International Journal of Mathematics And its Applications

On Permutation Labeling of Graphs

Mitesh J. Patel ${ }^{\mathbf{1 , *}}$ and G. V. Ghodasara ${ }^{\mathbf{2}}$
1 Department of Mathematics, Tolani College of Arts abd Science, Adipur-Kachchh, Gujarat, India.

2 Department of Mathematics, H. \& H. B. Kotak Institute of Science, Rajkot, Gujarat,India.

Abstract

An injective function $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ is said to be permutation labeling if each edge $u v$ is assigned with label ${ }^{f(u)} P_{f(v)}=\frac{(f(u))!}{|f(u)-f(v)|!}(f(u)>f(v))$ are all distinct. A graph which admits permutation labeling is called permutation graph. In this paper we prove that wheel graph, restricted square and degree splitting graph of bistar graph are permutation graphs. We also proved that arbitrary super subdivision of path graph, star graph and cycle graph are permutation graphs.

MSC: 05C78.

Keywords: Permutation labeling, Wheel graph, Bistar graph, Arbitrary super subdivision.
(C) JS Publication.

1. Introduction

A labeling of a graph $G=(V, E)$ is a mapping that carries vertices, edges or both to the set of labels (usually to the positive or non-negative integers). For a summary on various graph labeling techniques one can go through A Dynamic Survey of Graph Labeling published by Joseph A. Gallian [6] in The Electronic Journal of Combinatorics.

A permutation labeling was defined by Hegde and Shetty [12].

Definition 1.1 ([12]). An injective function $f: V(G) \rightarrow\{1,2, \ldots,|V(G)|\}$ is said to be permutation labeling if the induced edge function $f^{*}: E(G) \rightarrow \mathbb{N}$ defined as $f^{*}(u v)={ }^{f(u)} P_{f(v)}=\frac{(f(u))!}{\mid f(u)-f(v)!!}(f(u)>f(v))$ is injective.
A graph which admits permutation labeling is called permutation graph.

Baskar Babujee and Vishnupriya [7] derived that star graph $K_{1, n}$, path P_{n}, cycle C_{n} and complete binary tree with at least 3 vertices are permutation graphs. Seoud and Salim [9] obtained all permutation graph of order at most 9, they proved that every bipartite graph of order at most 50 is permutation graph. Shiama [8] derived some permutation graph related to shadow and splitting graph. Sonchhatra and Ghodasara [11] proved that $P_{2}+\overline{K_{n}}$, book graph, cycle with one chord, cycle with twin chords, tadpole and lotus inside a circle are permutation graphs. Hegde and Shetty [12] proved that complete graph K_{n} is permutation graph if and only if $n \leq 5$, they also verified that all trees with at most fifteen vertices are permutation graphs and they strongly believed that all trees are permutation graphs. In [2], We proved that all trees admit permutation labeling. We also proved that complete bipartite graph $K_{3, n}(n \geq 3)$ for $n+3$ prime, wheel graph $W_{n}(n \geq 3)$ for $n+1$ is prime, dumbbell graph $D_{n, k, 2}(n, k \geq 3)$, crown graph $C_{n} \odot K_{1}(n \geq 3)$, one point union $C_{n}^{(k)}(k \geq 2, n \geq 3)$ of k

[^0]copies of cycle C_{n}, middle graph of cycle $C_{n}(n \geq 3), t^{*}$-ply $P_{t}^{*}(u, v)$, Petersen graph $P(5,2)$ are permutation graphs.
In this paper we consider nonempty, simple, finite, undirected and connected graph. We refer to Bondy and Murty [5] for the standard terminology and notations related to graph theory and David M. Burton [1] for the terms related to number theory.

Definition $1.2([5])$. The wheel graph $W_{n}(n \geq 3)$ is the graph obtained by joining the graphs C_{n} and K_{1}. i.e. $W_{n}=C_{n}+K_{1}$. Here the vertices corresponding to C_{n} is called rim vertices and C_{n} is called rim of W_{n} while the vertex corresponding to K_{1} is called apex vertex.

