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Abstract: Accurate and efficient model development in the field of evolutionary biology is becoming increasingly important to study
phylogenetic relationships. Studying these phylogenetic relationships can provide greater insight into areas such as drug

development, analyzing disease transmission, and studying the host-pathogen evolutionary relationship. This study uses

the idea of a transition matrix to predict how long ago two species shared a common ancestor. Using this concept and
various linear algebraic ideas, a mathematical model that simulated amino acid mutations was developed, and it was

implemented in Python to perform trials. The main result of the development of the model was a matrix containing the

expected values for the number of years ago two amino acids were the same. Simulations of the model can be run in
Python multiple times and the average of the values obtained gives an estimate of how many years ago two amino acids

were the same. These represent the number of years ago the species shared a common ancestor. The result varies based

on the species data analyzed. This model provides a foundation for development of more complex models that enhance
phylogenetic tree development. As stated previously, this can have substantial impacts on biotechnology and biomedical

sciences, which often rely on analyzing these evolutionary relationships.
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1. Introduction

The development of models to further study evolutionary biology is an idea that has been gaining increasing traction in

recent years. Accurate models can help to simplify understanding of various evolutionary processes, and it is becoming

increasingly clear how dependent phylogenetic analysis is on strong model development [1]. In this study, we propose the

development of a such a mathematical model that helps to predict the time of species divergence. The results from the

study provide a better understanding of species relatedness and as a result, make the development of phylogenetic trees

much easier.

Over the years there have been many approaches to attempt to predict how long ago two species shared a common ancestor.

The very first idea that was used was the molecular clock, which uses the mutation rate of various molecules to when two

species diverged. The molecular clock hypothesis, states that protein sequence differences accumulate at a constant rate

over time [2]. This technique was soon abandoned due to it not accounting for the complexity of the evolutionary process,

since evolutionary rates are most likely not constant over time, and also its time consuming nature [3]. However, the idea

of using mutation rates of bio-molecules to predict how long ago two species shared a common ancestor is used in many

studies, including this study.

In a later study, PAM and log odds matrices are used to predict species divergence times [4]. In a PAM matrix, an element of
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the matrix Mij gives the probability that amino acid in column j will be replaced by the amino acid in row i, through a series

of one or more point accepted mutations during a specified evolutionary interval. This type of matrix can be transformed

into a log odds matrix. The log odds matrix is then used as a scoring matrix (i.e. it can distinguish between significant

relationships and insignificant relationships between species) to detect distant relationships between proteins. They are

both applications of substitution matrices, matrices of scores representing the mutability of amino acids, ultimately used to

measure similarity between sequence alignments [5].

Although the past study uses effective ways to create a mathematical model, which not only helps to predict how long

ago two species shared a common ancestor, but also takes into account the evolution process itself (they try to distinguish

significant mutations rather than coincidences by using log odds matrices, and also takes into consideration the mutability

of the amino acid), there is an aspect where it falls short. Due to not having a robust enough mathematical foundation, it

is harder to implement it in a computational setting.

Therefore, instead of using specifically a log odds matrix, the proposed model uses the more general concept of a transition

matrix (stochastic matrix), making the model easier to implement computationally. Transition matrices are used to describe

the transitions of a Markov chain (a model describing various possible outcomes that can be predicted based on the current

state, with the outcomes being fixed). with each of the columns as probability vectors. They will be described in more

detail later on in the paper. The reason for this is that it provides a much simpler and more direct approach to predicting

the time of species divergence.

The impact of this study, and additional evolutionary biology studies, in the real world is substantial. They offer an effective

way to apply genetic information to biomedical sciences and biotechnology. This is because they give us information about

the structure of various molecules (nucleic acids, proteins, etc). As a result, processes such as drug design, which largely

involve the analysis of these molecules, can be enhanced from the results of such studies.

2. Methods and Results

2.1. Modeling amino acids and proteins

We now describe how we model the mutation of amino acids. We assume a simplified world with only three amino acids

that we call A1, A2 and A3. In this world, a protein is a finite sequence of these three amino acids. Both the order and

number of the amino acids in a protein matter. For example, S1 and S2, where S1 = A2A3A3A2A1 and S2 = A1A3A3A2A2,

are two different proteins.

The first question we seek to answer is: Given the sequence of amino acids of the protein that has a certain function in

a species, what will be the sequence the protein with the same function in the descendent species several (hundreds of

thousands) generations later?

