
Int. J. Math. And Appl., 9(1)(2021), 73–82

ISSN: 2347-1557

Available Online: http://ijmaa.in/
A
p
p
lications•ISSN:234

7-
15

57
•
In

te
r
n
a
ti
o
n
a
l
Jo

ur
na

l of Mathematics
A
n
d

its

International Journal ofMathematics And its Applications

Optimal Distribution of Players into Two Alliances in

Misère Subtraction Game

Annela R. Kelly1,∗

1 Department of Mathematics, Regis College, Regis, MA 02493, United States.

Abstract: In combinatorial game theory, multi-player games expands on the research of two-person games and are widely applicable
to computer science and business. The given paper studies the misère version of the subtraction game (Nim with one pile

of counters) for two alliances extending the results of Kelly in [2, 3]; Liu and Zhao in [5], Liu and Wang in [6] and Suetsugu

in [7]. The main result of the current paper determines the optimal distribution of the players among two alliances that
minimizes N , the smallest number of counters such that the larger alliance has a winning strategy for all the games with

more than N counters.
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1. Introduction

1.1. Overview

Interactions among several players occur in several industry applications, including computer game systems and conflict

situations in business. Although classical combinatorial game theory for two players has been comprehensively analyzed in

[1] by Berlekamp, Conway and Guy, the research is expanding to multi-player games. The analysis of multi-player games,

although a lot more practical and fascinating, is extremely complex and the winning moves depend on the relationships of

the players. Researchers in the field have established two main ways to consider players’ preferences:

(1). Organizing the players into two groups (two alliances)

(2). https://www.overleaf.com/project/5c2cce456b20297dba4725b22) using preference rankings (based on alliance matrix).

The preference or alliance matrix was first introduced in 2012 by Krawec [4] and after that researched by Liu and Zhao [5],

Liu and Wang in [6] and Suetsugu in [7]. The given paper investigates the first preference selection and studies games with

two alliances. In particular, we will study the best way to organize the 2n+ 1 players into two alliances of sizes n+ 1 and n

in order for both alliances to win the largest number of games. The game is unevenly balanced and the larger alliance has

an advantage. Hence, the goal of the paper is to minimize the starting number of counters N such that the larger alliance

wins all the games with more than N counters.

In the introductory chapter we will introduce the essential notation that has been previously used in the literature (see [2]

and [3]). Additionally, we will state the preliminary results that are used in the next chapter. These theorems were proved
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by Kelly in [2, 3] and Liu and Zhao in [5] in the case of two alliances. The main chapter, Chapter 2 proves the formulas

that formally show how to choose the optimal distribution of players for each alliance.

1.2. Notations and Terminology

In the case of two evenly distributed alliances, we have proved in paper [2] that the game resembles the two player impartial

subtraction game. In this article we consider games with odd number 2n+1 of players. The alliances in the game are formed

by any selection of n + 1 and n players; these alliances are labelled alliance 1 and alliance 2. Let N denote the starting

number of counters of a game. Players take turns by removing 1, ..,m (m > 1) counters at their turn. From [2], the set of

turns, where we start with player one, and all 2n + 1 players have their turn, is called a cycle. We will consider misère

version of the subtraction game as in previous literature ([2, 3, 5, 6]. The misère play theory for subtraction games is similar

to the normal play convention of the subtraction game. However, in multi-player subtraction game we avoid the situation

where alliance members might compete against each other and hence play against each others interests. Hence, we will work

with the misère subtraction game and the game ends when all the coins have vanished providing a clear winning alliance.

The following two examples will illustrate how the formation of alliances among different players influences the outcome of

the game. Examples 1.1 and 1.2 analyze three player misère subtraction game, where each player can remove 1 or 2 counters,

hence n = 1 and m = 2.

Example 1.1. Suppose the first player P1 and the second player P2 play as a team (alliance) against the third player P3.

Suppose the starting number of counters in the game is N = 1. The first player P1 loses immediately.

If N = 2, then the second player P2 loses.

Let N = 3, 4, or 5. The first player P1 and second player P2 can leave one counter after their turns and player P3 loses.

