International Journal of Mathematics And its Applications

# New Theorem on Triangles-more Generalized Than Pythagoras Theorem 

A. S. Jayaram ${ }^{1, *}$<br>1 Department of Mechanical Engineering, Dr Ambedkar Institute Of Technology, Bangalore, Karnataka, India.


#### Abstract

This paper establishes a basic equation $a^{n}+b^{n}=c^{n}$ applicable for any triangle, having a , b and c as the sides with ' c ' being the longest side and ' n ' is a number varying from 1 to infinity. Here, $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and n need not always be integers. It also arrives at a relation between largest angle $\theta$ (opposite to the longest side ' $c$ ') and sides of the triangle with the equation based on cosine rule. The paper graphically and mathematically illustrates the relation between the angle $\theta$ and ' $n$ ', for different values of ' $n$ ' and ' $r$ ' (where ' $r$ ' is the ratio of sides $b / a$ ) for the range of both ' $n$ ' and ' $r$ ' varying from 1 to infinity. The paper also shows that Pythagoras theorem is a particular case of the above fundamental equation, when $n=2$. The paper clearly illustrates with an example that the above fundamental equation is valid even when any one (or two or all) of the sides a, b or c will become non-integer values for all powers of $n>2$. This gives a clear way of understanding the Fermat's Last Theorem.


MSC: 51P99, 60A99.
Keywords: Geometry, Triangle, New theorem.
(C) JS Publication.

## 1. Introduction

There are various new theorems on triangles and quadrilaterals [1, 2]. Some papers discuss use of such properties in building Egyptian pyramids [3, 4]. The triangle properties in combination of circles are also have been established in some papers [5]. The basis for such properties are derived from properties of straight lines [6]. Adding to all those, this paper gives much more fundamental equation which is applicable to all types of triangles. It is important to note that perfect cuboid problem [7] is different, as it deals with integers only. Figure 1 shows a right angled triangle in which $a=3$ units, $b=4$ units and $c=5$ units. According to Pythagoras theorem, we have $a^{2}+b^{2}=c^{2}$. By substituting the values, we have $3^{2}+4^{2}=5^{2}$. Comparing it with the basic equation $a^{n}+b^{n}=c^{n}$, we can see that Pythagoras theorem is a particular case of this equation, when $n=2$. When " n " is not equal to 2 , then obviously the triangle will not be a right angled triangle. What will be the value of " n " for any other angle? The basic equation will establish a relation between " n " and the largest angle of the triangle, with proof.

### 1.1. New Theorem

Theorem 1.1. For every triangle $A B C$ with sides $a, b, c$ with $c$ being the longest side, we can always find ' $n$ ' for the basic equation $a^{n}+b^{n}=c^{n}$, where ' $n$ ' is a number varying from 1 to infinity.

[^0]Proof. The basic equation to be proved is

$$
\begin{equation*}
a^{n}+b^{n}=c^{n} . \tag{1}
\end{equation*}
$$

Let us consider the cosine rule.

$$
\begin{equation*}
\cos \theta=\frac{a^{2}+b^{2}-c^{2}}{2 * a * b} \tag{2}
\end{equation*}
$$



Figure 1. Cosine rule

Let us assume that a is the smallest side and $b / a=r$. Hence, equation (1) becomes $a^{n}\left(1+r^{n}\right)=c^{n}$. Therefore $c=$ $\left(a^{n}\left(1+r^{n}\right)\right)^{\frac{1}{n}}$. Hence $c^{2}=\left(a^{n}\left(1+r^{n}\right)\right)^{\frac{2}{n}}$. After simplification, we get $c^{2}=a^{2}\left(1+r^{n}\right)^{\frac{2}{n}}$. Substituting this in equation (2), and putting $b / a=r$, we get,

$$
\begin{equation*}
\cos \theta=\frac{\left(a^{2}\left(1+r^{2}\right)-a^{2}\left(1+r^{n}\right)^{\frac{2}{n}}\right.}{2 * a^{2} * r} \tag{3}
\end{equation*}
$$

Dividing numerator and denominator by $a^{2}$, we get

$$
\begin{equation*}
\cos \theta=\frac{\left(1+r^{2}\right)-\left(1+r^{n}\right)^{\frac{2}{n}}}{2 r} \tag{4}
\end{equation*}
$$

This is the equation for finding ' $n$ ' for any triangle with given value of ' r '. The theorem is proved by constructional verifications by considering the following examples.

