+3\left(n-n_{1}\right)\left\{n_{1}-1\right\} \\
n-k & k
\end{array}\right\}
$$

where $n_{1}=n_{2}=n_{3}=\ldots=n_{k}=n_{1}$.

Proof. $\mathrm{D} \varepsilon\left(K_{n_{1}, n_{2}, n_{3} \ldots \ldots \ldots n_{k}}\right)$
$=\left[\begin{array}{ccccc}{\left[2+3\left(n-n_{1}\right)\right]\left\{J_{n_{1}}-I_{n_{1}}\right\}} & 0 & 0 & \cdots & 0 \\ 0 & {\left[2+3\left(n-n_{2}\right)\right]\left\{J_{n_{2}}-I_{n_{2}}\right\}} & 0 & \cdots & 0 \\ 0 & 0 & {\left[2+3\left(n-n_{3}\right)\right]\left\{J_{n_{3}}-I_{n_{3}}\right\}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & {\left[2+3\left(n-n_{k}\right)\right]\left\{J_{n_{k}}-I_{n_{k}}\right\}}\end{array}\right]$

Hence, spectrum of $\mathrm{D} \varepsilon\left(K_{n_{1}, n_{2}, n_{3} \ldots \ldots \ldots n_{k}}\right)$ is the union of eigenvalues of

$$
\left[2+3\left(n-n_{2}\right)\right]\left\{J_{n_{1}}-I_{n_{1}}\right\},\left[2+3\left(n-n_{2}\right)\right]\left\{J_{n_{2}}-I_{n_{2}}\right\}, \ldots\left[2+3\left(n-n_{k}\right)\right]\left\{J_{n_{k}}-I_{n_{k}}\right\} .
$$

Example 2.14. For the complete 3-partite graph

$$
\begin{aligned}
& D \varepsilon(G)=\left[\begin{array}{ccccccccc}
0 & 20 & 20 & 0 & 0 & 0 & 0 & 0 & 0 \\
20 & 0 & 20 & 0 & 0 & 0 & 0 & 0 & 0 \\
20 & 20 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 20 & 20 & 0 & 0 & 0 \\
0 & 0 & 0 & 20 & 0 & 20 & 0 & 0 & 0 \\
0 & 0 & 0 & 20 & 20 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 20 \\
0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 20 \\
0 & 0 & 0 & 0 & 0 & 0 & 20 & 20 & 0
\end{array}\right] \\
& \text { spec } D \varepsilon(G)=\left\{\begin{array}{ll}
-20 & 40 \\
6 & 3
\end{array}\right\} .
\end{aligned}
$$

Theorem 2.15. Let K_{n} be the complete graph on n-vertices and P_{2} be a path on two vertices. Then

$$
\text { spec } D \varepsilon\left(K_{n} O P_{2}\right)=\left\{\begin{array}{ccccc}
0 & -\lambda_{1} & -\lambda_{2} & \lambda_{1}(n-1) & \lambda_{2}(n-1) \\
n & n-1 & n-1 & 1 & 1
\end{array}\right\} .
$$

Here λ_{1} and λ_{2} are the roots of $\lambda^{2}-2 b \lambda-2 a^{2}=0$, where $a=2 n+6$ and $b=2 n+9$.
Proof. Let K_{n} be the complete graph on n-vertices and P_{2} be a path on vertices. Then, the graph $K_{n} \circ P_{2}$ consists of vertices of the complete graph K_{n} which are labeled as the index set $\left\{v_{1}, v_{2}, v_{3}, \ldots \ldots ., v_{n}\right\}$ and disjoint copies of P_{2}. Each vertex of K_{n} is joined to both the vertices of P_{2}. The D-eccentricity matrix of $K_{n} \circ P_{2}$ is given by $D_{\varepsilon}\left(K_{n} \circ P_{2}\right)=A \otimes B$, where $A=\left[\begin{array}{cc}0 & (2 n+6) J_{1 \times 2} \\ (2 n+6) J_{2 \times 1} & (2 n+9) J_{2}\end{array}\right]$ and $B=J_{n}-I_{n}$. By Lemma 2.4