Let N = 6. The first player P1 and second player P2 can leave only two to four counters after their turns, hence player P3

wins by leaving one or two counters.

Next, we show that if N ≥ 7, then the players P1 and P2 can choose how many counters to leave from any three consecutive

numbers. For N = 7, the players P1 and P2 should take one counter each to leave five counters after their turns. No matter

how many counters player P3 takes, there will be three or more left, hence P1 or P2 will win.

For N = 8 or 9, if the players P1 and P2 form an alliance, they can leave five counters after their turns and player P3 will

lose.

In the games with N ≥ 10, one can justify recursively that the players P1 and P2 form an alliance, they will be able to leave

N − 2, N − 3 or N − 4 counters on their turn. However, there are no three consecutive numbers N ≥ 7 where player P3

wins, therefore player P3 will lose. We see that Alliance 1 (players 1 and 2) loses games with N = 1, 2 and 6 counters, while

Alliance 2 (player 3) loses games N = 3, 4, 5 and 7 or more counters.

Example 1.2. Suppose the first player P1 and the third player P3 form alliance against player P2.

74



Annela R. Kelly

Let N = 1. As in Example 1.1, the first player P1 loses immediately.

Let N = 2 or 3. The first player can leave one counter after her turn, and the second player P2 loses.

Let N = 4 or 5. No matter how many counters the first player P1 removes, the second player P2 can leave 1 − 2 counters

after her turn. Hence either player P1 or player P3 lose.

Let N ≥ 6. If N = 6, the winning strategy for the alliance (P1 and P3) is to start the game by removing one counter. No

matter what the second player’ move is, to support her alliance, the player P3 can leave two counters. The first player will

remove one counter and leave one counter, hence the second player (alliance) will lose the game. In the games with N > 6,

the alliance can choose the winning number of counters and alliance 2 will lose. We see that Alliance 1 (players 1 and 3)

loses games with N = 1, 4 and 5 counters, while Alliance 2 (player 2) loses games N = 2, 3 and 6 or more counters.

In Example 1.1, the losing alliance or player will lose all games starting with N ≥ 7 counters, while in Example B the losing

alliance or player will lose all games starting with N ≥ 6 counters. In both of these examples the winning alliance consists

of two members and the losing alliance is the single player. In summary, it is preferable for P1 to team up with P3 instead

of P2 as they will win all the games with six or more counters.

These two examples lead to the goal of this paper. Suppose we want to minimize the starting number of counters N , the

cutoff point such that the larger alliance always wins with more than N counters. Specifically, we will be investigating how

should the players be distributed to achieve this goal:

The question was introduced by Kelly in [3] and was partially answered in the same paper for the games where two alliances

are divided into just two groups of consecutive players proved. Here, we will generalize the results of that paper. Let’s

restate the Theorem from [3] for just the two groups of players:

Theorem 1.3. Consider the misère subtraction game for 2n+1 players, where each player removes 1 or 2 counters on their

turn. If the first n + 1 players form one alliance and the last n players form another alliance, then the game is reducible

to a two player misère game, where the first player takes n + 1, ..., 2(n + 1) counters and the second player takes n, ..., 2n

counters. Moreover, the largest game that the first alliance loses is with 3n2 + 2n + 1 counters.

The theorem concludes that the larger alliance has always an advantage. In addition to this result, if the game is played
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with large enough number of counters, the bigger alliance will win the game no matter who starts. After this introductory

result by Kelly, Liu and Zhao [5] studied subtraction games for multiple players and modified the formulas in [2] and [3] in

the case the smaller alliance starts the game as illustrated below.

For the rest of the paper we assume WLOG and as in [2] that Alliance 2 has the last turn in each cycle. Next, we will

restate the results of Liu and Zhao in [5], which states that the larger alliance has an advantage if the game is played with

alliances that are distributed in more than two uneven subgroups for the games where the number of counters m > 2.