Definition 1.3 ([6]). The bistar $B_{n, n}$ is graph obtained by joining the apex vertices of two copies of star graph $K_{1, n}$ by an edge.

Definition $1.4([6])$. The restricted square of $B_{n, n}$ is the graph G with vertex set $V(G)=V\left(B_{n, n}\right)$ and edge set $E(G)=$ $E\left(B_{n, n}\right) \cup\left\{u v_{i}, v u_{i} \mid 1 \leq i \leq n\right\}$.

Definition 1.5 ([6]). Let $G=(V, E)$ be a graph with $V(G)=S_{1} \cup S_{2} \cup S_{3} \ldots S_{t} \cup T$ where each S_{i} is a set of vertices having at least two vertices of the same degree and $T=V-\bigcup_{i=1}^{t} S_{i}$.
The degree splitting graph of G denoted by $D S(G)$ is obtained from G by adding vertices $w_{1}, w_{2}, w_{3} \ldots w_{t}$ and joining to each vertex of S_{i}, for $1 \leq i \leq t$.

Definition 1.6 ([6]). The graph obtained from G by replacing every edge e_{i} of G by a complete bipartite graph $K_{2, m_{i}}$ for some positive integer m_{i} and $1 \leq i \leq q$ is called arbitrary super subdivision of G.

1.1. Number theory results

We use the following number theory results for positive integers.
(1). If $n>r$ then ${ }^{n(n+1) \ldots(n+r)} P_{1}={ }^{(n+r)} P_{(n+1)}$.
(2). If $n>m$ and $r>k$ then ${ }^{n} P_{r}>{ }^{m} P_{k}$.
(3). If $n>k>r$ then ${ }^{n} P_{k}>{ }^{k} P_{r}$.
(4). If $n>r$ then ${ }^{n} P_{r}<{ }^{(n+1)} P_{r}<\ldots<{ }^{(n+k)} P_{r}$.
(5). If $n>4$ is even then ${ }^{\left(\frac{n}{2}+2\right)} P_{2}<{ }^{n} P_{2}$.

2. Some New Permutation Graphs

The following are the results investigated in this paper.

Theorem 2.1. Wheel $W_{n}(n \geq 3)$ is a permutation graph.
Proof. Let $V\left(W_{n}\right)=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $E\left(W_{n}\right)=\left\{u_{0} u_{i} \mid 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{u_{1} u_{n}\right\}$, where u_{0} be apex and $u_{1}, u_{2}, \ldots, u_{n}$ be rim vertices of wheel graph W_{n}. Here $\left|V\left(W_{n}\right)\right|=n+1$ and $\left|E\left(W_{n}\right)\right|=2 n$.

We define a bijection $f: V\left(W_{n}\right) \rightarrow\{1,2 \ldots, n+1\}$ as follows.
Case 1: n is even.

$$
f\left(u_{0}\right)=1 .
$$

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =(i+1) ; 1 \leq i \leq \frac{n}{2} \\
f\left(u_{2 i}\right) & =\frac{n}{2}+1+i ; 1 \leq i \leq \frac{n}{2} .
\end{aligned}
$$

So from above defined function f, the following five possibilities for the produced edge labels can be considered.
(1). Labels in edge set $\left\{u_{0} u_{2 i-1} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\}$ are respectively $2,3, \ldots, \frac{n}{2}+1$.
(2). Labels in edge set $\left\{u_{0} u_{2 i} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\}$ are respectively $\frac{n}{2}+2, \frac{n}{2}+3, \ldots n+1$.
(3). Label of the edge $\left\{u_{2} u_{1}\right\}$ is ${ }^{\left(\frac{n}{2}+2\right)} P_{2}$.
(4). Label of the edge $\left\{u_{n} u_{1}\right\}$ is ${ }^{n} P_{2}$.
(5). Labels in edge set $\left\{u_{2 i} u_{2 i+1}, u_{2 i+2} u_{2 i+1} \left\lvert\, 1 \leq i \leq \frac{n}{2}\right.\right\}$ are respectively ${ }^{\left(\frac{n}{2}+2\right)} P_{3},{ }^{\left(\frac{n}{2}+3\right)} P_{3}, \ldots{ }^{(n+1)} P_{\left(\frac{n}{2}+1\right)}$.