For example, assume we start with the protein S = A2A3A3A2A1. After a million years, the protein with the same function

in a descendant species is S = A2A3A1A2A1 (only the middle amino acid changed from A3 to A1). After an other million

years the protein with the same function is S = A2A3A1A2A1 (the protein did not change). After an other million years the

protein with the same function is S = A1A3A1A2A3 (two amino acids changed), and so on. Even though these are proteins

in different organisms separated by several generations, in fact, these organisms belong to different species, we think of S as

being the same protein that has changed over time because it has the same function over time.

Note that the protein S is a function of time, denoting time by t, we have S = S(t). For example, taking the unit of time

to be one million years, we have that, in the example of the above paragraph, S(0) = A2A3A3A2A1, S(1) = A2A3A1A2A1,

S(2) = A2A3A1A2A1 and S(3) = A1A3A1A2A3. In practice, the unit of time used is called evolutionary unit, not one
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million years. While we will use the evolutionary unit of time, we will not go into any detail about the meaning of this unit

of time. We only have to keep in mind that one evolutionary unit of time is a very long period of time.

2.2. Modeling Amino Acid Mutations over time

Our model assumes that the mutations of each amino acid in the chain is independent of the other amino acids in the chain.

We denote by pij , the probability that an amino acid Aj mutated and is an amino acid Ai after one unit of time. Note that

pjj is the probability that amino acid Aj is still an amino acid Aj after one unit of time. In our world of three amino acids,

this leads to a 3× 3-matrix

P =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 . (1)

The above matrix P is called the transition matrix. Note that the jth column of P gives the probability of mutations of an

Aj amino acids in a unit of time. As an example, consider

P =


0.8 0.1 0

0.2 0.7 0.3

0 0.2 0.7

 (2)

In this case, p32 = 0.2 and thus, the probability that an A2 amino acid mutates and becomes an A3 amino acid after one

unit of time is 0.2.

2.3. Number of amino acids of different types in the model

There is a rule that states NE = N ∗ P (E), where NE is the number of times E happens in N experiments, and P(E) is the

probability of E occurring. A consequence of this rule is the following:

Observation 2.1. Assume N is a large integer. Given N Aj amino acids, after one unit of time, about Npij of those

amino acids are Ai amino acids.

We set t = 0 to be a time a very large number of units of times ago. We assume that, at times later than t = 0, i.e. t ≥ 0,

amino acids mutate, but they are not created nor they cease to exist in any other way. This simple means that the total

number of amino acids of all the types together remains the same for all times t >≥ 0. We introduce the three following

sequences

x
(n)
1 = number of A1 amino acids in our whole imaginary world at time t = n

x
(n)
2 = number of A2 amino acids in our whole imaginary world at time t = n (3)

x
(n)
3 = number of A3 amino acids in our whole imaginary world at time t = n.

We are interested in times t� 1. Given the discussion of this paragraph, we have the following observation:

Observation 2.2. Let N be the total number of amino acids in our imaginary world at t = 0. Then, for all n ≥ 0, we have

x
(n)
1 + x

(n)
2 + x

(n)
3 = N. (4)
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Note that the number N in the above observation is very large, for example, think of N as N = 1020.

We denote by x(n) the vector with components x
(n)
1 , x

(n)
2 and x

(n)
3

x(n) =


x
(n)
1

x
(n)
2

x
(n)
3

 . (5)

Observation 2.3 and the definition of the vector x(n) (see the above equation and Equation (3)) imply the following obser-

vations:

Observation 2.3.

(1). Out of the x
(n)
1 amino acids A1 there are at time t = n, at time t = n + 1, p11x

(n)
1 of them are still A1 amino acids,

p21x
(n)
1 of them are A2 amino acids and p31x

(n)
1 of them are A3 amino acids.

(2). Out of the x
(n)
2 amino acids A2 there are at time t = n, at time t = n+ 1, p12x

(n)
2 of them are A1 amino acids, p22x

(n)
2

of them are still A2 amino acids and p32x
(n)
2 of them are A3 amino acids.

(3). Out of the x
(n)
3 amino acids A3 there are at time t = n, at time t = n+ 1, p13x

(n)
3 of them are A1 amino acids, p23x

(n)
3

of them are A2 amino acids and p33x
(n)
3 of them are still A3 amino acids.

The above observation can be summarized in the following table showing the number of amino acids of different type at

times t = n and t = n+ 1:

amino acid number of amino acid at t = n number of amino acid at t = n+ 1

A1 x
(n)
1 p11x

(n)
1 + p12x

(n)
2 + p13x

(n)
3

A2 x
(n)
2 p21x

(n)
1 + p22x

(n)
2 + p23x

(n)
3

A3 x
(n)
3 p31x

(n)
1 + p32x

(n)
2 + p33x

(n)
3

Recalling the meaning of x(n+1) and the definition of matrix-vector multiplication we have that the following vector equation

is valid for all n ≥ 0:

x(n+1) = Px(n). (6)

2.4. Numerical simulations of the total number of amino acids over time

Once the vector of initial number of amino acid, x(0), is given, the number of amino acids at any future time t = n, which

is the vector x(n), can be computed for all n using the vector Equation (21). In fact, since that equation is valid for all

non-negative integers n, replacing n by 0 we get that x(1) = Px(0). Replacing n by 1 we get that x(2) = Px(1), and so on.