$$
\operatorname{spec}(A)=\left\{\begin{array}{ll}
0 & \frac{(2 n+9) 2 \pm \sqrt{(2 n+9)^{2} 2^{2}(n-1)^{2}+4.2(2 n+6)^{2}}}{2} \\
1 & 1
\end{array}\right\}
$$

$$
\operatorname{spec}(B)=\left\{\begin{array}{cc}
-1 & (n-1) \\
(n-1) & 1
\end{array}\right\}
$$

Therefore, by Lemma 1.4,

$$
\operatorname{spec} \mathrm{D} \varepsilon(A \otimes B)=\left\{\begin{array}{ccccc}
0 & -\lambda_{1} & -\lambda_{2} & -\lambda_{1}(n-1) & -\lambda_{2}(n-1) \\
n & n-1 & n-1 & 1 & 1
\end{array}\right\}
$$

Hence,

$$
\operatorname{spec} \mathrm{D} \varepsilon\left(K_{n} \circ P_{2}\right)=\left\{\begin{array}{ccccc}
0 & -\lambda_{1} & -\lambda_{2} & -\lambda_{1}(n-1) & -\lambda_{2}(n-1) \\
n & n-1 & n-1 & 1 & 1
\end{array}\right\}
$$

Example 2.16. For the graph $G \cong K_{3} \circ P_{2}$ of Figure 5,

Figure 5: $G \cong K_{3} \circ P_{2}$

$$
\begin{aligned}
& D \varepsilon(G)=\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 12 & 12 & 0 & 12 & 12 \\
0 & 0 & 0 & 12 & 0 & 12 & 12 & 0 & 12 \\
0 & 0 & 0 & 12 & 12 & 0 & 12 & 12 & 0 \\
0 & 12 & 12 & 0 & 15 & 15 & 0 & 15 & 15 \\
12 & 0 & 12 & 15 & 0 & 15 & 15 & 0 & 15 \\
12 & 12 & 0 & 15 & 15 & 0 & 15 & 15 & 0 \\
0 & 12 & 12 & 0 & 15 & 15 & 0 & 15 & 15 \\
12 & 0 & 12 & 15 & 0 & 15 & 15 & 0 & 15 \\
12 & 12 & 0 & 15 & 15 & 0 & 15 & 15 & 0
\end{array}\right] \\
& \operatorname{spec} D_{\varepsilon}(G)=\left\{\begin{array}{llllll}
0 & -37.6495 & 7.6495 & -15.2990 & 75.2990 \\
3 & 2 & 2 & & 1 & 1
\end{array}\right\}
\end{aligned}
$$

References

[^1][2] Philip J. Davis, Circulant Matrices, John Wiley \& Sons, NewYork-Chichester-Brisbane, (1979).
[3] S. R. Jog, P. R. Hampiholi and Anjana S. Joshi, On Energy of some graphs, Annals of Pure and Applied Mathematics, (2013), 15-21.
[4] Frank Harary, Graph Theory, Addison-Welsy Publishing Co., Reading, Mass-Menlo Park, Calif. London, (1969).
[5] Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, (1994).
[6] Iswar Mahato, R. Gurusamy, M.Rajesh Kannan and S. Arockiaraj Spectra of eccentricity matrices of graphs, Discrete Appl. Math., 285(2020), 252-360.
[7] Cam McLeman and Erin McNicholas, Spectra of coronae, Linear Algebra Appl., 435(5)(2011), 998-1007.
[8] Jianfeng Wang, Mei Lu, Francesco Belardo and Milan Randic, The anti- adjacency matrix of a graph: Eccentricity matrix, Discrete Appl. Math., 251(2018), 299-309.

[^0]: * E-mail: kitturkar07@gmail.com

[^1]: [1] D. Reddy Babu and P. L. N. Varma D-distance in graphs, Golden Research Thoughts, 2(2013), 53-58.

