

International Journal of *Mathematics And its Applications*

On (n, m)-Metrically Equivalent Operators

Wanjala Victor^{1,*} and A. M. Nyongesa¹

1 Department of Mathematics and Computing, Rongo University, Kitere Hills, Kenya.

- Abstract: In this paper, we introduce the class of (n,m)-metrically equivalent operators which is a generilazation of metrically equivalent operators and n-metrically equivalent operators. We then look at some properties of this class and its relation to some higher classes like quasi-isometries and the (n,m)-class (Q) operators. we also look at the relationship between this class and other equivalence relations like metrically equivalent and n-metrically equivalent operators.
- Keywords: (n,m)-metrically equivalent, n-metrically equivalent, metrically equivalent, (n,m)-class(Q), normal and n-normal operators.

1. Introduction

Definition 1.1. Two operators $S \in B(H)$ and $T \in B(H)$ are said to be (n, m)-metrically equivalent denoted by $S \sim_{(n,m)-m} T$, provided $(S^m)^*S^n = (T^m)^*T^n$ for all $n, m \in \mathbb{R}$.

Definition 1.2 ([5]). Two operators $S \in B(H)$ and $T \in B(H)$ are said to be (n, m)-metrically equivalent denoted by $S \sim_{n-m} T$, provided $(S)^* S^n = (T)^* T^n$ for all $n \in \mathbb{R}$.

Definition 1.3 ([3]). Two operators $S \in B(H)$ and $T \in B(H)$ are said to be metrically equivalent denoted by $S \sim_{\mathrm{m}} T$, provided $S^*S = T^*T$.

Definition 1.4 ([1]). Two operators $T \in B(H)$ is said to be (n,m)-class(Q) if $T^{*2m}T^{2n} = (T^{m*}T^n)^2$ for non negative integers n, m.

2. Main Results

Theorem 2.1. If S is an (n,m)-normal operator and $T \in B(H)$ is unitarily equivalent to S, then T is an (n,m)-normal.

Proof. Since $T = U^*SU$ with U being unitary and S (n, m)-normal, we have

 $(T^m)^*T^n = U^*(S^m)^*S^nU$ $(T^m)^*T^n = U^*(S^m)^*UU^*S^nU$ $= U^*(S^m)^*S^nU$ $= U^*S^n(S^m)^*U$

^{*} E-mail: wanjalavictor421@gmail.com

 $= T^n U^* (S^m)^* U$ $= T^n U^* U (T^m)^*$ $= T^n (T^m)^*$

which proves the claim.

Corollary 2.2. An operator $T \in B(H)$ is (n, m)-normal if and only if T and T^* are (n, m)-metrically equivalent.

Proof. The proof follows from Theorem 2.1.

Proposition 2.3. Let S and T be (n,m)-metrically equivalent, then S^* and T^* are co-(n,m)-metrically equivalent. *Proof.* Since S and T are (n,m)-metrically equivalent, we have,

$$(S^{m})^{*}S^{n} = (T^{m})^{*}T^{n}, \text{ taking adjoints on both sides we obtain;}$$

= $((S^{m})^{*}S^{n})^{*}$
= $((T^{m})^{*}T^{n})^{*}$
= $((S^{m})^{*})^{*}(S^{n})^{*}$
= $((T^{m})^{*})^{*}(T^{n})^{*}$
= $S^{m}(S^{n})^{*}$
= $T^{m}(T^{n})^{*}$

hence S^* and T^* are co-(n, m)-metrically equivalent.

Theorem 2.4. Let $T_{\alpha_i} \ldots T_{\alpha_r}$ and $S_{\alpha_i} \ldots S_{\alpha_r}$ be (n, m)-metrically equivalent operators. Then $T_{\alpha_i} \oplus \cdots \oplus T_{\alpha_r}$ and $S_{\alpha_i} \oplus \cdots \oplus S_{\alpha_r}$ are (n, m)-metrically equivalent.