The theorem below determines the winning numbers of counters for two alliances clustered in several groups. We will use

this version for our work in next chapter. The result identifies the winning patterns in the first cycle for each alliance with a

predetermined groupings of alliances. In particular, we expand Theorem 8 above (from [3]) to games where alliance members

are in j > 1 clusters and can remove at least one and at most m ≥ 2 counters at their turn. To describe the grouping of the

alliances, we consider games where the alliances are divided into j > 1 groups. Alliance 1 consists of

l1 + l2 + ... + lj = n + 1

players and Alliance 2 consists of

k1 + k2 + ... + kj = n

players as in the chart below.

Next, we will introduce the notation for the number of counters each alliance can remove at his or her turn.

Suppose Alliance 1 can take

l1, ...,m lm counters on his first turn;

l2, ...,m l2 counters on his second turn;

...

lj , ...,m lj counters on his j.-th turn
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in each cycle, and Alliance 2 can take

k1, ...,m k1 counters on his first turn;

k2, ...,m k2 counters on his second turn;

...

kj , ...,m kj counters on his j.-th turn

in each cycle. The following result holds.

Theorem 1.4. Consider the misère subtraction game for 2n + 1 players, where each player removes 1 or 2 counters on

their turn. Suppose the following conditions are satisfied for every t ≥ 1

lt < mlt + kt < lt + mkt + l(t+1) < ... < m lt + kt + ... + mlj + kj , (1)

and

kt < mkt + l(t+1) < kt + ml(t+)1 + k(t+1) < ... < mkt + lt + ... + mkj + l1, (2)

then the maximum number of counters taken in each unsafe interval for alliances in the first cycle can be calculated using

the following formulas:

N11 = l1

N12 = ml1 + k1

N13 = l1 + mk1 + l2

N14 = ml1 + k1 + ml2 + k2

...
...

N1(2j−1) = l1 + mk1 + l2 + ... + mkj−1 + lj

N1(2j) = ml1 + k1 + ml2 + ... + mlj + kj .

(3)

Proof. This is essentially a two-player game where we combine all possible moves for players in given alliance. One can

easily see that N11 = l1. If the game starts with more than l1 counters, but no more than N12 = ml1 +k1 counters, Alliance

1 can force Alliance 2 to lose the game by leaving k1 or less counters. Since the conditions (1) and (2) hold, then N12 > N11.

Similarly, at t-th turn for Alliance 1, in order to win the game, they can take x counters, where

lt < x ≤ mlt + kt or lt + mkt + l(t+1) < x ≤ mlt + kt + ml(t+1) + k(t+1)... or lt1 + mkt1 + l(t+1)1 + ... + lj1 + mkj1 <

x ≤ mlt1 + kt1 + ml(t+1)1 + k(t+1)1 + ... + mlj1 + kj1 and N1t+1 > N1t i.e. they cannot skip unsafe intervals. Hence if

the condition (1) holds then Alliance 1 will not skip any unsafe intervals in the first cycle and will win the games with x

counters.

On the other hand, at t-th turn for Alliance 2, they will win the games with x counters, where kt1 < x ≤ mkt1 + l(t + 1)1

or kt1 + ml(t+1)1 + k(t+1)1 < x ≤ mkt1 + l(t+1)1 + mk(t+1)1 + l(t+2)1 ... or kt1 + ml(t+1) + k(t+1) + ... + kj + mk1x ≤

mkt + l(t+1) +mk(t+1) + l(t+2) + ...+mkj + l1, and they cannot skip unsafe intervals. Therefore the conditions (1) and (2)

will lead to the formulas (3), that provides the distribution of winning number of counters for alliances in the first cycle if

no unsafe intervals are skipped.
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This theorem generalizes the results of Liu and Zhao in [5] and corrects the proof of Proposition 8 in [2] by requiring the

conditions (1) and (2) to be satisfied for every t. In most groupings of alliances, the conditions of the Theorem 1 are satisfied.

For example, if the alliances distribute their members in non-increasing clusters.

Definition 1.5. We denote the length of the unsafe intervals t, 1 ≤ t ≤ j that Alliance 1 loses in the first cycle by

Rt = N1(2t−1) −N1(2(t−1)),

where 1 ≤ t ≤ j stands for the t-th turn and N10 = 0.

