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1. Introduction

Prime ideals play a central role in commutative ring theory. In the literature, we find that there are several ways to generalize

the notions of a prime ideal and a primary ideal of a commutative ring R with unity. A prime ideal P of R is an ideal with

the property that for all a, b ∈ R, ab ∈ P implies either a ∈ P or b ∈ P . We can either restrict or enlarge where a and/or

b lie or restrict or enlarge where ab lies. Same can be thought for primary ideals too. As a generalization of prime ideals

of R, φ-prime ideals were introduced in [2] and [6] while as a generalization of primary ideals of R, φ-primary ideals were

introduced in [4]. In an attempt to unify the prime and primary ideals of R under one frame, δ-primary ideals of R were

introduced in [12]. Further, the concept of δ-primary ideals of R was generalized by introducing the notion of φ-δ-primary

ideals of R in [7].

As an extension of these concepts of a commutative ring R to a multiplicative lattice L, C. S. Manjarekar and A. V. Bingi

introduced δ-primary elements of L in [8] and introduced φ-prime, φ-primary elements of L in [9]. In this paper, we

introduce and study, φ-δ-primary elements of L as a generalization of δ-primary elements of L and unify φ-prime and

φ-primary elements of L under one frame.

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in

which the largest element 1 acts as a multiplicative identity. An element e ∈ L is called meet principal if a∧be = ((a : e)∧b)e

for all a, b ∈ L. An element e ∈ L is called join principal if (ae∨b) : e = (b : e)∨a for all a, b ∈ L. An element e ∈ L is called

principal if e is both meet principal and join principal. A multiplicative lattice L is said to be principally generated(PG) if

every element of L is a join of principal elements of L. An element a ∈ L is called compact if for X ⊆ L, a 6 ∨X implies

∗ E-mail: ashok.bingi@xaviers.edu

69

http://ijmaa.in/


On Generalization of δ-Primary Elements in Multiplicative Lattices

the existence of a finite number of elements a1, a2, · · ·, an in X such that a 6 a1 ∨ a2 ∨ · · · ∨ an. The set of compact elements

of L will be denoted by L∗. If each element of L is a join of compact elements of L, then L is called a compactly generated

lattice or simply a CG-lattice.

An element a ∈ L is said to be proper if a < 1. The radical of a ∈ L is denoted by
√
a and is defined as ∨{x ∈ L∗ | xn 6 a,

for some n ∈ Z+}. A proper element m ∈ L is said to be maximal if for every element x ∈ L such that m < x 6 1

implies x = 1. A proper element p ∈ L is called a prime element if ab 6 p implies a 6 p or b 6 p where a, b ∈ L and is

called a primary element if ab 6 p implies a 6 p or b 6
√
p where a, b ∈ L∗. For a, b ∈ L, (a : b) = ∨{x ∈ L | xb 6 a}.

A multiplicative lattice is called as a Noether lattice if it is modular, principally generated and satisfies ascending chain

condition. An element a ∈ L is called a zero divisor if ab = 0 for some 0 6= b ∈ L and is called idempotent if a = a2. A

multiplicative lattice is said to be a domain if it is without zero divisors and is said to be quasi-local if it contains a unique

maximal element. A quasi-local multiplicative lattice L with maximal element m is denoted by (L, m). A Noether lattice

L is local if it contains precisely one maximal prime. In a Noether lattice L, an element a ∈ L is said to satisfy restricted

cancellation law if for all b, c ∈ L, ab = ac 6= 0 implies b = c (see [11]). According to [8], an expansion function on L is a

function δ : L −→ L which satisfies the following two conditions: 1O. a 6 δ(a) for all a ∈ L, 2O. a 6 b implies δ(a) 6 δ(b)

for all a, b ∈ L and a proper element p ∈ L is called δ-primary if for all a, b ∈ L, ab 6 p implies either a 6 p or b 6 δ(p).

According to [9], a proper element p ∈ L is said to be φ-prime if for all a, b ∈ L, ab 6 p and ab 
 φ(p) implies either a 6 p

or b 6 p and a proper element p ∈ L is said to be φ-primary if for all a, b ∈ L, ab 6 p and ab 
 φ(p) implies either a 6 p or

b 6
√
p where φ : L −→ L is a function on L. The reader is referred to [1] and [5] for general background and terminology

in multiplicative lattices.

