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Abstract: Test information function (TIF) plays an important role in designing a test. The TIF does not only depend on the logistic
model such as the 1PL, 2PL and 3PL logistic models, but it also on the parameter distributions of the model. In this

study we conducted simulations using the R statistical software on different examinee sizes and different exam length,
and we compare the results when using uniform parameter distribution and normal parameter distribution. The findings

of this study illustrate the following: First, when using item parameters that are all uniformly distributed the obtained

test information function is significantly small compared to the test information function obtained when we use item
parameters that all follow a normal distribution. Second, the test information function increases as the length of the exam

increases when we use item parameters that are all normally distributed. Third, this study also suggest great flexibility

in writing an exam as we can choose the item parameter distribution depending on the goals of the test.
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1. Introduction

Classical Test Theory (CTT) has been extended to Item Response Theory (IRT) which is a class of methods for modeling

the relationship between the responses to the items or questions on a test, scale or questionnaire and the underlying latent

trait(s) that the test is designed to measure (see Lord, 1975). IRT has four main assumptions, namely:

1) Monotonicity: – The probability of a correct response increases as the trait level; increases.

2) Unidimensionality: – There is one dominant latent trait being measured.

3) Local Independence: – Individual items responses are mutually independent at given ability levels

4) Invariance: – Item parameters can be estimated from any position on the item response curve.

IRT has been applied in many areas [8, 12]. Some commonly used Logistic Parametric (PL) models include the Rasch, !Pl,

2PL and 3PL models [2].

The Rasch model is given by

Pi(θ) =
1

1 + e(θ−bi)
(1)

The 1PL, 2PL and 3PL models can be obtained from the general model below [1].

Pi(θ) = ci +
1− ci

1 + e−1.7ai(θ−bi)
(2)

∗ E-mail: fifonge@gmail.com

41

http://ijmaa.in/


Effects of Item Parameter Distributions on Test Information Function

where bi is the difficulty (or location) for item i, ai is the discrimination (or scale or slope) for item i, ci is the pseudo-guessing

(or chance). When ai = 1 for all i and ci = 0 for all i, then we have the 1PL model. When ci = 0 for all i then we have the

2PL model. Otherwise we have the 3PL model. θ indicates that the person abilities are modeled as a sample from a normal

distribution.

In this study we seek to further existing studies on Item Information Function (IIF) and Test Information Function (TIF)

by looking at how the item parameters affect the amount of information that a test can provide. Using the software R, we

run some simulations on various item parameters and we calculate the test information. The simulations are done on long

and short exams, large and small groups of examinees. The results are also presented graphically. We are interested in the

3PL model since the 1Pl and 2Pl models can be easily obtained from the 3PL model. The case of 4PL and other models

will be studied in future.

2. Theoretical Framework

2.1. Item Information Function and Test Information Function

The probability that an examinee with a given ability level will answer an item correctly is given by the item response

function. The higher the examinee’s ability the more likely the examinee will answer the item correctly. We will consider

dichotomous response data. An examinee with higher reading ability is more likely to get a reading item correct. Given

the 1PL model, the item information is the probability of a correct response multiplied by the probability of an incorrect

response. That is,

I(θ) = pi(θ)qi(θ). (3)

The item information function for the 2PL model is given by

I(θ) = a2i pi(θ)qi(θ). (4)

while the item information function for the 3PL model is given by

I(θ) = a2i
(pi(θ)− ci)2

(1− ci)2
qi(θ)

pi(θ)
. (5)

Test information function is the sum of all the item information functions and it is thus more informative than item

information [9]. Item and test information functions are used to design tests for specific purpose [5].

Unlike the item information which is concentrated around ability levels that are close to its difficulty, the test information

spreads the information over a wider ability range. The slope of the test information is determined by the item parameters.

The latent ability and item parameters play an essential role in the test information function in predicting the expected

score. If the discrimination parameters are positive, then the test information increases with ability and the higher the slope

of the TIF, the more sensitive the expected score is to the differences in the ability. In 3PL models, the maximum is shifted

from the difficulty.