Let N be the total number of amino acids, i.e. N = x
(0)
1 + x

(0)
2 + x

(0)
3 . In Figure 1, we plot the components of x(n)/N

as a function of n in the case when the transition matrix P is given by Equation (2). The dashed lines are the plot of

x
(n)
1 , the dotted lines the plot of x

(n)
2 and the solid lines the plot of x

(n)
3 . The red lines correspond to the initial conditions

x
(0)
1 /N = 0.1, x

(0)
2 /N = 0.4 and x

(0)
3 /N = 0.5. The black lines correspond to the initial conditions x

(0)
1 /N = 0.8, x

(0)
2 /N = 0.2

and x
(0)
3 /N = 0. Note that, as the time t = n increases, the number of each type of amino acid approaches certain values.

These values are the same for both initial conditions (i.e. for both values of x(0)/N). In other words, both dashed lines

approach the same value, both dotted lines approach the same value, and both solid lines also approach the same value.

These values are approximately 0.23, 0.46 and 0.31. In other words, after a long time, the number of A1 amino acids is
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0.23N , the number of A2 amino acids is 0.46N , and the number of A3 amino acids is 0.31N . In fact, we find that, no matter

the vector of initial number of amino acids, the number of A1 amino acids approaches 0.23N , the number of A2 amino

acids approaches 0.46N , and the number of A3 amino acids approaches 0.31N as the time t = n increases. In mathematical

language, we write

lim
n→∞

x(n)

N
= z where z =


0.23

0.46

0.31

 no matter the value of x(0). (7)

The above equation reads the limit of x(n)/N as n→∞ is z. In particular, if we start with the initial conditions x(0)/N = z,

we still have that x(n)/N approaches z, but x(0) is already z, so we expect that x(n)/N = z for all n. This is in fact verified

in Figure 2, where we plotted the components of x(n)/N in the case that x(0)/N = z. Note that the components of x(n)/N ,

and thus the vector x(n)/N , remain constant and equal to z. In particular, for each n we have that x(n)/N = z and also

x(n+1)/N = z. This fact, in addition to Equation (21) implies

z = Pz. (8)

Figure 1. Evolution of the proportion of number of amino acids of different types for two different vectors of initial numbers of amino acids.

Figure 2. Evolution of proportion of number of amino acids each type when the vector of initial numbers of amino acids is Nz.

The findings of this section are a mathematical fact that we summarize here:
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Observation 2.4. No matter the transition matrix, there exists at least one vector z such that Pz = z and z1 + z2 + z3 = 1.

In most cases, there is exactly one such vector z. We assume this is the case in the rest of this article. This vector z depends

only on the matrix P . Additionally, no matter the initial condition x(0),

lim
n→∞

x(n)

N
= z. (9)

Instead of computing x(n)/N for large values of n to find an approximation of z, we find z by solving the system of equations

z = Pz (10)

z1 + z2 + z3 = N.

This is a system of four linear equations with three unknowns. Nevertheless, it always has at least one solution. In fact, in

most cases, it has exactly one solution. As previously mentioned, we assume the unique solution case in this paper.

As an example, assume that the transition matrix P is given by Equation (2). Then, Equations (10) become

0.8z1 + 0.1z2 = z1 (11)

0.2z1 + 0.7z2 + 0.3z3 = z2

0.2z2 + 0.7z3 = z3

z1 + z2 + z3 = 1.

Systems of linear equations such as System (10) can be solved using the Gaussian elimination method.

2.5. Probability of an amino acid of being of type Ai for each i

We go back to finding z, the solution of the system (10). In the particular case of the matrix P given by Equation (2), we

have that z is the solution of Equations (11). Using the algorithm we described in the previous section, we find that

z =


0.230769230769

0.461538461538

0.307692307692

 , (12)

which agrees with the value found in Equation (9) by computing x(n)/N with large values on n.