Example 1.2. Now let us find ' $n$ ' for the given triangle with $r=1$ (when $r=1, a=b$ ), $a=b=10$ units and $c=12$ units. This triangle can be constructed by scale and compass.


Figure 2. Finding ' $n$ ' for the given triangle

When $r=1$, the basic equation reduces to

$$
\begin{equation*}
\cos \theta=\frac{(2)-(2)^{\frac{2}{n}}}{2} \tag{5}
\end{equation*}
$$

From cosine rule, for $a=b=10$ and $c=12$, we get $\cos \theta=0.28$. So, $0.28=\frac{(2)-(2)^{\frac{2}{n}}}{2}$, or,

$$
\begin{aligned}
2 * 0.28-2 & =-2^{\frac{2}{n}} \\
-1.44 & =-2^{\frac{2}{n}}
\end{aligned}
$$

$$
n=2\left(\frac{\log 2}{\log 1.44}\right)
$$

Solving, we get $n=3.0802$ (approx). Also, $\cos \theta=0.28$. Hence $\theta=73.74^{0}$.
Verification by construction: A triangle is constructed with sides $a=10, b=10, c=12$. On measuring the angle, we see that angle $\theta=73.74^{0}$. This step proves the angle relationship with given sides. Now, putting $a=10, b=10$ and $n=3.802$ in equation (1), we get $10^{3.802}+10^{3.802}=6338.7+6338.7=12677.4$ (LHS of the equation (1)). In this triangle, $c=12$. So, $12^{3.802}=12677.9$ (RHS of the equation (1)) (the decimal error is due to calculation approximation). So, equation of the theorem $10^{3.802}+10^{3.802}=12^{3.802}$ is satisfied. Hence the proof of the theorem.

Remark 1.3. According to Fermat's Last Theorem, $a^{n}+b^{n}=c^{n}$ will not exist for $n>2$ when $a, b, c$ and $n$ are integers. But here, $n$ is 3.802, which is not an integer. So, this example makes a new way of understanding the Fermat's Last Theorem

Corollary 1.4. It is always possible to construct a triangle for $a^{n}+b^{n}=c^{n}$ with ' $c$ ' being longest side and $n$ being a number varying from 1 to infinity.

Proof. let $a=2$ units, $b=3$ units and $n=1.5$. So, $r=b / a=1.5$. Substituting this in equation (4), we get,

$$
\cos \theta=\frac{\left(1+1.5^{2}\right)-\left(1+1.5^{1.5}\right)^{\frac{2}{1.5}}}{2 * 1.5}=-0.2554 .
$$

Hence $\theta=104.8^{0}$


Figure 3. Constructing the triangle for the given values

Construction is shown in Figure 3. By measuring, we get the side ' $c$ ' as 4.008 units.
Mathematical verification: Substituting the values for $a=2, b=3$ and $n=1.5$, we get $2^{1.5}+3^{1.5}=8.025$. Here, $c=4.008$. So, $4.008^{1.5}=8.024$. Hence the proof of the corollary.

## 2. Main Result

In this section, results are discussed.

## Special cases

Case 1: When $n=2$
In a right angled triangle, $a^{2}+b^{2}=c^{2}$ or $a^{2}+b^{2}-c^{2}=0$. Substituting this in equation (2), we get, $\cos \theta=0 / 2 * a * b=0$ or $\theta=90^{\circ}$. So, it leads to Pythagoras theorem, for $n=2$.

Case 2: When $n=1$


Figure 4. Triangle becoming a straight line

Putting $n=1$ in basic equation $a^{n}+b^{n}=c^{n}$, we get $a+b=c$ or $c^{2}=(a+b)^{2}$. Substituting this in equation (2), we get, $\cos \theta=a^{2}+b^{2}-(a+b)^{2} / 2 * a * b=0$ or $\cos \theta=-1$. So, $\theta=180^{\circ}$. This is shown in Figure 3.

### 2.1. Tables and Graphs

| S.No | Angle (in degrees, for $r=1$ ) | n |
| :---: | :---: | :---: |
| 1 | 180 | 1 |
| 2 | 90 | 2 |
| 3 | 78.03 | 3 |
| 4 | 72.96 | 4 |
| 5 | 70.11 | 5 |
| 6 | 68.28 | 6 |
| 7 | 67.01 | 7 |
| 8 | 66.08 | 8 |
| 9 | 65.37 | 9 |
| 10 | 64.8 | 10 |

Table 1. Variation of angle for $n$


Figure 5. Variation of angle with ' $n$ ', pictorial representation


Figure 6. Variation of ' $n$ ' for $r=1$, graphical representation.