An examinee’s true ability at a given level can be estimated with greater precision if the test information is large. In this

case, the ability estimate will be reasonably close to its true value. On the contrary, if the amount of information is small,

then the ability cannot be estimated with precision, in which case the estimates will be widely scattered about the true

ability.

42



F. F. Ngwane

The standard error of estimation (SE) is the reciprocal of the test information at a given trait level. Thus more information

implies less error of measurement. The SE is given by:

SE(θ) =
1√
I(θ)

. (6)

The maximum information is given by:

θmax-info = bi +
1

1.7ai
log

(
1 +
√

1 + 8ci
2

)
. (7)

2.2. Existing Results

In this section we present what has already been done. Item and test information functions have been compared for various

parameter logistic models (PL), such as the 1PL, 2PL, 3PL [13]. Based on the data used in their study, the authors found

that the 2PL model provided more information than the 1Pl and 3PL models. The authors also found that information

provided by the 1PL models was not significantly different from the amount of information provided by the 3PL model.

The larger the test information, the smaller the measurement error. Some authors [10] have looked at various item parameters

estimation errors in test development. This is important because if the parameter estimates are inaccurate then the test

information will be inaccurate and so will the measurement error [10].

3. Motivation

This study is aimed at investigating how the item parameters affect the item information function and test information

via simulations. Using long and short exams, large and small groups of examinees, we seek to examine how different item

parameters affect the item information function and the test information function in the case of the Rasch model, 1PL, 2PL

and 3PL models. Maximum information has been studied, [14].

The amount of information that an item or a test can provide is essential in writing a test. We seek to better determine

and interpret the amount of information that an item or test can provide. Thus we ask what is the largest or maximum

amount of information that a test can provide? Although the possible number of items to be included in a test has been

studied [7], how do we select the best k items from a pool of n+k good items? How do we get the most information from an

exam, considering that we are limited by the number of questions that an exam can have, the examinee’s ability and other

factors involved in exam quality and exam scoring? How do we give each examinee a set of k good items than having each

examinee take exactly the same exam that everyone else sees? To answer these important questions, we need to calculate

the test information which is defined as the sum of the item information. This enables us to select the best questions to

have on an exam. Item selection methods in the context of computer adaptive testing (CAT), Differential Item Functioning

(DIF) and their applications have been studied, [3, 4, 6].

4. Simulations

We conducted simulations using small (θ = 100), medium (θ = 500) and large (θ = 1000) number of examinees. Short

(n = 50) and long exams (n = 100) were simulated. The descriptive statistics for the item parameters are in the tables

below.
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Discrimination ai Difficulty bi Guessing ci

minimum 0.5646526 -3.4111722 0.09070493

median 1.7474525 0.5847008 1.58859926

mean 1.9452878 0.1083172 1.80120526

standard deviation 0.8448833 2.1233612 1.02312880

maximum 3.4210322 3.3771706 3.43899366

Table 1. Item parameters (uniformly distributed) for short (n = 50) exam

Discrimination ai Difficulty bi Guessing ci

minimum 0.5425994 -3.46421640 0.007499111

median 2.2040057 -0.24586977 1.737994041

mean 2.1133071 -0.04623055 1.736667772

standard deviation 0.8589494 2.01724244 0.981234837

maximum 3.4695342 3.44869823 3.426066408

Table 2. Item parameters (uniformly distributed) for long (n = 100) exam

Discrimination ai Difficulty bi Guessing ci

minimum -2.23200255 -2.802573384 -2.0002872

median -0.11766173 0.024593358 -0.1144564

mean -0.06789654 0.004206936 -0.1574632

standard deviation 0.91541166 1.136039067 0.9488562

maximum 1.53685513 2.331353708 2.6401935

Table 3. Item parameters (normally distributed) for short (n = 50) exam

Discrimination ai Difficulty bi Guessing ci

minimum -2.79623064 -1.637280289 -2.42209343

median 0.00366203 -0.001881262 0.07811821

mean -0.04135375 0.020533777 0.09630296

standard deviation 0.90011844 0.916995499 0.93649237

maximum 1.85718368 2.341201940 2.80956270

Table 4. Item parameters (normally distributed) for long (n = 100) exam

5. Results and Findings

The results obtained in this study are presented in Table 5 and Table 6. Using the uniformly distributed item parameters,