Note that zi is the proportion of the amino acids that are of type Ai for times t = n with n large. We are interested in this

time regime of t = n with large n. Let P (Ai) be the probability of an amino acid being of type Ai. By definition, P (Ai) is

the proportion of the amino acids that are of type Ai. Thus, we have that

P (A1) = z1, P (A2) = z2, P (A3) = z3. (13)

In vector notation

P(A) = z where P(A) =


P (A1)

P (A2)

P (A3)

 . (14)
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2.6. Probability of an amino acid of type Ai was of type Aj a unit of time earlier

Let 1 ≤ i, j ≤ 3. We define bij = probability that an amino acid of type Ai was of type Aj a unit of time earlier. These

coefficients give us the 3× 3-matrix

B =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 . (15)

Observation 2.5. The coefficients of the matrix B defined above satisfy

bij = pij
P (Aj)

P (Ai)
(16)

Proof. We have an amino acid. We define the events E1 and E2 as follows: E1 = the amino acid is of type Ai at time

t. E2 = the amino acid is of type Aj at time t − 1. Note that P (E1) = P (Ai), P (E2) = P (Aj), P (E1 |E2) = pij and

bij = P (E2 |E1). Thus, applying Bayes formula, we have that

bij = pij
P (Aj)

P (Ai)
. (17)

In the example when P is given by Equation (2), we obtain

B =


0.8 0.2 0

0.1 0.7 0.2

0 0.3 0.7

 . (18)

2.7. Expected value of the most recent time that an amino acid of type Ai and an
amino acid of type Aj were of the same type

Assume that we have an amino acid α. Assume that amino acid is now of type Ai. The matrix computed in the previous

section allow us to run computer simulations to obtain sequences i, i1, . . . , ik, . . . that give us that the amino acid α was of

type Aik k years ago. More precisely, we select i1 randomly as follows: i1 = 1 with probability bi1, i1 = 2 with probability

bi2, i1 = 3 with probability bi3. Once we have i1, we select i2 = 1 with probability bi11, i2 = 2 with probability bi12, i2 = 3

with probability bi13. We can continue computing the numbers in the sequence i, i1, . . . , ik, . . . one by one.

Similarly, assume we have a second amino acid that we call β. Assume that β is of type now of type Aj . We can also run

numerical simulations to obtain sequences j, j1, . . . , jk, . . . that give us that the amino acid β was of type Ajk k years ago.

Assume i 6= j. We can now compare the sequences i, i1, . . . , ik, . . . and j, j1, . . . , jk, . . . to find the smallest integer fij such

that ifij = jfij . This gives us that the latest that the two amino acids were of the same type was fij years ago. Of course,

the sequences i, i1, . . . , ik, . . . and j, j1, . . . , jk, . . . were randomly generated. Like flipping a coin or throwing a dice, when we

run random numerical simulations, we are likely to obtain different outcomes. In other words, if we run this computational

experiment again, most likely we would obtain different sequences i, i1, . . . , ik, . . . and j, j1, . . . , jk, . . . and thus, a different

value of fij . Regardless, the quantity of interest is E[fij ], the expected value of fij . This discussion leads to the definition

of the matrix

E(f) =


E[f11] E[f12] E[f13]

E[f21] E[f22] E[f23]

E[f31] E[f32] E[f33]

 . (19)
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Note that fii = 0 for all i (α and β were of the same type 0 years ago, which is now, because they are both of type Ai now).

Thus, E[fii] = 0 for all i. The other values of the matrix can be computed running many simulations as described in this

section and taking averages of the values obtained.

As an example, we run the simulations in the case when the transition matrix is given by Equation (2), we obtained

E(f) =


0 5.0591 6.1511

5.0591 0 3.5163

6.1511 3.5163 0

 . (20)

The above matrix tell us that, for example, that if we have an amino acid of type A1 and an other one of type A2, the

expected time when they were last of the same type is 5.0591 unit of time ago.

2.8. Expected value of the most recent time that a sequence of amino acids of type

A
(1)
i , A

(2)
i , . . . , A

(k)
i and a sequence of amino acids of type A

(1)
j , A

(2)
j , . . . , A

(k)
j were of the

same type

Assume that α and β are now two sequences of amino acids of type A
(1)
i , A

(2)
i , . . . , A

(k)
i and A

(1)
j , A

(2)
j , . . . , A

(k)
j respectively.

We define the vectors i and j such that iT = [i(1)i(2) . . . i(k)] and jT = [j(1)j(2) . . . j(k)].

In a similar fashion as in the last section, we can run numerical simulations that produce vectors is and js such that iTs =

[i
(1)
s i

(2)
s . . . i

(k)
s ] and jTs = [j

(1)
s j

(2)
s . . . j

(k)
s ] with the meaning that the sequences α and β were of type A

(1)
i s,A

(2)
i s, . . . , i(k)s)

and (A
(1)
s , A

(2)
s , . . . , j

(k)
s ) s years ago.