### 2.2. For large values of ' $n$ '

The value of ' $n$ ' varies from 1 to 2 for the angles between 180 to 90 degrees but varies from 2 to infinity for angles between 90 to 60 degrees. As ' $n$ ' $\rightarrow \infty$, angle $\rightarrow$ to $60^{\circ}$. This can be mathematically illustrated as below:

By putting $r=1$, equation (4) becomes, $\cos \theta=\left(2-2^{2 / n}\right) / 2$. For large values of $n, \cos \theta=\left(2-2^{2 / n}\right) / 2=(2-1) / 2=1 / 2$. So, $\theta=60^{\circ}$.

| S.No | Angle for $r=2$ | Angle for $r=3$ | Angle for $r=4$ | n |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 180 | 180 | 180 | 1 |
| 2 | 90 | 90 | 90 | 2 |
| 3 | 80.31 | 82.54 | 84 | 3 |
| 4 | 77.34 | 80.94 | 83 | 4 |
| 5 | 76.25 | 80.54 | 82.86 | 5 |
| 6 | 75.83 | 80.44 | 82.83 | 6 |
| 7 | 75.65 | 80.41 | 82.821 | 7 |
| 8 | 75.58 | 80.409 | 82.8196 | 8 |
| 9 | 75.55 | 80.407 | 82.8193 | 9 |
| 10 | 75.53 | 80.40 | 82.8192 | 10 |

Table 2. Table showing " $\mathbf{n}$ " for $r=2,3$ and 4


Figure 7. Variation of ' $n$ ' for different values of ' $r$ '

As ' $r$ ' increases, rate of variation on ' $n$ ' decreases. This can be visualised from the graph in the Figure 7.

### 2.3. Finding the angle for given value of ' $n$ ' from the graph

Let the given value of ' $n$ ' be 5 .


Figure 8. Finding the angle for $n=5$

Vertical line drawn from $n=5$ intersects the graph at the point ' P '. The angle for that point is found to be 70 degrees.

## 3. Conclusions

### 3.1. Establishing a basic equation

This paper establishes a Fundamental equation $a^{n}+b^{n}=c^{n}$ for any triangle with sides a , b , and c , where ' c ' is the longest side and ' $n$ ' is any number between 1 to $\infty$

### 3.2. Pythagoras Theorem

This paper shows that the Pythagoras theorem is a particular case of the basic equation for $n=2$.

### 3.3. Finding the largest angle

This paper arrives at generalized equation for finding the largest angle $\theta$ opposite to the longest side ' $c$ ', for any given values of ' $r$ ' and ' $n$ ', where ' $r$ ' $=b / a$. Since ' $a$ ' is taken as the smallest side, ' $r$ ' varies from 1 to $\infty$

### 3.4. About Fermat's Last theorem

This paper shows with an example that the basic equation $a^{n}+b^{n}=c^{n}$ is satisfied when ' a ', ' b ' and ' c ' are integers but ' n ' is not an integer, even for values of $n>2$. This has been illustrated in Article 1.3 of this paper, providing a new perspective of looking at Fermat's last theorem. In this connection, the paper concludes that the fundamental equation of the triangle is very likely to become a stepping stone in finding a simpler proof for Fermat's last theorem.

## References

[1] M. F. Mammana, Homothetic transformations and geometric loci: properties of triangles and quadrilaterals, International Journal of Mathematical Education in Science and Technology, 47(7)(2016), 1103-1119.
[2] Mustafa Saltan, Intrinsic metrics on Sierpinski-like triangles and their geometric properties, Symmetry, 10(6)(2018), 204.
[3] Brian J. McCartin, Mysteries of the equilateral triangle, Ruse, Bulgaria: Hikari Limited, (2010).
[4] A. S. Jayaram, Possible answer to Giza pyramid air-shaft construction puzzle, International Advanced Research Journal in Science, Engineering and Technology 8(3)(2021).
[5] Alex Pathan and Tony Collyer, 89.81 Area properties of triangles revisited, The Mathematical Gazette, 89(516)(2005), 495-497.
[6] Nicola D'alfonso, A new formulation of the parallelism in the Euclidean geometry, Global Journal of Advanced Research on Classical and Modern Geometries, 1(1)(2012), 1-10
[7] A. S. Jayaram, Perfect Prism Problem-A Better Way of Representing Perfect Cuboid Problem, International Journal of Mathematics Trends and Technology, 67(4)(2021), 47-50.


[^0]:    * E-mail: surya.jayaram@gmail.com