Proof. Since $T_{\alpha_i} \dots T_{\alpha_r}$ and $S_{\alpha_i} \dots S_{\alpha_r}$ are (n, m)-metrically equivalent operators, we have;

$$= ((T_{\alpha_i} \oplus \cdots \oplus T_{\alpha_r})^m)^* (T_{\alpha_i} \oplus \cdots \oplus T_{\alpha_r})^n$$

$$= ((S_{\alpha_i} \oplus \cdots \oplus S_{\alpha_r})^m)^* (S_{\alpha_i} \oplus \cdots \oplus S_{\alpha_r})^n$$

$$= (T_{\alpha_i}^m \oplus \cdots \oplus T_{\alpha_r}^m)^* (T_{\alpha_i}^n \oplus \cdots \oplus T_{\alpha_r}^n)$$

$$= (S_{\alpha_i}^m \oplus \cdots \oplus S_{\alpha_r}^m)^* (S_{\alpha_i}^n \oplus \cdots \oplus S_{\alpha_r}^n)$$

$$= (T_{\alpha_i}^{m*} \oplus \cdots \oplus T_{\alpha_r}^{m*}) (T_{\alpha_i}^n \oplus \cdots \oplus T_{\alpha_r}^n)$$

$$= (S_{\alpha_i}^{m*} \oplus \cdots \oplus S_{\alpha_r}^m) (S_{\alpha_i}^n \oplus \cdots \oplus S_{\alpha_r}^n)$$

$$= T_{\alpha_i}^{m*} T_{\alpha_i}^n \oplus \cdots \oplus T_{\alpha_r}^{m*} T_{\alpha_r}^n$$

$$= S_{\alpha_i}^{m*} S_{\alpha_i}^n \oplus \cdots \oplus S_{\alpha_r}^{m*} S_{\alpha_r}^n$$

$$= (T_{\alpha_i}^{m*} \oplus \cdots \oplus T_{\alpha_r}^m) (T_{\alpha_i}^n \oplus \cdots \oplus T_{\alpha_r}^n)$$

$$= (S_{\alpha_i}^{m*} \oplus \cdots \oplus T_{\alpha_r}^m) (S_{\alpha_i}^n \oplus \cdots \oplus T_{\alpha_r}^n)$$

$$= (T_{\alpha_i}^m \oplus \cdots \oplus T_{\alpha_r}^m)^* (T_{\alpha_i}^n \oplus \cdots \oplus T_{\alpha_r}^n)$$

$$= (S_{\alpha_i}^m \oplus \cdots \oplus S_{\alpha_r}^m)^* (S_{\alpha_i}^n \oplus \cdots \oplus S_{\alpha_r}^n)$$

$$= ((T_{\alpha_i} \oplus \cdots \oplus T_{\alpha_r})^m)^* (T_{\alpha_i} \oplus \cdots \oplus T_{\alpha_r})^n$$

$$= ((S_{\alpha_i} \oplus \cdots \oplus S_{\alpha_r})^m)^* (S_{\alpha_i} \oplus \cdots \oplus S_{\alpha_r})^n$$

hence $T_{\alpha_i} \oplus \cdots \oplus T_{\alpha_r}$ and $S_{\alpha_i} \oplus \cdots \oplus S_{\alpha_r}$ are (n, m)-metrically equivalent operators.

Theorem 2.5. Let $T_{\alpha_i} \ldots T_{\alpha_r}$ and $S_{\alpha_i} \ldots S_{\alpha_r}$ be (n, m)-metrically equivalent operators. Then $T_{\alpha_i} \otimes \cdots \otimes T_{\alpha_r}$ and $S_{\alpha_i} \otimes \cdots \otimes S_{\alpha_r}$ are (n, m)-metrically equivalent.

Proof. Let $x_{\alpha_i} \dots x_{\alpha_r} \in H$, it follows that;

$$= ((T_{\alpha_{i}} \otimes \cdots \otimes T_{\alpha_{r}})^{m})^{*} (T_{\alpha_{i}} \otimes \cdots \otimes T_{\alpha_{r}})^{n} (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= ((S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}})^{m})^{*} (S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}})^{n}$$

$$= (T_{\alpha_{i}}^{m} \otimes \cdots \otimes T_{\alpha_{r}}^{m})^{*} (T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{n}) (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= (S_{\alpha_{i}}^{m} \otimes \cdots \otimes S_{\alpha_{r}}^{m})^{*} (S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}) (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= (T_{\alpha_{i}}^{m*} \otimes \cdots \otimes T_{\alpha_{r}}^{m*}) (T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{n}) (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= (S_{\alpha_{i}}^{m*} \otimes \cdots \otimes S_{\alpha_{r}}^{m*}) (S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}) (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= T_{\alpha_{i}}^{m*} T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{m*} T_{\alpha_{r}}^{n} (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= (T_{\alpha_{i}}^{m*} \otimes \cdots \otimes T_{\alpha_{r}}^{m*}) (T_{\alpha_{i}}^{n} \otimes \cdots \otimes T_{\alpha_{r}}^{n}) (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= (S_{\alpha_{i}}^{m*} \otimes \cdots \otimes S_{\alpha_{r}}^{m*}) (S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}) (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= (T_{\alpha_{i}}^{m} \otimes \cdots \otimes T_{\alpha_{r}}^{m*}) (T_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}) (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= (S_{\alpha_{i}}^{m} \otimes \cdots \otimes S_{\alpha_{r}}^{m*}) (S_{\alpha_{i}}^{n} \otimes \cdots \otimes S_{\alpha_{r}}^{n}) (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= ((T_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}})^{m})^{*} (T_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}})^{n} (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