Using the number theory results described in Subsection 1.1, it is clear that edge labels from any of the above possibilities (1) to (5) are internally as well as externally in ascending order.

Case 2: n is odd.

$$
\begin{aligned}
f\left(u_{0}\right) & =1 . \\
f\left(u_{2 i-1}\right) & =(i+1) ; 1 \leq i \leq \frac{n+1}{2} \\
f\left(u_{2 i}\right) & =\frac{n+1}{2}+1+i ; 1 \leq i \leq \frac{n-1}{2} .
\end{aligned}
$$

So from above defined function f, the following six possibilities for the produced edge labels can be considered.
(1). Labels in edge set $\left\{u_{0} u_{2 i-1} \left\lvert\, 1 \leq i \leq \frac{n+1}{2}\right.\right\}$ are respectively $2,3, \ldots, \frac{n+1}{2}+1$.
(2). Labels in edge set $\left\{u_{0} u_{2 i} \left\lvert\, 1 \leq i \leq \frac{n-1}{2}\right.\right\}$ are respectively $\frac{n+1}{2}+2, \frac{n+1}{2}+3, \ldots, n+1$.
(3). Label of the edge $\left\{u_{n} u_{1}\right\}$ is ${ }^{\left(\frac{n+1}{2}+1\right)} P_{2}$.
(4). Label of the edge $\left\{u_{2} u_{1}\right\}$ is ${ }^{\left(\frac{n+1}{2}+2\right)} P_{2}$.
(5). Labels in edge set $\left\{u_{2 i} u_{2 i+1}, u_{2 i+2} u_{2 i+1} \left\lvert\, 1 \leq i \leq \frac{n-3}{2}\right.\right\}$ are respectively ${ }^{\left(\frac{n+1}{2}+2\right)} P_{3},{ }^{\left(\frac{n+1}{2}+3\right)} P_{3}, \ldots,{ }^{(n+1)} P_{\left(\frac{n+1}{2}\right)}$.
(6). Label of the edge $\left\{u_{n-1} u_{n}\right\}$ is ${ }^{(n+1)} P_{\left(\frac{n+1}{2}+1\right)}$.

Using the number theory results described in subsection 1.1, it is clear that edge labels of above possibilities (1) to (6) are internally as well as externally in ascending order.
So above defined function f in both the cases, each edge $u v$ is identified the label $\frac{(f(u))!}{|f(u)-f(v)|!}(f(u)>f(v))$, which are all distinct. Hence wheel $W_{n}(n \geq 3)$ is a permutation graph.

Corollary 2.2. Gear $G_{n}(n \geq 3)$ is a permutation graph.
Corollary 2.3. Shell $S_{n}(n \geq 3)$ is a permutation graph.

Theorem 2.4. Restricted square of bistar $B_{n, n}$ is a permutation graph.

Proof. Let G be the restricted square of bistar $B_{n, n}$ with vertex set $V(G)=V\left(B_{n, n}\right)$ and edge set $E(G)=E\left(B_{n, n}\right) \cup$ $\left\{u v_{i}, v u_{i} \mid 1 \leq i \leq n\right\}$. Here $|V(G)|=2 n+2$ and $|E(G)|=4 n+1$. We define a bijection $f: V(G) \rightarrow\{1,2, \ldots, 2 n+2\}$ as follows.

$$
\begin{aligned}
f(u) & =2 n+2 . \\
f\left(u_{i}\right) & =n+1+i ; 1 \leq i \leq n . \\
f(v) & =1 . \\
f\left(v_{i}\right) & =i+1 ; 1 \leq i \leq n .
\end{aligned}
$$