If the conditions (1) and (2) are satisfied, the Propositions 12 and 13 in [2] hold, which implies that Rt reduces in each cycle

by m− 1. In particular, if the largest unsafe interval of Alliance 1 losses in the first cycle has length k, then Alliance 1 wins

all the games starting from cycle r, where r is an integer such that

r >
k

m− 1
+ 1.

2. Optimal Distribution of Alliances Clustered in Several Groups

In this paper, we will find a distribution of alliances that minimizes N , the number of counters, such that the larger alliance

has a winning strategy for all the games with more than N counters.

Suppose the subtraction game is played with 2n + 1 players. Our goal in this chapter is to determine how to distribute the

players into two alliances (of sizes n + 1 and n) in order to minimize N , where N denotes the smallest number of counters,

such that the larger alliance has a winning strategy for all the games that start with more than N counters.

We start with several observations about the length of the unsafe intervals Rt, 1 ≤ t ≤ j that Alliance 1 loses in the first

cycle.

First proposition shows that a specific distribution of alliances leads to a game with only two unsafe intervals in the first

cycle.

Proposition 2.1. Let j denote the number of turns each alliance has in one cycle. Suppose both alliances group their

members so that the largest clusters is the first. In particular, l1 = n+ 2− j and k1 = n+ 1− j and the remaining turns for

each alliance are taken by single players. The given distribution of alliances creates a two player game.

Proof. Using the formulas (3), one can calculate

N11 = n + 2− j,

N12 = m(n + 2− j) + n + 1− j = (m + 1)(n + 1− j) + m, and

N13 = n + 2− j + m(n + 1− j) + 1 = (m + 1)(n + 1− j) + 2.

Hence N12 −N13 = m− 1 ≥ 0 which implies that Alliance 2 loses all the games from N11 + 1 up to N14.

Furthermore, rewriting the formulas (3) recursively, we obtain that for all the unsafe intervals j > 1:

N1(2j−1) = N1(2(j−1)−1) + kj−1 + lj = N1(2(j−1)−1) + m + 1 and

N1(2j) = N1(2(j−1)) + lj + kj = N1(2(j−1)) + m + 1.
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Therefore for any 1 < t ≤ j, N1(2t+1) −N1(2t) = N13 −N12 ≤ 0. In other words, Alliance 1 loses the games up to n + 2− j,

but after that Alliance 2 loses all the games with more than n + 2 − j counters. Hence, the game has two unsafe intervals

in the first cycle. In particular, the first unsafe interval Alliance 1 loses in the first cycle is from 1 up to N11 = n + 2 − j

counters and the first unsafe interval Alliance 2 loses is from n + 2 − j + 1 up to mn + m + n counters. The subsequent

unsafe intervals follow similar pattern as was observed in [3].

Proposition 2.2. The length of each unsafe interval that Alliance 1 loses in the first cycle can be calculated by R1 = l1

Rt = N1(2t−1) −N1(2(t−1)) = (m− 1)[k1 + k2 + ... + k(t−1) − l1 − l2 − ...− l(t−1)] + lt, (4)

for 1 < t ≤ j and the length of each unsafe interval that Alliance 2 loses in the first cycle can be calculated by

N1(2t) −N1(2t−1) = (m− 1)[l1 + l2 + ...lt − k1 − k2 − ...− k(t−1)] + kt, (5)

for 1 ≤ t ≤ j.

Proof. The direct calculation from formulas (3) gives us (4) and (5).

The above Proposition indicates that the length of the corresponding unsafe intervals for Alliance 1 reduces by m−1 in each

cycle under the conditions stated in the previous section and in Proposition 12 in [2]. Therefore, to minimize N , Alliance 1

needs to minimize max{Rt, 1 ≤ t ≤ j} and subsequently they need to minimize the corresponding t where this is occurring.

The primary goal for Alliance 2 is to maximize max{Rt, 1 ≤ t ≤ j} and then maximize the corresponding t.

Proposition 2.3. For Alliance 2, the optimal choice is to take k1 = n− j + 1, k2 = 1, ..., kj = 1.