This paper is motivated by [7]. In this paper, we define a φ-δ-primary element in L and obtain their characterizations.

Various φα-δ-primary elements of L are introduced and relations among them are obtained. By counter examples, it is

shown that a φ-δ-primary element of L need not be φ-prime, a φ-δ-primary element of L need not be prime and a φ-

δ-primary element of L need not be δ-primary. In 7 different ways, we have proved that a φ-δ-primary element of L is

δ-primary under certain conditions. We define a 2-potent δ-primary element of L and a n-potent δ-primary element of L.

We investigate some properties of φ-δ-primary elements of L with respect to lattice homomorphism and global property.

Finally, we show that every idempotent element of L is φ2-δ-primary but converse need not be true. Throughout this paper,

1O. L denotes a compactly generated multiplicative lattice with greatest compact element 1 in which every finite product

of compact elements is compact, 2O. δ denotes an expansion function on L and 3O. φ denotes a function defined on L.

2. φ-δ-primary Elements of L

We begin with introducing the notion of φ-δ-primary elements of L which is the generalization of the concept of δ-primary

elements of L.

Definition 2.1. Given an expansion function δ : L −→ L and a function φ : L −→ L, a proper element p ∈ L is said to be

φ-δ-primary if for all a, b ∈ L, ab 6 p and ab 
 φ(p) implies either a 6 p or b 6 δ(p).

If φα : L −→ L is a function on L, then φα-δ-primary elements of L are defined by following settings in the Definition 2.1

of a φ-δ-primary element of L.

� φ0(p) = 0. Then p ∈ L is called a weakly δ-primary element.

� φ2(p) = p2. Then p ∈ L is called a 2-almost δ-primary element or a φ2-δ-primary element or simply an almost

δ-primary element.
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� φn(p) = pn (n ≥ 2). Then p ∈ L is called an n-almost δ-primary element or a φn-δ-primary element (n ≥ 2).

� φω(p) =
∧∞
i=1 p

n. Then p ∈ L is called a ω-δ-primary element or φω-δ-primary element.

Since for an element a ∈ L with a 6 q but a 
 φ(q) implies that a 
 q ∧ φ(q), there is no loss generality in assuming that

φ(q) 6 q. We henceforth make this assumption.

Definition 2.2. Given any two functions γ1, γ2 : L −→ L, we define γ1 6 γ2 if γ1(a) 6 γ2(a) for each a ∈ L.

Clearly, we have the following order:

φ0 6 φω 6 · · · 6 φn+1 6 φn 6 · · · 6 φ2

Further as φ(p) 6 p and p 6 δ(p) for each p ∈ L, the relation between the functions δ and φ is φ 6 δ.

According to [8], δ0 is an expansion function on L defined as δ0(p) = p for each p ∈ L and δ1 is an expansion function on L

defined as δ1(p) =
√
p for each p ∈ L. Further, note that by Theorem 2.2 in [8], a proper element p ∈ L is δ0-primary if and

only if it is prime and by Theorem 2.3 in [8], a proper element p ∈ L is δ1-primary if and only if it is primary.

The following 2 results relate φ-prime and φ-primary elements of L with some φ-δ-primary elements of L.

Theorem 2.3. A proper element p ∈ L is φ-δ0-primary if and only if p is φ-prime.

Proof. The proof is obvious.

Theorem 2.4. A proper element p ∈ L is φ-δ1-primary if and only if p is φ-primary.

Proof. The proof is obvious.

Theorem 2.5. Let δ, γ : L −→ L be expansion functions on L such that δ 6 γ. Then every φ-δ-primary element of L is

φ-γ-primary. In particular, a φ-prime element of L is φ-δ-primary for every expansion function δ on L.

