

International Journal of Mathematics And its Applications

## A Study on Complementedness in the Subgroup Lattices of $2 \times 2$ Matrices Over $Z_{11}$

### V. Durai Murugan<sup>1,\*</sup>, R. Seethalakshmi<sup>2</sup> and P. Namasivayam<sup>3</sup>

1 Department of Mathematics, St. Joseph College of Arts and Science, Vaikalipatti, Tenkasi, Tamilnadu, India.

 $2 \ \ {\rm Department} \ {\rm of} \ {\rm Mathematics}, \ {\rm Sri} \ {\rm Parasakthi} \ {\rm College} \ {\rm for} \ {\rm women}, \ {\rm Courtallam}, \ {\rm Tenkasi}, \ {\rm Tamilnadu}, \ {\rm India}.$ 

3 Department of Mathematics, The MDT Hindu College, Pettai, Tirunelveli, Tamilnadu, India.

Abstract: In this paper, we verify the complementedness in the subgroup lattices of the group of  $2 \times 2$  matrices over  $Z_{11}$ . Keywords: Matrix group, subgroups, Lagrange's theorem, Lattice.

© JS Publication.

## 1. Introduction

Let  $\mathcal{G} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}_p, ad - bc \neq 0 \right\}$ . Then  $\mathcal{G}$  is a group under matrix multiplication modulo p. Let  $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{G} : ad - bc = 1 \right\}$ . Then G is a subgroup of  $\mathcal{G}$ . We have,  $o(\mathcal{G}) = p(p^2 - 1)(p - 1)$  [6] and  $o(G) = p(p^2 - 1)$  [6]. In this paper we are going to the study about the complementedness in the subgroup lattice of the group of  $2 \times 2$  matrices

over  $Z_{11}$ .

## 2. Preliminaries

In this section we give the definition needed for the development of the paper.

**Definition 2.1.** A partial order on a non-empty set P is a binary relation  $\leq$  on P that is reflexive, anti-symmetric and transitive. The pair  $(P, \leq)$  is called a partially ordered set or poset. A poset  $(P, \leq)$  is totally ordered if every  $x, y \in P$  are comparable, that is either  $x \leq y$  or  $y \leq x$ . A non-empty subset S of P is a chain in P if S is totally ordered by  $\leq$ .

**Definition 2.2.** Let  $(P, \leq)$  be a poset and let  $S \subseteq P$ . An upper bound of S is an element  $x \in P$  for which  $s \leq x$  for all  $s \in S$ . The least upper bound of S is called the supremum or join of S.A lower bound for S is an element  $x \in P$  for which  $x \leq s$  for all  $s \in S$ . The greatest lower bound of S is called the infimum or meet of S.

**Definition 2.3.** Poset  $(P, \leq)$  is called a lattice if every pair x, y elements of P has a supremum and an infimum, which are denoted by  $x \lor y$  and  $x \land y$  respectively.

<sup>\*</sup> E-mail: vvndurai@gmail.com

**Definition 2.4.** A poset is said to be complete lattice if all its subsets have both join and meet. In particular, every complete lattice is a bounded lattice.

**Definition 2.5.** Let L be a bounded lattice with greatest element 1 and least element 0. Two elements x and y of L are said to be complements of each other if  $x \lor y = 1$  and  $x \land y = 0$ . If every element of L has a complement, then L is called a complemented lattice.

We give below the diagram of L(G) when p = 11 [9].



Row I (Left to right):  $L_1$  to  $L_{12}$ . Row II (Left to right):  $J_1$  to  $J_{55}$  and  $I_1$  to  $I_{12}$ . Row III (Left to right):  $F_1$  to  $F_{55}$  and  $H_1$  to  $H_{66}$ . Row IV (Left to right):  $C_1$  to  $C_{55}$  and  $E_1$  to  $E_{55}$ . Row V (Left to right):  $A_1B_1$  to  $B_{55}$  and  $D_1$  to  $D_{66}$ .

