International Journal of Mathematics fud its Applications

On (n, m)-Metrically Equivalent Operators

Wanjala Victor ${ }^{1, *}$ and A. M. Nyongesa ${ }^{1}$
1 Department of Mathematics and Computing, Rongo University, Kitere Hills, Kenya.

Abstract

In this paper, we introduce the class of (n, m)-metrically equivalent operators which is a generilazation of metrically equivalent operators and n-metrically equivalent operators. We then look at some properties of this class and its relation to some higher classes like quasi-isometries and the (n, m)-class (Q) operators. we also look at the relationship between this class and other equivalence relations like metrically equivalent and n-metrically equivalent operators.

Keywords: (n, m)-metrically equivalent, n-metrically equivalent, metrically equivalent, (n, m)-class(Q), normal and n-normal operators. (C) JS Publication.

1. Introduction

Definition 1.1. Two operators $S \in B(H)$ and $T \in B(H)$ are said to be ($n, m)$-metrically equivalent denoted by $S \sim{ }_{(\mathrm{n}, \mathrm{m})-\mathrm{m}} T$, provided $\left(S^{m}\right)^{*} S^{n}=\left(T^{m}\right)^{*} T^{n}$ for all $n, m \in \mathbb{R}$.

Definition $1.2([5])$. Two operators $S \in B(H)$ and $T \in B(H)$ are said to be (n, m)-metrically equivalent denoted by $S \sim_{\mathrm{n}-\mathrm{m}} T$, provided $(S)^{*} S^{n}=(T)^{*} T^{n}$ for all $n \in \mathbb{R}$.

Definition 1.3 ([3]). Two operators $S \in B(H)$ and $T \in B(H)$ are said to be metrically equivalent denoted by $S \sim_{m} T$, provided $S^{*} S=T^{*} T$.

Definition $1.4([1])$. Two operators $T \in B(H)$ is said to be (n, m)-class (Q) if $T^{* 2 m} T^{2 n}=\left(T^{m *} T^{n}\right)^{2}$ for non negative integers n, m.

2. Main Results

Theorem 2.1. If S is an (n, m)-normal operator and $T \in B(H)$ is unitarily equivalent to S, then T is an (n, m)-normal.

Proof. Since $T=U^{*} S U$ with U being unitary and $\mathrm{S}(n, m)$-normal, we have

$$
\begin{aligned}
\left(T^{m}\right)^{*} T^{n} & =U^{*}\left(S^{m}\right)^{*} S^{n} U \\
\left(T^{m}\right)^{*} T^{n} & =U^{*}\left(S^{m}\right)^{*} U U^{*} S^{n} U \\
& =U^{*}\left(S^{m}\right)^{*} S^{n} U \\
& =U^{*} S^{n}\left(S^{m}\right)^{*} U
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& =T^{n} U^{*}\left(S^{m}\right)^{*} U \\
& =T^{n} U^{*} U\left(T^{m}\right)^{*} \\
& =T^{n}\left(T^{m}\right)^{*}
\end{aligned}
$$
\]

which proves the claim.
Corollary 2.2. An operator $T \in B(H)$ is (n, m)-normal if and only if T and T^{*} are (n, m)-metrically equivalent.
Proof. The proof follows from Theorem 2.1.
Proposition 2.3. Let S and T be (n, m)-metrically equivalent, then S^{*} and T^{*} are co- (n, m)-metrically equivalent.
Proof. Since S and T are (n, m)-metrically equivalent, we have,

$$
\begin{aligned}
\left(S^{m}\right)^{*} S^{n} & =\left(T^{m}\right)^{*} T^{n}, \quad \text { taking adjoints on both sides we obtain; } \\
& =\left(\left(S^{m}\right)^{*} S^{n}\right)^{*} \\
& =\left(\left(T^{m}\right)^{*} T^{n}\right)^{*} \\
& =\left(\left(S^{m}\right)^{*}\right)^{*}\left(S^{n}\right)^{*} \\
& =\left(\left(T^{m}\right)^{*}\right)^{*}\left(T^{n}\right)^{*} \\
& =S^{m}\left(S^{n}\right)^{*} \\
& =T^{m}\left(T^{n}\right)^{*}
\end{aligned}
$$