Proof. Let a proper element p ∈ L be φ-δ-primary. Suppose ab 6 p and ab 
 φ(p) for a, b ∈ L. Then either a 6 p or

b 6 δ(p) 6 γ(p) and so p is φ-γ-primary. Next, for any expansion function δ on L, we have δ0 6 δ. So a φ-δ0-primary

element of L is φ-δ-primary and we are done since a φ-prime element of L is φ-δ0-primary.

Corollary 2.6. A prime element of L is φ-δ-primary for every expansion function δ on L.

Proof. The proof follows by using Theorem 2.5 to the fact that every prime element of L is φ-prime.

The following example shows that (by taking φ as φ2 and δ as δ1 for convenience)

1O. a φ-δ-primary element of L need not be φ-prime,

2O. a φ-δ-primary element of L need not be prime.

Example 2.7. Consider the lattice L of ideals of the ring R =< Z24 , + , · >. Then the only ideals of R are the principal

ideals (0),(2),(3),(4),(6),(8),(12),(1). Clearly, L = {(0),(2),(3),(4),(6),(8),(12),(1)} is a compactly generated multiplicative

lattice. Its lattice structure and multiplication table is as shown in Figure 1. It is easy to see that the element (4) ∈ L is

φ2-δ1-primary while (4) is not φ2-prime because though (2) · (6) ⊆ (4), (2) · (6) * (4)2 but (2) * (4) and (6) * (4). Also, (4)

is not prime.

71



On Generalization of δ-Primary Elements in Multiplicative Lattices

Figure 1.

Now before obtaining the characterizations of a φ-δ-primary element of L, we state the following essential lemma which is

outcome of Lemma 2.3.13 from [3].

Lemma 2.8. Let a1, a2 ∈ L. Suppose b ∈ L satisfies the following property:

(∗). If h ∈ L∗ with h 6 b, then either h 6 a1 or h 6 a2.

Then either b 6 a1 or b 6 a2.

Theorem 2.9. Let q be a proper element of L. Then the following statements are equivalent:

1O. q is φ-δ-primary.

2O. for every a ∈ L such that a 
 δ(q), either (q : a) = q or (q : a) = (φ(q) : a).

3O. for every r, s ∈ L∗, rs 6 q and rs 
 φ(q) implies either s 6 q or r 6 δ(q).

Proof. 1O=⇒ 2O. Suppose 1O holds. Let h ∈ L∗ be such that h 6 (q : a) and a 
 δ(q). Then ah 6 q. If ah 6 φ(q), then

h 6 (φ(q) : a). If ah 
 φ(q), then since q is φ-δ-primary and a 
 δ(q), it follows that h 6 q. Hence by Lemma 2.8, either

(q : a) 6 (φ(q) : a) or (q : a) 6 q. Consequently, either (q : a) = (φ(q) : a) or (q : a) = q.

2O=⇒ 3O. Suppose 2O holds. Let rs 6 q, rs 
 φ(q) and r 
 δ(q) for r, s ∈ L∗. Then by 2O, either (q : r) = (φ(q) : r) or

(q : r) = q. If (q : r) = (φ(q) : r), then as s 6 (q : r), it follows that s 6 (φ(q) : r) which contradicts rs 
 φ(q) and so we

must have (q : r) = q. Therefore s 6 (q : r) gives s 6 q.

3O=⇒ 1O. Suppose 3O holds. Let ab 6 q, ab 
 φ(q) and a 
 δ(q) for a, b ∈ L. Then as L is compactly generated, there

exist x, x′, y′ ∈ L∗ such that x 6 a, x′ 6 a, y′ 6 b, x 
 δ(q) and x′y′ 
 φ(q). Let y 6 b be any compact element of L.

Then (x ∨ x′), (y ∨ y′) ∈ L∗ such that (x ∨ x′)(y ∨ y′) 6 q, (x ∨ x′)(y ∨ y′) 
 φ(q) and (x ∨ x′) 
 δ(q). So by 3O, it follows

that (y ∨ y′) 6 q which implies b 6 q and therefore q is φ-δ-primary.

Theorem 2.10. A proper element q ∈ L is φ-δ-primary if and only if for every a ∈ L such that a 
 q either (q : a) 6 δ(q)

or (q : a) = (φ(q) : a).