So from above defined function f, the following five possibilities for the produced edge labels can be considered.
(1). Labels in edge set $\left\{v v_{i} \mid 1 \leq i \leq n\right\}$ are respectively $2,3, \ldots, n+1$.
(2). Labels in edge set $\left\{v u_{i} \mid 1 \leq i \leq n\right\}$ are respectively $n+2, n+3, \ldots 2 n+1$.
(3). Label of the edge $\{u v\}$ is $2 n+2$.
(4). Labels in edge set $\left\{u v_{i} \mid 1 \leq i \leq n\right\}$ are respectively of the form ${ }^{(2 n+2)} P_{k}, 2 \leq k \leq n+1$.
(5). Labels in edge set $\left\{u u_{i} \mid 1 \leq i \leq n\right\}$ are respectively of the form ${ }^{(2 n+2)} P_{k}, n+2 \leq k \leq 2 n+1$.

Using the number theory results described in subsection 1.1, it is clear that edge labels of above possibilities (1) to (5) are internally as well as externally in ascending order.
So above defined function f, each edge $u v$ is identified the label $\frac{(f(u))!}{|f(u)-f(v)|!}(f(u)>f(v))$, which are all distinct.
Hence the restricted square of bistar $B_{n, n}$ is a permutation graph.

Theorem 2.5. The degree splitting graph of $B_{n, n}$ is a permutation graph.
Proof. Let $G=D S\left(B_{n, n}\right)$ be the degree splitting graph of $B_{n, n}$ with vertex set $V(G)=V\left(B_{n, n}\right) \cup\left\{w_{1}, w_{2}, u_{i}, v_{i} \mid 1 \leq i \leq n\right\}$ and edge set $E(G)=\left\{w_{1} u_{i}, w_{1} v_{i}, u u_{i}, v v_{i}, u v, u w_{2}, v w_{2} \mid 1 \leq i \leq n\right\}$. Here $|V(G)|=2 n+4$ and $|E(G)|=4 n+3$. We define a bijection $f: V(G) \rightarrow\{1,2 \ldots, 2 n+4\}$ as follows.

$$
\begin{aligned}
f(u) & =2 n+2 . \\
f\left(u_{i}\right) & =1+i ; 1 \leq i \leq n . \\
f(v) & =2 n+3 . \\
f\left(v_{i}\right) & =n+i+1 ; 1 \leq i \leq n . \\
f\left(w_{1}\right) & =1 . \\
f\left(w_{2}\right) & =2 n+4 .
\end{aligned}
$$

So from above defined function f, the following seven possibilities for the produced edge labels can be considered.
(1). Labels in edge set $\left\{u_{i} w_{1} \mid 1 \leq i \leq n\right\}$ are respectively $2,3, \ldots, n+1$.
(2). Labels in edge set $\left\{v_{i} w_{1} \mid 1 \leq i \leq n\right\}$ are respectively $n+2, n+3, \ldots 2 n+1$.
(3). Labels in edge set $\left\{u u_{i} \mid 1 \leq i \leq n\right\}$ are respectively of the form ${ }^{(2 n+2)} P_{k}, 2 \leq k \leq n+1$.
(4). Labels in edge set $\left\{v v_{i} \mid 1 \leq i \leq n\right\}$ are respectively of the form ${ }^{(2 n+3)} P_{k}, n+2 \leq k \leq 2 n+1$.
(5). Label of the edge $\{u v\}$ is ${ }^{(2 n+3)} P_{(2 n+2)}$.
(6). Label of the edge $\left\{w_{2} u\right\}$ is ${ }^{(2 n+4)} P_{(2 n+2)}$.
(7). Label of the edge $\left\{w_{2} v\right\}$ is ${ }^{(2 n+4)} P_{(2 n+3)}$.

Using the number theory results described in subsection 1.1, it is clear that edge labels of above possibilities (1) to (7) are internally as well as externally in ascending order.
So above defined function f, each edge $u v$ is identified the label $\frac{(f(u))!}{|f(u)-f(v)|!}(f(u)>f(v))$, which are all distinct.
Hence degree splitting graph of $B_{n, n}$ is a permutation graph.

Theorem 2.6. Arbitrary super subdivision of path graph P_{n} is a permutation graph.