hence S^{*} and T^{*} are co- (n, m)-metrically equivalent.
Theorem 2.4. Let $T_{\alpha_{i}} \ldots T_{\alpha_{r}}$ and $S_{\alpha_{i}} \ldots S_{\alpha_{r}}$ be (n, m)-metrically equivalent operators. Then $T_{\alpha_{i}} \oplus \cdots \oplus T_{\alpha_{r}}$ and $S_{\alpha_{i}} \oplus$ $\cdots \oplus S_{\alpha_{r}}$ are (n, m)-metrically equivalent.

Proof. Since $T_{\alpha_{i}} \ldots T_{\alpha_{r}}$ and $S_{\alpha_{i}} \ldots S_{\alpha_{r}}$ are (n, m)-metrically equivalent operators, we have;

$$
\begin{aligned}
& =\left(\left(T_{\alpha_{i}} \oplus \cdots \oplus T_{\alpha_{r}}\right)^{m}\right)^{*}\left(T_{\alpha_{i}} \oplus \cdots \oplus T_{\alpha_{r}}\right)^{n} \\
& =\left(\left(S_{\alpha_{i}} \oplus \cdots \oplus S_{\alpha_{r}}\right)^{m}\right)^{*}\left(S_{\alpha_{i}} \oplus \cdots \oplus S_{\alpha_{r}}\right)^{n} \\
& =\left(T_{\alpha_{i}}^{m} \oplus \cdots \oplus T_{\alpha_{r}}^{m}\right)^{*}\left(T_{\alpha_{i}}^{n} \oplus \cdots \oplus T_{\alpha_{r}}^{n}\right) \\
& =\left(S_{\alpha_{i}}^{m} \oplus \cdots \oplus S_{\alpha_{r}}^{m}\right)^{*}\left(S_{\alpha_{i}}^{n} \oplus \cdots \oplus S_{\alpha_{r}}^{n}\right) \\
& =\left(T_{\alpha_{i}}^{m *} \oplus \cdots \oplus T_{\alpha_{r}}^{m *}\right)\left(T_{\alpha_{i}}^{n} \oplus \cdots \oplus T_{\alpha_{r}}^{n}\right) \\
& =\left(S_{\alpha_{i}}^{m *} \oplus \cdots \oplus S_{\alpha_{r}}^{m *}\right)\left(S_{\alpha_{i}}^{n} \oplus \cdots \oplus S_{\alpha_{r}}^{n}\right) \\
& =T_{\alpha_{i}}^{m *} T_{\alpha_{i}}^{n} \oplus \cdots \oplus T_{\alpha_{r}}^{m *} T_{\alpha_{r}}^{n} \\
& =S_{\alpha_{i}}^{m *} S_{\alpha_{i}}^{n} \oplus \cdots \oplus S_{\alpha_{r}}^{m *} S_{\alpha_{r}}^{n} \\
& =\left(T_{\alpha_{i}}^{m *} \oplus \cdots \oplus T_{\alpha_{r}}^{m *}\right)\left(T_{\alpha_{i}}^{n} \oplus \cdots \oplus T_{\alpha_{r}}^{n}\right) \\
& =\left(S_{\alpha_{i}}^{m *} \oplus \cdots \oplus S_{\alpha_{r}}^{m *}\right)\left(S_{\alpha_{i}}^{n} \oplus \cdots \oplus S_{\alpha_{r}}^{n}\right) \\
& =\left(T_{\alpha_{i}}^{m} \oplus \cdots \oplus T_{\alpha_{r}}^{m}\right)^{*}\left(T_{\alpha_{i}}^{n} \oplus \cdots \oplus T_{\alpha_{r}}^{n}\right) \\
& =\left(S_{\alpha_{i}}^{m} \oplus \cdots \oplus S_{\alpha_{r}}^{m}\right)^{*}\left(S_{\alpha_{i}}^{n} \oplus \cdots \oplus S_{\alpha_{r}}^{n}\right) \\
& =\left(\left(T_{\alpha_{i}} \oplus \cdots \oplus T_{\alpha_{r}}\right)^{m}\right)^{*}\left(T_{\alpha_{i}} \oplus \cdots \oplus T_{\alpha_{r}}\right)^{n}
\end{aligned}
$$