Proof. Assume that a proper element q ∈ L is φ-δ-primary. Let h ∈ L∗ be such that h 6 (q : a) and a 
 q. Then ah 6 q.

If ah 6 φ(q), then h 6 (φ(q) : a). If ah 
 φ(q), then since q is φ-δ-primary and a 
 q, it follows that h 6 δ(q). Hence

by Lemma 2.8, either (q : a) 6 (φ(q) : a) or (q : a) 6 δ(q). But as (φ(q) : a) 6 (q : a) we have either (q : a) 6 δ(q) or

(q : a) = (φ(q) : a). Conversely, assume that for every a ∈ L such that a 
 q, either (q : a) 6 δ(q) or (q : a) = (φ(q) : a).

Let rs 6 q, rs 
 φ(q) and r 
 q for r, s ∈ L. Then either (q : r) = (φ(q) : r) or (q : r) 6 δ(q). If (q : r) = (φ(q) : r),

then as s 6 (q : r), it follows that s 6 (φ(q) : r) which contradicts rs 
 φ(q) and so we must have (q : r) 6 δ(q). Therefore

s 6 (q : r) gives s 6 δ(q). Hence q is φ-δ-primary.
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Theorem 2.11. Let (L, m) be a quasi-local Noether lattice. If a proper element p ∈ L is such that p2 = m2 6 p 6 m, then

p is φ2-δ1-primary.

Proof. Let xy 6 p and xy 
 φ2(p) for x, y ∈ L. If x 
 m, then x = 1. So xy 6 p gives y 6 p. Similarly, y 
 m gives

x 6 p. Now if x 6 m, then x2 6 m2 = p2 6 p and hence x 6 δ1(p). Similarly, y 6 m gives y 6 δ1(p). Hence in any case, p

is φ2-δ1 primary.

To obtain the relation among φα-δ-primary elements of L, we prove the following lemma.

Lemma 2.12. Let γ1, γ2 : L −→ L be functions such that γ1 6 γ2 and δ be an expansion function on L. Then every proper

γ1-δ-primary element of L is γ2-δ-primary.

Proof. Let a proper element p ∈ L be γ1-δ-primary. Suppose ab 6 p and ab 
 γ2(p) for a, b ∈ L. Then as γ1 6 γ2, we

have ab 6 p and ab 
 γ1(p). Since p is γ1-δ-primary, it follows that either a 6 p or b 6 δ(p) and hence p is γ2-δ-primary.

Theorem 2.13. For a proper element p of L, consider the following statements:

(a). p is a δ-primary element of L.

(b). p is a φ0-δ-primary element of L.

(c). p is a φω-δ-primary element of L.

(d). p is a φ(n+1)-δ-primary element of L.

(e). p is a φn-δ-primary element of L where n > 2.

(f). p is a φ2-δ-primary element of L.

Then (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ (f).

Proof. Obviously, every δ-primary element of L is weakly δ-primary and hence (a) =⇒ (b). The remaining implications

follow by using Lemma 2.12 to the fact that φ0 6 φω 6 · · · 6 φn+1 6 φn 6 · · · 6 φ2

Corollary 2.14. Let p ∈ L be a proper element. Then p is φω-δ-primary if and only if p is φn-δ-primary for every n > 2.

Proof. Assume that p ∈ L is φn-δ-primary for every n > 2. Let ab 6 p and ab 

∧∞
n=1 p

n for a, b ∈ L. Then ab 6 p

and ab 
 pn for some n > 2. Since p is φn-δ-primary, we have either a 6 p or b 6 δ(p) and hence p is φω-δ-primary. The

converse follows from Theorem 2.13.

Now we show that under a certain condition, a φn-δ-primary element of L (n > 2) is δ-primary.

Theorem 2.15. Let L be a local Noetherian domain. A proper element p ∈ L is φn-δ-primary for every n > 2 if and only

if p is δ-primary.