Proof. Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\}$. Let G be a graph obtained by arbitrary super subdivision of path graph P_{n}. That is, for $1 \leq i \leq n-1$ each edge e_{i} of the path P_{n} is replaced by a complete bipartite graph $K_{2, m_{i}}$, where m_{i} is positive integer. Let $u_{i j}$ be the vertices of m_{i} vertex section, where $1 \leq i \leq n-1$ and $1 \leq j \leq m_{i}$. Let $M=\sum_{i=1}^{n} m_{i}$ then $|V(G)|=n+M$ and $|E(G)|=2 M$. We define a bijection $f: V(G) \rightarrow\{1,2 \ldots, n+M\}$ as follows.

$$
\begin{aligned}
f\left(v_{1}\right) & =1 \\
f\left(u_{i j}\right) & =f\left(v_{i}\right)+j ; 1 \leq j \leq m_{i} \\
f\left(v_{i+1}\right) & =f\left(u_{i m_{i}}\right)+1 ; 1 \leq i \leq n-1 .
\end{aligned}
$$

So above defined function f, each edge $u v$ is identified the label $\frac{(f(u))!}{\mid f(u)-f(v)!!}(f(u)>f(v))$, which are all distinct.
Hence the graph obtained by arbitrary super subdivision of path graph is a permutation graph.

Theorem 2.7. Arbitrary supersubdivision of cycle C_{n} is a permutation graph.

Proof. Let $V\left(C_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $E\left(C_{n}\right)=\left\{e_{i}=v_{i} v_{i+1} \mid 1 \leq i \leq n-1\right\} \cup\left\{e_{n}=v_{n} v_{1}\right\}$. Let G be a graph obtained by arbitrary super subdivision of C_{n} as each edge e_{i} of C_{n} is replaced by complete bipartite graph $K_{2, m i}$, where m_{i} is a positive integer. Let $u_{i j}$ be the vertices of m_{i} vertex section, where $1 \leq i \leq n$ and $1 \leq j \leq m_{i}$. Let $M=\sum_{i=1}^{n} m_{i}$ then $|V(G)|=n+M,|E(G)|=2 M$. We define a bijection $f: V(G) \rightarrow\{1,2 \ldots, n+M\}$ as follows.

Case 1: n is even.

$$
\begin{aligned}
f\left(u_{i}\right) & =1 ; i=1 . \\
f\left(u_{i}\right) & =f\left(u_{n+2-i, m_{n+2-i}}\right)+1 ; 2 \leq i \leq \frac{n}{2}+1 . \\
f\left(u_{i}\right) & =f\left(u_{n+2-i}\right)+1 ; \frac{n}{2}+1<i \leq n . \\
f\left(u_{i j}\right) & =f\left(u_{n+2-i}\right)+j ; 1 \leq j \leq m_{i}, 2 \leq i \leq \frac{n}{2} . \\
f\left(u_{i j}\right) & =f\left(u_{n+2-i, m_{n+2-i}}\right)+1 ; 1 \leq j \leq m_{i}, \frac{n}{2}<i \leq n .
\end{aligned}
$$

Case 2: n is odd.

$$
\begin{aligned}
& f\left(u_{i}\right)=1 ; i=1 \\
& f\left(u_{i}\right)=f\left(u_{n+2-i, m_{n+2-i}}\right)+1 ; 2 \leq i \leq \frac{n+1}{2}
\end{aligned}
$$

$$
\begin{aligned}
f\left(u_{i}\right) & =f\left(u_{n+2-i}\right)+1 ; \frac{n+1}{2}<i \leq n . \\
f\left(u_{i j}\right) & =f\left(u_{n+2-i}\right)+j ; 1 \leq j \leq m_{i}, 2 \leq i \leq \frac{n+1}{2} . \\
f\left(u_{i j}\right) & =f\left(u_{n+2-i, m_{n+2-i}}\right)+1 ; 1 \leq j \leq m_{i}, \frac{n+1}{2}<i \leq n .
\end{aligned}
$$

So above defined function f, each edge $u v$ is identified the label $\frac{(f(u))!}{\mid f(u)-f(v)!!}(f(u)>f(v))$, which are all distinct. Hence the graph obtained by arbitrary super subdivision of cycle C_{n} is a permutation graph.