Proof. It follows from (4) in Proposition 3 that since the length of the t-th unsafe interval of Alliance 1 losses Rt, 1 ≤ t ≤

j − 1, contains the term kt (1 ≤ t ≤ j − 1) with a positive sign in (4) (on the other hand, it occurs with a negative sign in

(5)).

The chart below illustrates Alliance 2’s best choice.

The best choices for Alliance 1 are not as straightforward, which is observed in the next few propositions.

Proposition 2.4. The optimal choice for the Alliance 1 is to take l1 ≥ d (m−1)(n−j+1)+2
m

e.

Proof. Since the length of t-th unsafe interval of Alliance 1 losses is R1 = l1 and R2 = (m− 1)(n− j + 1− l1) + l2, then

in order to R1 ≥ R2, one obtains that (m− 1)(n− j + 1) + l2 ≤ ml1 and the proposition follows.

Proposition 2.5. If m ≥ n− j + 1, then the optimal choice for the Alliance 1 is to take l1 = n− j + 1, l2 = 2, ..., lj = 1.
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Proof. The length of t-th unsafe interval of Alliance 1 losses is R1 = l1 and R2 = (m − 1)(n − j + 1 − l1) + l2. If we

assume that l1 < n − j + 1 or equivalently, m − 1 ≥ n − j we obtain the inequality R2 > m − 1 + l2 = n − j + 1 > l1 or

R2 > R1. Hence we will assume that l1 ≥ n− j + 1 which gives two options: l1 = n− j + 2 (and the other alliance members

are l2 = ... = lj = 1.) or l1 = n − j + 1 (and the other alliance members are l2 = 2, l3 = ... = lj = 1. Since R1 = l1, the

second case is optimal.

Moreover, Proposition 2.4 implies that if k is large then lim
n→∞

l1 = n− j + 1 = k1.

Note. For the rest of the paper we will assume that m < n − j + 1. This case, although more challenging, yields exciting

results.

To minimize N , Alliance 1 wants to choose R1 as small as possible and the lengths of the unsafe intervals Rt ≥ R1, t > 1.

The Propositions 2.6, 2.7 and 2.8 determine the necessary conditions for this.

Proposition 2.6. If l(t+1) ≤ lt, then the sequence {Rt} is non-increasing for t ≥ 1.

Proof. Direct computation from the formulas (3) gives us:

Rt+1 −Rt = N1(2t+1) −N1(2t) −N1(2(t−1)+1) + N12(t−1))

= (m− 1)(kt − lt) + l{t+1} − lt ≤ l{t+1} − lt ≤ 0 (t > 1),

since kt − lt < 0.

The next two propositions observe that if Alliance 1 has a single member in the partition, then the subsequent lengths of

the unsafe intervals do not decrease.

Proposition 2.7. If there exists t such that lt = 1, then Rt+1 = Rt + lt+1 − 1.

Proof. The computation Rt+1 −Rt = (m− 1)(1− 1) + lt+1 − 1 leads to the desired result.

Proposition 2.8. If Rt+1 ≤ Rt, ∀t > 1 and there ∃ t such that lt = 1, then lt+1 = lt+2 = ... = lj = 1.

Proof. Compute Rt+1−Rt = (m−1)(1−1)+l{t+1}−lt = l{t+1}−1 ≤ 0. Additionally, we obtain lt+1 ≤ (m−1)(lt−1)+lt)

i.e. 1 = lt+1 ≤ lt = 1. This can be repeated for any index greater than t.

Proposition 2.9. The sequence {Rt} is non-increasing for t ≥ 2 if and only if

lt+1 ≤ lt + (m− 1)(lt − 1), for t ≥ 2. (6)

Proof. The non-increasing sequence Rt must satisfy for

Rt+1 −Rt = (m− 1)(1− lt) + l{t+1} − lt ≤ 0 (t ≥ 2),

which simplifies to lt+1 ≤ lt + (m− 1)(lt − 1).