Proof. Assume that a proper element p ∈ L is φn-δ-primary for every n > 2. Let ab 6 p for a, b ∈ L. If ab 
 φn(p)

for n > 2, then as p ∈ L is φn-δ-primary, we have a 6 p or b 6 δ(q). If ab 6 φn(p) = pn for all n > 1, then as L is local

Noetherian, by Corollary 3.3 of [5], it follows that ab 6
∧∞
n=1 p

n = 0 and so ab = 0. Since L is domain, we have either a = 0

or b = 0 which implies either a 6 p or b 6 δ(q) and hence p is δ-primary. Converse follows from Theorem 2.13.

Corollary 2.16. Let L be a local Noetherian domain. A proper element p ∈ L is φω-δ-primary if and only if p is δ-primary.

73



On Generalization of δ-Primary Elements in Multiplicative Lattices

Proof. The proof follows from Theorem 2.15 and Corollary 2.14.

Clearly, every δ-primary element of L is φ-δ-primary. The following example shows that its converse need not be true (by

taking φ as φ2 and δ as δ1 for convenience).

Example 2.17. Consider the lattice L of ideals of the ring R =< Z30 , + , · >. Then the only ideals of R are the

principal ideals (0),(2),(3),(5),(6),(10),(15),(1). Clearly L = {(0),(2),(3),(5),(6),(10),(15),(1)} is a compactly generated

multiplicative lattice. Its lattice structure and multiplication table is as shown in Figure 2. It is easy to see that the element

(6) ∈ L is φ2-δ1-primary but not δ1-primary.

Figure 2.

In the following successive seven theorems, we show conditions under which a φ-δ-primary element of L is δ-primary.

Theorem 2.18. Let L be a Noether lattice. Let 0 6= q ∈ L be a non-nilpotent proper element satisfying the restricted

cancellation law. Then q is φ-δ-primary for some φ 6 φ2 if and only if q is δ-primary.

Proof. Assume that q ∈ L is a δ-primary element. Then obviously, q is φ-δ-primary for every φ and hence for some φ 6 φ2.

Conversely, let q ∈ L be φ-δ-primary for some φ 6 φ2. Then by Lemma 2.12, q ∈ L is φ2-δ-primary (almost δ-primary). Let

xy 6 q for x, y ∈ L. If xy 
 φ2(q), then as q is φ2-δ-primary, we have either x 6 q or y 6 δ(q). If xy 6 φ2(q) = q2, consider

(x∨ q)y = xy ∨ qy 6 q. If (x∨ q)y 
 φ2(q), then as q is φ2-δ-primary, we have either x 6 (x∨ q) 6 q or y 6 δ(q). So assume

that (x ∨ q)y 6 φ2(q). Then qy 6 q2 6= 0 which implies y 6 q 6 δ(q) by Lemma 1.11 of [11]. Hence q is δ-primary.

Corollary 2.19. Every non-zero and non-nilpotent φ2-δ-primary element of a Noether lattice L satisfying the restricted

cancellation law is δ-primary.

Proof. The proof follows from proof of the Theorem 2.18.

The following result is general form of Theorem 2.18.

Theorem 2.20. Let L be a Noether lattice. Let 0 6= q ∈ L be a non-nilpotent proper element satisfying the restricted

cancellation law. Then q is φ-δ-primary for some φ 6 φn and for all n > 2 if and only if q is δ-primary.

Proof. Assume that q ∈ L is a δ-primary element. Then obviously, q is φ-δ-primary for every φ and hence for some

φ 6 φn, for all n > 2. Conversely, let q ∈ L be φ-δ-primary for some φ 6 φn and for all n > 2. Then by Lemma 2.12,
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q ∈ L is φn-δ-primary (n-almost δ-primary) and for all n > 2. Let xy 6 q for x, y ∈ L. If xy 
 φn(q) for some n > 2, then

as q is φn-δ-primary, we have either x 6 q or y 6 δ(q) and we are done. So let xy 6 φn(q) = qn for all n > 2. Consider

(x∨ q)y = xy ∨ qy 6 q. If (x∨ q)y 
 φn(q), then as q is φn-δ-primary, we have either x 6 (x∨ q) 6 q or y 6 δ(q). So assume

that (x ∨ q)y 6 φn(q). Then qy 6 qn 6 q2 6= 0 as n > 2. This implies y 6 q 6 δ(q) by Lemma 1.11 of [11]. Hence q is

δ-primary.