$$
=\left(\left(S_{\alpha_{i}} \oplus \cdots \oplus S_{\alpha_{r}}\right)^{m}\right)^{*}\left(S_{\alpha_{i}} \oplus \cdots \oplus S_{\alpha_{r}}\right)^{n}
$$

hence $T_{\alpha_{i}} \oplus \cdots \oplus T_{\alpha_{r}}$ and $S_{\alpha_{i}} \oplus \cdots \oplus S_{\alpha_{r}}$ are (n, m)-metrically equivalent operators.

Theorem 2.5. Let $T_{\alpha_{i}} \ldots T_{\alpha_{r}}$ and $S_{\alpha_{i}} \ldots S_{\alpha_{r}}$ be (n, m-metrically equivalent operators. Then $T_{\alpha_{i}} \otimes \cdots \otimes T_{\alpha_{r}}$ and $S_{\alpha_{i}} \otimes$ $\cdots \otimes S_{\alpha_{r}}$ are (n, m)-metrically equivalent.

Proof. Let $x_{\alpha_{i}} \ldots x_{\alpha_{r}} \in H$, it follows that;

$$
\begin{aligned}
& =\left(\left(T_{\alpha_{i}} \otimes \cdots \otimes T_{\alpha_{r}}\right)^{m}\right)^{*}\left(T_{\alpha_{i}} \otimes \cdots \otimes T_{\alpha_{r}}\right)^{n}\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(\left(S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}}\right)^{m}\right)^{*}\left(S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}}\right)^{n} \\
& =\left(T_{\alpha_{i}}^{m} \otimes \cdots \otimes T_{\alpha_{r}}^{m}\right)^{*}\left(T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{n}\right)\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(S_{\alpha_{i}}^{m} \otimes \cdots \otimes S_{\alpha_{r}}^{m}\right)^{*}\left(S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}\right)\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(T_{\alpha_{i}}^{m *} \otimes \cdots \otimes T_{\alpha_{r}}^{m *}\right)\left(T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{n}\right)\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(S_{\alpha_{i}}^{m *} \otimes \cdots \otimes S_{\alpha_{r}}^{m *}\right)\left(S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}\right)\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =T_{\alpha_{i}}^{m *} T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{m *} T_{\alpha_{r}}^{n}\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =S_{\alpha_{i}}^{m *} S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{m *} S_{\alpha_{r}}^{n}\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(T_{\alpha_{i}}^{m *} \otimes \cdots \otimes T_{\alpha_{r}}^{m *}\right)\left(T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{n}\right)\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(S_{\alpha_{i}}^{m *} \otimes \cdots \otimes S_{\alpha_{r}}^{m *}\right)\left(S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}\right)\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(T_{\alpha_{i}}^{m} \otimes \cdots \otimes T_{\alpha_{r}}^{m}\right)^{*}\left(T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{n}\right)\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(S_{\alpha_{i}}^{m} \otimes \cdots \otimes S_{\alpha_{r}}^{m}\right)^{*}\left(S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}\right)\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(\left(T_{\alpha_{i}} \otimes \cdots \otimes T_{\alpha_{r}}\right)^{m}\right)^{*}\left(T_{\alpha_{i}} \otimes \cdots \otimes T_{\alpha_{r}}\right)^{n}\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right) \\
& =\left(\left(S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}}\right)^{m}\right)^{*}\left(S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}}\right)^{n}\left(x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}}\right)
\end{aligned}
$$

hence $T_{\alpha_{i}} \otimes \cdots \otimes T_{\alpha_{r}}$ and $S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}}$ are (n, m)-metrically equivalent operators.