## 3. Subgroups of G of Different Orders in L(G) Over $Z_{11}$ [9]

Let A be an arbitrary subgroup of G of order 2. Then the number of subgroups of order 2 is 1. Let B be an arbitrary subgroup of G of order 3. Then the number of subgroups of order 3 is 55. Let C be an arbitrary subgroup of G of order 4. Then the number of subgroups of order 4 is 55. Let D be an arbitrary subgroup of G of order 5. Then the number of subgroups of order 5 is 66. Let E be an arbitrary subgroup of G of order 6. Then the number of subgroups of order 6 is 55. Let F be an arbitrary subgroup of G of order 8. Then the number of subgroups of order 8 is 55. Let H be an arbitrary subgroup of G of order 8.

subgroup of G of order 10. Then the number of subgroups of order 10 is 66. Let I be an arbitrary subgroup of G of order 11. Then the number of subgroups of order 11 is 12. Let J be an arbitrary subgroup of G of order 12. Then the number of subgroups of order 12 is 55. Let L be an arbitrary subgroup of G of order 22. Then the number of subgroups of order 22 is 12.

# 4. Complementedness in the Lattice of Subgroups of the Group of $2 \times 2$ Matrices Over $Z_{11}$

**Lemma 4.1.** For p = 11, the two-element subgroup  $A_1$  does not have a complement in L(G).

*Proof.* An even order subgroup cannot be a complement of  $A_1$ . So, if X were a complement of  $A_1$ , then in L(G),  $X \vee A_1 = G$  and  $X \wedge A_1 = \{e\}$  where o(X) is odd.

If X is odd order which is a prime number, say k. Now,  $k - 1 \equiv 0 \pmod{2}$ . So, there exists a subgroup of order 2k.

$$O(X \lor A_1) = 2k.$$

Therefore,  $X \vee A_1 \neq G$ .

If o(X) = st, where s and t are odd primes and  $s - 1 \equiv 0 \pmod{t}$ , (s > t). Then  $o(X \lor A_1) = 2st \neq (p - 1)p(p + 1) = o(G)$ . Therefore,  $X \lor A_1 \neq G$ . So,  $A_1$  has no complement in L(G).

**Theorem 4.2.** L(G) is not complemented if p = 11.

*Proof.* Follows from the above Lemma 4.1

## 5. Conclusion

In this paper, we proved that L(G) is not complemented when p = 11.

#### References

- N. Bourbaki, *Elements of Mathematics, Algebra I*, Chapter 1-3 Springer Verlag Berlin Heidelberg, New York, London Paris Tokio, (1974).
- [2] J. B. Fraleigh, A first course in Abstract Algebra, Addison-Wesley, London, (1992).
- [3] C. F. Gardiner, A first course in group theory, Springer-Verlag, Berlin, (1997).
- [4] G. Gratzer, General Lattice theory, Birkhauser Veslag, Basel, (1998).
- [5] I. N. Herstien, Topics in Algebra, John Wiley and Sons, New York, (1975).
- [6] A. Vethamanickam and Jebaraj Thiraviam, On Lattices of Subgroups, Int. Journal of Mathematical Archiv, 6(9)(2015), 1-11.
- [7] A. Vethamanickam and V. Durai Murugan, On The Lattice of Subgroups of 3 × 3 Matrices over Z<sub>2</sub>, Int. Journal of Scientific Research and Reviews, 8(2)(2019), 4107-4128.
- [8] Bashir Humera and Zahid Raza, On subgroups lattice of Quasidihedral group, International Journal of Algebra, 6(25)(2012), 1221-1225.
- [9] R. Seethalakshmi, V. Durai Murugan and R. Murugesan, On the lattice of subgroups of 2 × 2 matrices over Z<sub>11</sub>, Malaya Journal of Matematik, S(1)(2020), 451-456.