Corollary 2.21. Every non-zero and non-nilpotent φn-δ-primary element (∀ n > 2) of a Noether lattice L satisfying the

restricted cancellation law is δ-primary.

Proof. The proof follows from proof of the Theorem 2.20.

Definition 2.22. A proper element p ∈ L is said to be 2-potent δ-primary if for all a, b ∈ L, ab 6 p2 implies either

a 6 p or b 6 δ(p).

Obviously, every 2-potent δ0-primary element of L is 2-potent prime and vice versa. Also, every 2-potent δ0-primary element

of L is 2-potent δ-primary.

Theorem 2.23. Let a proper element q ∈ L be 2-potent δ-primary. Then q is φ-δ-primary for some φ 6 φ2 if and only if

q is δ-primary.

Proof. Assume that q ∈ L is a δ-primary element. Then obviously, q is φ-δ-primary for every φ and hence for some φ 6 φ2.

Conversely, let q ∈ L be φ-δ-primary for some φ 6 φ2. Then by Lemma 2.12, q ∈ L is φ2-δ-primary (almost δ-primary). Let

xy 6 q for x, y ∈ L. If xy 
 φ2(q), then as q is φ2-δ-primary, we have either x 6 q or y 6 δ(q). If xy 6 φ2(q) = q2, then as

q is 2-potent δ-primary, we have either x 6 q or y 6 δ(q). Hence q is δ-primary.

Corollary 2.24. Every φ2-δ-primary element of L which is 2-potent δ-primary is δ-primary.

Proof. The proof follows from proof of the Theorem 2.23.

Theorem 2.25. Let a proper element q ∈ L be 2-potent δ0-primary. Then q is φ-δ-primary for some φ 6 φ2 if and only if

q is δ-primary.

Proof. The proof follows by using Theorem 2.23 to the fact that every 2-potent δ0-primary element of L is 2-potent

δ-primary.

Corollary 2.26. Every φ2-δ-primary element of L which is 2-potent δ0-primary is δ-primary.

Definition 2.27. Let n > 2. A proper element p ∈ L is said to be n-potent δ-primary if for all a, b ∈ L, ab 6 pn implies

either a 6 p or b 6 δ(p).

Obviously, every n-potent δ0-primary element of L is n-potent δ-primary.

The following result is general form of Theorem 2.23.

Theorem 2.28. A proper element q ∈ L is φ-δ-primary for some φ 6 φn where n > 2 if and only if q is δ-primary, provided

q is k-potent δ-primary for some k 6 n.

Proof. Assume that q ∈ L is a δ-primary element. Then obviously, q is φ-δ-primary for every φ and hence for some

φ 6 φn where n > 2. Conversely, let q ∈ L be φ-δ-primary for some φ 6 φn where n > 2. Then by Lemma 2.12, q ∈ L is

φn-δ-primary (n-almost δ-primary). Let xy 6 q for x, y ∈ L. If xy 
 φk(q) = qk, then xy 
 φn(q) = qn as k 6 n. Since q is

φn-δ-primary, we have either x 6 q or y 6 δ(q). If xy 6 φk(q) = qk, then as q is k-potent δ-primary, we have either x 6 q

or y 6 δ(q). Hence q is δ-primary.
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Corollary 2.29. Every φn-δ-primary element of L which is k-potent δ-primary is δ-primary where k 6 n.

Theorem 2.30. Let a proper element q ∈ L be φ-δ-primary. If q2 
 φ(q), then q is δ-primary.

Proof. Let ab 6 q for a, b ∈ L. If ab 
 φ(q), then as q is φ-δ-primary, we have either a 6 q or b 6 δ(q). So assume that

ab 6 φ(q). First suppose aq 
 φ(q). Then ad 
 φ(q) for some d 6 q in L. Also a(b ∨ d) = ab ∨ ad 6 q and a(b ∨ d) 
 φ(q).