Therefore lt+1 is less than or equal to lt plus some small non-negative term. We observe from (4), that lt, 1 ≤ t ≤ j−1 has a

negative sign in the formula for Rt, 1 ≤ t ≤ j and since we want to minimize the length of the unsafe intervals Rt, 1 ≤ t ≤ j,

then from now on WLOG we will choose lt, 1 ≤ t ≤ j − 1 in decreasing order with the exception of the last term lj . Next

we will determine a restriction for the size of the second alliance l2.

80



Annela R. Kelly

Proposition 2.10. The inequality R2 ≤ R1 holds if and only if

l2 ≤ ml1 − (m− 1)(n− j + 1)). (7)

Proof. Direct computation from the formulas (3) verifies the proposition: R2−R1 = [(m− 1)(n− j + 1− l1) + l2]− l1 ≤ 0

and hence l2 ≤ ml1 − (m− 1)(n− j + 1).

The main theorem below summarizes all the conditions required for the best distribution of players for Alliance 1.

Theorem 2.11. The optimal distribution of players for Alliance 1 is:

l1 ≥ d
(m− 1)(n− j + 1) + 2

m
e,

l2 ≥ 2, and

lt+1 ≤ lt + (m− 1)(lt − 1), for t ≥ 2

(8)

Proof. To minimize l1, the following conditions must be satisfied:

min l1 = R1; R1 = l1 ≥ R2 = (m− 1)(n− j + 1− l1) + l2;

Proposition 2.10 shows that there is a positive linear relationship between l1 and l2. Hence we need to select l2 as small

as possible to minimize l1. Additionally, Proposition 2.10 showcases that l1 − l2 ≥ (m − 1)(n − j + 1 − l1) ≥ 0 and hence

l2 ≤ l1. In summary, to minimize R2 and to maintain the inequality R2 ≤ R1, we need to choose smallest possible value for

l2. By Proposition 2.8, we cannot use l2 = 1 as this leads to the distribution l1 = n + j and lj = 1, t > 2, which maximizes

the first unsafe interval. Hence to minimize l1, we choose the smallest possible l2 that is greater than 1. Proposition 2.9

confirms the last inequality for the rest of the terms lt, t ≥ 3.

In practice, to satisfy the conditions of Theorem 12 and to shorten the length of each unsafe interval, the most efficient

solution for Alliance 1 is to select l1 satisfying the condition (8); l2 = 2 if possible and the rest of the terms lt, t ≥ 3

approximately equal to each other.

For completeness, we will add the case of m = 1 for the theorem.

Remark 2.12. If m=1, Alliance 1 minimizes N by to choosing

l1 = d (n + 1)

j
e,

and

l1 ≥ l2 ≥ l3 ≥ ... ≥ lj .

To verify the remark one observes that our goal is to minimize R1 = l1, R2 = l2, R3 = l3, .... The optimal solution to it is to

take the terms equal to each other and arrange these in non-increasing order. The final Examples 2.13 and 2.14 illustrate

how to best distribute the alliance members according to the formulas (8).

Example 2.13. For n = 12, j = 3, m = 3, we can use Theorem 12 to obtain:

k1 = n− j + 1 = 10, k2 = 1, k3 = 1

and

l1 = d (m− 1)(n− j + 1) + 2

m
e = d2× 10 + 2

3
e = 8, l2 = 2, l3 = 3.
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Example 2.14. If we choose different m: n = 12, j = 3, m = 2, we have that

k1 = n− j + 1 = 10, k2 = 1, k3 = 1.

We cannot select

l1 = d (m− 1)(n− j + 1) + 2

m
e = d1× 10 + 2

2
e = 6, l2 = 2, l3 = 5 ≥ l2 + (m− 1)(l2 − 1) = 2 + 1 = 3.

Therefore, we will choose the distribution

l1 = d (m− 1)(n− j + 1) + 2

m
e+ 1 = d1× 10 + 2

2
e+ 1 = 7, l2 = 3, l3 = 3.

These examples showcase that even small differences in the initial setup influence the optimal choices for alliances. In

summary, the best distribution of players for alliances can always be determined from the Proposition 2.3 and from the

formulas (8) in Theorem 2.11.
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