Theorem 2.8. Arbitrary supersubdivision of star $K_{1, n}$ is a permutation graph.
Proof. Let $V\left(K_{1, n}\right)=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(K_{1, n}\right)=\left\{v_{0} v_{i} \mid 1 \leq i \leq n\right\}$, where v_{0} be apex vertex and $v_{1}, v_{2}, \ldots, v_{n}$ be pendent vertices of star $K_{1, n}$. Let G be a graph obtained by arbitrary super subdivision of $K_{1, n}$ as each edge e_{i} of $K_{1, n}$ is replaced by complete bipartite graph $K_{2, m i}$, where m_{i} is positive integer. Let $u_{i j}$ be the vertices of m_{i} vertex section, where $1 \leq i \leq n$ and $1 \leq j \leq m_{i}$. Let $M=\sum_{i=1}^{n} m_{i}$ then $|V(G)|=n+M+1,|E(G)|=2 M$. We define a bijection $f: V(G) \rightarrow\{1,2 \ldots, n+M+1\}$ as follows.

$$
\begin{aligned}
f\left(v_{i}\right) & =1 ; i=0 \\
f\left(v_{i}\right) & =c m_{n}+i ; 1 \leq i \leq n \\
f\left(u_{i j}\right) & =c m_{i-1}+j ; 1 \leq j \leq m_{i}, 1 \leq i \leq n
\end{aligned}
$$

where $m_{0}=0$ and $c m_{i}=$ cumulative values of m_{i}. So above defined function f, each edge $u v$ is identified the label $\frac{(f(u))!}{\mid f(u)-f(v)!!}$ $(f(u)>f(v))$, which are all distinct.

Hence the graph obtained by arbitrary super subdivision of star $K_{1, n}$ is a permutation graph.

3. Conclusion

Permutation labeling is a connection between number theory and graph theory. Here we discuss some graphs satisfying the conditions of permutation labeling. To investigate equivalent results for different graph families is an open area of research.

Acknowledgment

We would like to thank the editor and the referees for their constructive suggestions and comments.

References

[1] D. M. Burton, Elementary number theory (Sixth edition), Tata McGraw-Hill, (2006).
[2] G. V. Ghodasara and Mitesh J. Patel, More on permutation labeling of graphs, International Journal of Applied Graph Theory, 1(2017), 30-42.
[3] G. V. Ghodasara and Mitesh J. Patel, Some new combination graphs, International Journal of Mathematics And its Applications, 5(2017), 153-161.
[4] G. V. Ghodasara and Mitesh J. Patel, Some bistar related square sum graphs, International Journal of Mathematics Trend and Technology, 47(2017), 172-177.
[5] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Elsevier Science Publication.
[6] J. A. Gallian, A dynamic survey of graph labeling, The Electronics Journal of Combinatorics, (2019), 1-535.
[7] J. Baskar Babujee and V. Vishnupriya, Permutation labeling for some trees, International Journal of Mathematical and Computer Science, 3(2008), 31-38.
[8] J. Shiama, Permutation labeling of some shadow graphs, International Journal of Computer Applications, 40(2012), 31-35.
[9] M. A. Seoud and M. A. Salim, On permutation labeling, Journal of Egyptian Mathematical society, 19(2011), 134-136.
[10] M. A. Seoud and A. E. A. Mahram, On permutation graphs, Journal of Egyptian Mathmetical society, 20(2012), 57-63.
[11] S. G. Sonchhatra and G. V. Ghodasara, Some new permutation graphs, International Journal of Mathematical Archive, 7(2016), 209-215.
[12] S. M. Hegde and S. Shetty, Combinatorial labeling of graphs, Applied Mathematics E-Notes, 6(2006), 251-258.

[^0]: * E-mail: miteshmaths1984@gmail.com