Theorem 2.6. If S and T are (n, m)-metrically equivalent operators then they are (n, m)-power class (Q).
Proof. Since S and T are (n, m)-metrically equivalent;

$$
\begin{equation*}
S^{* m} S^{n}=T^{* m} T^{n} \tag{1}
\end{equation*}
$$

post -multiplying both sides of (1) by S^{n} and T^{n} respectively;

$$
\begin{equation*}
S^{* m} S^{n} S^{n}=T^{* m} T^{n} T^{n} \tag{2}
\end{equation*}
$$

$S^{* m} S^{2 n}=T^{* m} T^{2 n}$ pre-multiplying both sides of (2) by $S^{* m}$ and $T^{* m}$ respectively;

$$
\begin{aligned}
S^{* m} S^{* m} S^{2 n} & =T^{* m} T^{* m} T^{2 n} \\
S^{* 2 m} S^{2 n} & =T^{* 2 m} T^{2 n} \\
S^{* 2 m} S^{2 n} & =S^{* m} S^{* m} S^{n} S^{n} \\
& =\left(S^{* m} S^{n}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(T^{* m} T^{n}\right)^{2} \\
& =T^{* m} T^{* m} T^{n} T^{n} \\
& =T^{* 2 m} T^{2 n} .
\end{aligned}
$$

Theorem 2.7. If S and T are (2,2)-metrically equivalent operators, then they are metrically equivalent provided they are quasi-isometries.

Proof. The proof is trivial and follows from the fact that if S and T are (2,2)-metrically equivalent, then we have

$$
\begin{equation*}
S^{* 2} S^{2}=T^{* 2} T^{2} \tag{3}
\end{equation*}
$$

since S and T are quasi-isometries; we have $S^{*} S=S^{* 2} S^{2}$ and $T^{*} T=T^{* 2} T^{2}$, hence (3) gives us $S^{*} S=T^{*} T$.
Theorem 2.8. If S and T are (3,3)-metrically equivalent operators and S is (2,3)-quasinormal, then T is (2,3)-quasinormal. Proof.

$$
\begin{aligned}
\left(S^{3}\right)^{*} S^{3} & =U\left(T^{3}\right)^{*} T^{3} U^{*} \\
& =\left(S^{3}\right)^{*} S S^{2} \\
& =S^{2}\left(S^{3}\right)^{*} S \\
& =U\left(T^{3}\right)^{*} T^{3} U^{*} \\
& =\left(T^{3}\right)^{*} T^{3} \\
& =\left(T^{3 *}\right) T T^{2} \\
& =T^{2} T^{3 *} T \\
& =T^{3 *} T T^{2}
\end{aligned}
$$

Remark 2.9. In the following proposition, we provide a condition under which (2,1)-metrically equivalent operators implies metric equivalence relation.

Proposition 2.10. If S and T are (2,1)-metrically equivalent operators, then they are metrically equivalent provided they are idempotent.

Proof. Since S and T are (2,1)-metrically equivalent, we have $S^{*} S^{2}=T^{*} T^{2}$, since S and T are idempotent we have $S^{2}=S$ and $T^{2}=T$, this implies $S^{*} S^{2}=T^{*} T^{2} \Leftrightarrow S^{*} S=T^{*} T$ as required.

References

[1] Eiman H. Abood and Mustafa A. Al-loz, On some generalizations of (n,m)-normal powers operators on Hilbert space, Journal of Progressive Research in Mathematics, 7(3)(2016), 1063-1070.
[2] A. A. Jibril, On n-power normal operators, The Arabian Journal for Science and Engineering, 33(2008), 247-251.
[3] B. M. Nzimbi, G. P. Pokhariyal and S. K. Moindi, A Note on Metric Equivalence of some Operators, Far East J.F Math. Sci. (FJMS), 75(2013), 301-318.
[4] S. A. Alzuraiqi and A. B. Patel, On n-Normal Operators, General mathematics Notes, 1(2)(2010), 61-73.
[5] Wanjala Victor, R. K. Obogi and M. O. Okoya, On N-Metric equivalence of Operators, International Journal of Mathematics And its Applications, 8(1)(2020), 107-109.

[^0]: * E-mail: wanjalavictor421@gmail.com