Assume that i 6= j. We define fij to be the smallest s such that is 6= js. This gives us that the latest that the two sequences

of amino acids were of the same type was fij years ago. By running several numerical simulations with the same i and j and

taking averages of the results obtained, we compute E[fij].

2.9. Computational Implementation

In order to allow easier testing of the model and an unlimited amount of simulations, the model was implemented in Python.

3. Discussion

There are a few outcomes of this study that seem to be the most notable. The first outcome that is notable is equation 6:

x(n+1) = Px(n). (21)

This equation highlights the importance of the transition matrix in this study, as it is how the amino acids of the next

generation can be predicted. Additionally, this equation provides a foundation for the rest of the model development.

The second notable result is that no matter the values in the transition matrix the number of each amino acid, and the

vector of initial amino acids approaches a certain value. In this case, the numbers were 0.23 ∗ N , 0.46 ∗ N , and 0.31 ∗ N ,

where N is the total number of amino acids at t=0. For other transition matrices, the constants will be different. This

is significant because it allows the calculation of a certain type of amino acids to be easier. Additionally, if the model is

extended to a more realistic world of 20 amino acids, it will be interesting to observe if this observation still holds.

The third important outcome is the development of the matrix B. The values of the matrix bij represent the probability

that an amino acid of type Ai was of type Aj a unit of time earlier. It’s significance lies in the fact that it provides the base

for the development of the last significant result, the most important of the whole study.
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Lastly, the development of the expected value matrix is the most important outcome of this model. Each element provides

the expected value of how many years ago amino acid Ai and Aj were the same. It is done through repeated running of the

model and averaging the values that are obtained. This outcome is vital to the study, as it answers the original question

that was to be answered: how long ago did two species share a common ancestor? Although it does not necessarily confirm

that two species shared a common ancestor, simply because it predicts how long ago two amino acids were the same, it does

provide a foundation for extension of the model. Once the model is extended, and made more robust, this question can be

answered much more easily.

This study and phylogenetic studies in general have a significant impact in other scientific fields. Perhaps the largest impact

extends to biotechnology and biomedical sciences. The information gained from predicting the time of species divergence

can provide insight into the structure of various biological molecules, such as proteins, nucleic acids, etc. As an example,

the analysis of various pathogenic species allows the tracing of infectious disease transmission, and this is enhanced by

better phylogenetic tree development. Furthermore, the analysis of host and pathogen relationships can be enhanced after

gaining more insight into their genetic relationships by observing these phylogenetic trees. This can allow for better drug

development, since the analysis of structural and functional relationships of the two is enhanced.

4. Conclusion

There are two takeaways from this study that seem to be the most important. The first is the observation that at any time,

there are 0.23∗NA1 amino acids, 0.46∗NA2 amino acids, and 0.31∗NA3 amino acids, where N is the total number of amino

acids in the imaginary world at t=0. These numbers are specific to the transition matrix that we came up with in equation

2. However, through this observation we can conclude that there must be additional such coefficients for different transition

matrices, and x(n)/N always approaches a certain value. The second major takeaway is how to obtain the expected value

of fij , the greatest number of years that amino acid Ai and Aj were of the same type. This can be obtained by calculating

the values of the matrix

E(f) =


E[f11] E[f12] E[f13]

E[f21] E[f22] E[f23]

E[f31] E[f32] E[f33]

 . (22)

through running many simulations and taking averages of the resulting values. Not only is this result important because it

answers the question of the study, but it also highlights how it is important for the model to be easily implementable into

code (to allow for easier testing and simulation).

In the introduction we motivated the problem of developing a mathematical model that uses the idea of a transition matrix to

predict how long ago two species shared a common ancestor. We decided to this through the analysis of amino acid mutations

in protein sequences of various species. The main goal of using a transition matrix was to allow easier implementation in a

programming language, namely Python. That goal was met through this study, since a robust mathematical foundation of

the model allowed for easy translation to Python. As a result, testing the model was made much more efficient.

This study focused solely on proteins containing 3 amino acids for simplification of the model. The next logical step for

extension of this study would be to create a model that accommodates all 20 amino acids, since a 3-amino-acid world is not

representative of the real world. Once the model is extended to more amino acids, one can choose and analyze a specific

protein that has been conserved across various species through this model. Another direction that this study could be

extended is to account for insertion and deletion mutations. This model considers only substitutions. However, in reality,

17
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insertions and deletions are common mutations and need to be considered to develop a fully accurate model. There are

many different future directions that this study can act as a foundation for, and the results of these future studies can be

extended to various scientific phenomena.
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