we see that the test information function is large for short exams and small for long exams, regardless of the number of

examinees. In Table 6, the item parameters follow a normal distribution. Here the smallest test information obtained is

larger than any of the test information found in Table 5. This simulation study seems to suggest that we obtain much more

test information when the item parameters are normally distributed. The results presented here also confirmed the inverse

relationship between the information value and the standard error of measurement.
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Number of examinees Number of items θmax−info Max Test Information Measurement Error

100 50 -0.6306926 1.358756 0.8578855

100 100 0.7839310 -1.559314 NaN

500 50 -0.6338395 1.357886 0.8581602

500 100 0.7548988 -1.554588 NaN

1000 50 -0.6306660 1.358760 0.8578840

1000 100 0.7608330 -1.554303 NaN

Table 5. Test information and measurement error for uniform item parameters

Number of examinees Number of items θmax−info Max Test Information Measurement Error

100 50 -0.5865101 15021.608 0.008159091

100 100 -0.1416374 1806.880 0.023525307

500 50 1.5780353 9242.426 0.010401764

500 100 0.1927761 1937.946 0.022715861

1000 50 -0.8510185 1378.527 0.026933471

1000 100 0.9541320 6973.245 0.011975194

Table 6. Test information and measurement error for normal item parameters

6. Conclusion and Discussion

The results obtained from this study is in accordance with existing results in the literature. We found that large information

function implies small standard error of measurement. We found that as the guessing parameter decreases, the information

function increases and thus the smaller standard error of measurement.

First, we consider the case when all the item parameters follow a uniform distribution. In this case we arrived at the following

conclusions: (i) The item information function is large at maximum discrimination, minimum guessing, and average difficulty.

(ii) The item information function increases for minimum discrimination, minimum guessing, and maximum difficulty. (iii)

The item information function decreases for minimum discrimination, minimum guessing, and minimum difficulty. The

length of the exam is not very significant in any of these three situations, see Figure 2 and Figure 4. This observation about

the item information function is true when using either short or long exam.

Next we consider the case when all the item parameters follow a normal distribution. In this case we arrived at the following

conclusions: (i) The smaller the discrimination, the smaller the item information function. (ii) The item information function

is largest at maximum difficulty, minimum discrimination, and minimum guessing. (iii) Very little information is obtained

when the guessing is maximum, see Figure 6 and Figure 8. The length of the exam is not significant.

The item information function decreases for minimum discrimination, minimum guessing, and minimum difficulty. The

length of the exam is not very significant in any of these three situations. This study revealed three major findings: First,

when using item parameters that are all uniformly distributed, the obtained test information function is significantly small

(see Table 5) compared to the test information function obtained when we use item parameters that all follow a normal

distribution (see Table 6). Second, the test information function increases as the length of the exam increases when we item

parameters that are all normally distributed, see Figure 5 and Figure 7. This is not the case when the item parameters

follow a uniform distribution, See Figure 1 and Figure 3. Third, the lower the ability and item difficulty, the higher the item

information function. Also, the higher the ability and item difficulty, the higher the item information function. All these
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shows that there is great flexibility on writing an exam. We can choose the items on the test depending on the goals of the

test.

Our future work will be to test our simulation results on some real life data sets and also investigate the possibility of any

theory that may better explain the above observations.

Figure 1. Test information using 50 items with parameters that have a uniform distribution.

Figure 2. Item information for selected items whose parameters have a uniform distribution.
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Figure 3. Test information using 100 items with parameters that have a uniform distribution.

Figure 4. Item information for selected items whose parameters have a uniform distribution.
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Figure 5. Test information using 50 items with parameters that have a normal distribution.

Figure 6. Item information for selected items whose parameters have a normal distribution.
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Figure 7. Test information using 100 items with parameters that have a normal distribution.

Figure 8. Item information for selected items whose parameters have a normal distribution.
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