A Study on Complementedness in the Subgroup Lattices of 2×2 Matrices Over Z_{11}

V. Durai Murugan ${ }^{1, *}$, R. Seethalakshmi ${ }^{2}$ and P. Namasivayam ${ }^{3}$
1 Department of Mathematics, St. Joseph College of Arts and Science, Vaikalipatti, Tenkasi, Tamilnadu, India.
2 Department of Mathematics, Sri Parasakthi College for women, Courtallam, Tenkasi, Tamilnadu, India. 3 Department of Mathematics, The MDT Hindu College, Pettai, Tirunelveli, Tamilnadu, India.

Abstract

In this paper, we verify the complementedness in the subgroup lattices of the group of 2×2 matrices over Z_{11}. Keywords: Matrix group, subgroups, Lagrange's theorem, Lattice.

(C) JS Publication.

1. Introduction

Let $\mathcal{G}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in Z_{p}, a d-b c \neq 0\right\}$. Then \mathcal{G} is a group under matrix multiplication modulo p. Let $G=$ $\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathcal{G}: a d-b c=1\right\}$. Then G is a subgroup of \mathcal{G}. We have, $o(\mathcal{G})=p\left(p^{2}-1\right)(p-1)[6]$ and $o(G)=p\left(p^{2}-1\right)[6]$. In this paper we are going to the study about the complementedness in the subgroup lattice of the group of 2×2 matrices over Z_{11}.

2. Preliminaries

In this section we give the definition needed for the development of the paper.

Definition 2.1. A partial order on a non-empty set P is a binary relation \leq on P that is reflexive, anti-symmetric and transitive. The pair (P, \leq) is called a partially ordered set or poset. A poset (P, \leq) is totally ordered if every $x, y \in P$ are comparable, that is either $x \leq y$ or $y \leq x$. A non-empty subset S of P is a chain in P if S is totally ordered by \leq.

Definition 2.2. Let (P, \leq) be a poset and let $S \subseteq P$. An upper bound of S is an element $x \in P$ for which $s \leq x$ for all $s \in S$. The least upper bound of S is called the supremum or join of $S . A$ lower bound for S is an element $x \in P$ for which $x \leq s$ for all $s \in S$. The greatest lower bound of S is called the infimum or meet of S.

Definition 2.3. Poset (P, \leq) is called a lattice if every pair x, y elements of P has a supremum and an infimum, which are denoted by $x \vee y$ and $x \wedge y$ respectively.

[^0]Definition 2.4. A poset is said to be complete lattice if all its subsets have both join and meet. In particular, every complete lattice is a bounded lattice.

Definition 2.5. Let L be a bounded lattice with greatest element 1 and least element 0 . Two elements x and y of L are said to be complements of each other if $x \vee y=1$ and $x \wedge y=0$. If every element of L has a complement, then L is called a complemented lattice.

We give below the diagram of $L(G)$ when $p=11$ [9].

Row I (Left to right): L_{1} to L_{12}.
Row II (Left to right): J_{1} to J_{55} and I_{1} to I_{12}.
Row III (Left to right): F_{1} to F_{55} and H_{1} to H_{66}.
Row IV (Left to right): C_{1} to C_{55} and E_{1} to E_{55}.
Row V (Left to right): $A_{1} B_{1}$ to B_{55} and D_{1} to D_{66}.

3. Subgroups of G of Different Orders in $L(G)$ Over $Z_{11}[9]$

Let A be an arbitrary subgroup of G of order 2 . Then the number of subgroups of order 2 is 1 . Let B be an arbitrary subgroup of G of order 3 . Then the number of subgroups of order 3 is 55 . Let C be an arbitrary subgroup of G of order 4. Then the number of subgroups of order 4 is 55 . Let D be an arbitrary subgroup of G of order 5 . Then the number of subgroups of order 5 is 66 . Let E be an arbitrary subgroup of G of order 6 . Then the number of subgroups of order 6 is 55. Let F be an arbitrary subgroup of G of order 8 . Then the number of subgroups of order 8 is 55 . Let H be an arbitrary
subgroup of G of order 10 . Then the number of subgroups of order 10 is 66 . Let I be an arbitrary subgroup of G of order 11. Then the number of subgroups of order 11 is 12 . Let J be an arbitrary subgroup of G of order 12 . Then the number of subgroups of order 12 is 55 . Let L be an arbitrary subgroup of G of order 22 . Then the number of subgroups of order 22 is 12.

4. Complementedness in the Lattice of Subgroups of the Group of 2×2 Matrices Over Z_{11}

Lemma 4.1. For $p=11$, the two-element subgroup A_{1} does not have a complement in $L(G)$.
Proof. An even order subgroup cannot be a complement of A_{1}. So, if X were a complement of A_{1}, then in $L(G), X \vee A_{1}=G$ and $X \wedge A_{1}=\{e\}$ where $o(X)$ is odd.

If X is odd order which is a prime number, say k . Now, $k-1 \equiv 0(\bmod 2)$. So, there exists a subgroup of order $2 k$.

$$
O\left(X \vee A_{1}\right)=2 k .
$$

Therefore, $X \vee A_{1} \neq G$.
If $o(X)=s t$, where s and t are odd primes and $s-1 \equiv 0(\bmod t),(s>t)$. Then $o\left(X \vee A_{1}\right)=2 s t \neq(p-1) p(p+1)=o(G)$. Therefore, $X \vee A_{1} \neq G$. So, A_{1} has no complement in $L(G)$.

Theorem 4.2. $L(G)$ is not complemented if $p=11$.
Proof. Follows from the above Lemma 4.1

5. Conclusion

In this paper, we proved that $L(G)$ is not complemented when $p=11$.

References

[1] N. Bourbaki, Elements of Mathematics, Algebra I, Chapter 1-3 Springer Verlag Berlin Heidelberg, New York, London Paris Tokio, (1974).
[2] J. B. Fraleigh, A first course in Abstract Algebra, Addison-Wesley,London, (1992).
[3] C. F. Gardiner, A first course in group theory, Springer-Verlag, Berlin, (1997).
[4] G. Gratzer, General Lattice theory, Birkhauser Veslag, Basel, (1998).
[5] I. N. Herstien, Topics in Algebra, John Wiley and Sons, New York, (1975).
[6] A. Vethamanickam and Jebaraj Thiraviam, On Lattices of Subgroups, Int. Journal of Mathematical Archiv, 6(9)(2015), 1-11.
[7] A. Vethamanickam and V. Durai Murugan, On The Lattice of Subgroups of 3×3 Matrices over Z_{2}, Int. Journal of Scientific Research and Reviews, 8(2)(2019), 4107-4128.
[8] Bashir Humera and Zahid Raza, On subgroups lattice of Quasidihedral group, International Journal of Algebra, 6(25)(2012), 1221-1225.
[9] R. Seethalakshmi, V. Durai Murugan and R. Murugesan, On the lattice of subgroups of 2×2 matrices over Z_{11}, Malaya Journal of Matematik, $\mathrm{S}(1)(2020)$, 451-456.

[^0]: * E-mail: vvndurai@gmail.com