$$= ((S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}})^{m})^{*} (S_{\alpha_{i}} \otimes \cdots \otimes S_{\alpha_{r}})^{n} (x_{\alpha_{i}} \otimes \cdots \otimes x_{\alpha_{r}})$$

hence $T_{\alpha_i} \otimes \cdots \otimes T_{\alpha_r}$ and $S_{\alpha_i} \otimes \cdots \otimes S_{\alpha_r}$ are (n, m)-metrically equivalent operators.

Theorem 2.6. If S and T are (n, m)-metrically equivalent operators then they are (n, m)-power class (Q). *Proof.* Since S and T are (n, m)-metrically equivalent;

$$S^{*m}S^n = T^{*m}T^n \tag{1}$$

post -multiplying both sides of (1) by S^n and T^n respectively;

$$S^{*m}S^nS^n = T^{*m}T^nT^n \tag{2}$$

 $S^{*m}S^{2n} = T^{*m}T^{2n}$ pre-multiplying both sides of (2) by S^{*m} and T^{*m} respectively;

$$S^{*m}S^{*m}S^{2n} = T^{*m}T^{*m}T^{2n}$$
$$S^{*2m}S^{2n} = T^{*2m}T^{2n}$$
$$S^{*2m}S^{2n} = S^{*m}S^{*m}S^{n}S^{n}$$
$$= (S^{*m}S^{n})^{2}$$

103

$$= (T^{*m}T^n)^2$$
$$= T^{*m}T^{*m}T^nT^n$$
$$= T^{*2m}T^{2n}.$$

Theorem 2.7. If S and T are (2,2)-metrically equivalent operators, then they are metrically equivalent provided they are quasi-isometries.

Proof. The proof is trivial and follows from the fact that if S and T are (2,2)-metrically equivalent, then we have

$$S^{*2}S^2 = T^{*2}T^2 \tag{3}$$

since S and T are quasi-isometries; we have $S^*S = S^{*2}S^2$ and $T^*T = T^{*2}T^2$, hence (3) gives us $S^*S = T^*T$. **Theorem 2.8.** If S and T are (3,3)-metrically equivalent operators and S is (2,3)-quasinormal, then T is (2,3)-quasinormal.

Proof.

$$(S^{3})^{*}S^{3} = U(T^{3})^{*}T^{3}U^{*}$$

= $(S^{3})^{*}SS^{2}$
= $S^{2}(S^{3})^{*}S$
= $U(T^{3})^{*}T^{3}U^{*}$
= $(T^{3})^{*}T^{3}$
= $(T^{3*})TT^{2}$
= $T^{2}T^{3*}T$
= $T^{3*}TT^{2}$

Remark 2.9. In the following proposition, we provide a condition under which (2,1)-metrically equivalent operators implies metric equivalence relation.

Proposition 2.10. If S and T are (2,1)-metrically equivalent operators, then they are metrically equivalent provided they are idempotent.

Proof. Since S and T are (2,1)-metrically equivalent, we have $S^*S^2 = T^*T^2$, since S and T are idempotent we have $S^2 = S$ and $T^2 = T$, this implies $S^*S^2 = T^*T^2 \Leftrightarrow S^*S = T^*T$ as required.

References

- Eiman H. Abood and Mustafa A. Al-loz, On some generalizations of (n,m)-normal powers operators on Hilbert space, Journal of Progressive Research in Mathematics, 7(3)(2016), 1063-1070.
- [2] A. A. Jibril, On n-power normal operators, The Arabian Journal for Science and Engineering, 33(2008), 247-251.
- [3] B. M. Nzimbi, G. P. Pokhariyal and S. K. Moindi, A Note on Metric Equivalence of some Operators, Far East J.F Math. Sci. (FJMS), 75(2013), 301-318.
- [4] S. A. Alzuraiqi and A. B. Patel, On n-Normal Operators, General mathematics Notes, 1(2)(2010), 61-73.
- [5] Wanjala Victor, R. K. Obogi and M. O. Okoya, On N-Metric equivalence of Operators, International Journal of Mathematics And its Applications, 8(1)(2020), 107-109.