As q is φ-δ-primary, either a 6 q or (b ∨ d) 6 δ(q). Hence either a 6 q or b 6 δ(q). Similarly, if bq 
 φ(q), we can show

that either a 6 q or b 6 δ(q). So we can assume that aq 6 φ(q) and bq 6 φ(q). Since q2 
 φ(q), there exist r, s 6 q in L

such that rs 
 φ(q). Then (a ∨ r)(b ∨ s) 6 q but (a ∨ r)(b ∨ s) 
 φ(q). As q is φ-δ-primary, we have either (a ∨ r) 6 q or

(b ∨ s) 6 δ(q). Therefore either a 6 q or b 6 δ(q) and hence q is δ-primary.

From the Theorem 2.30, it follows that,

� if a proper element q ∈ L is φ-δ-primary but not δ-primary, then q2 6 φ(q),

� a φ-δ-primary element q < 1 of L with q2 
 φ(q) is δ-primary.

Clearly, given an expansion function δ on L, δ(p) 6 δ(δ(p)) for each p ∈ L. Moreover, for each p ∈ L, δ1(δ1(p)) = δ1(p), by

property (p3) of radicals in [10]. Also, obviously δ0(δ0(p)) = δ0(p) for each p ∈ L.

Now we present the consequences of the Theorem 2.30 in the form of following corollaries.

Corollary 2.31. If a proper element q ∈ L is φ-δ-primary but not δ-primary, then δ1(q) = δ1(φ(q)).

Proof. By Theorem 2.30, we have q2 6 φ(q). So q 6 δ1(φ(q)) which gives δ1(q) 6 δ1(δ1(φ(q))) = δ1(φ(q)). Since φ(q) 6 q,

we have δ1(φ(q)) 6 δ1(q). Hence δ1(q) = δ1(φ(q)).

Corollary 2.32. If a proper element q ∈ L is φ-δ-primary where φ 6 φ3, then q is φn-δ-primary for every n > 2.

Proof. If q is δ-primary, then by Theorem 2.13, q is φω-δ-primary. So assume that q is not δ-primary. Then by Theorem

2.30 and by hypothesis, we get q2 6 φ(q) 6 q3. Hence φ(q) = qn for every n > 2. Consequently, q is φn-δ-primary for every

n > 2.

Corollary 2.33. If a proper element q ∈ L is φ-δ-primary where φ 6 φ3, then q is φω-δ-primary.

Proof. The proof follows from Corollary 2.32 and Corollary 2.14.

Corollary 2.34. If a proper element q ∈ L is φ0-δ-primary but not δ-primary, then q2 = 0.

Proof. The proof is obvious.

Theorem 2.35. Let q be a φ-δ-primary element of L. If φ(q) is a δ-primary element of L, then q is δ-primary.

Proof. Let ab 6 q for a, b ∈ L. If ab 
 φ(q), then as q is φ-δ-primary, we have either a 6 q or b 6 δ(q) and we are done.

Now if ab 6 φ(q), then as φ(q) is δ-primary, we have either a 6 φ(q) or b 6 δ(φ(q)). This implies that either a 6 q or

b 6 δ(q) because φ(q) 6 q and δ(φ(q)) 6 δ(q).

The next result shows that the join of a family of ascending chain of φ-δ-primary elements of L is again φ-δ-primary.

Theorem 2.36. Let {pi | i ∈ 4} be a chain of φ-δ-primary elements of L and let the function φ be such that x 6 y imply

φ(x) 6 φ(y) for all x, y ∈ L. Then the element p = ∨
i∈4

pi is also φ-δ-primary.
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Proof. Since 1 ∈ L is compact, ∨
i∈4

pi = p 6= 1. Let ab 6 p, ab 
 φ(p) and a 
 p for a, b ∈ L. Then as {pi | i ∈ 4} is a

chain, we have ab 6 pi for some i ∈ 4 but a 
 pi and ab 
 φ(pi) because for each k ∈ 4, we have pk 6 p and this implies

φ(pk) 6 φ(p). As each pi is φ-δ-primary, it follows that b 6 δ(pi). Since pi 6 p, we have δ(pi) 6 δ(p) and so b 6 δ(p). Hence

p is φ-δ-primary.

The following theorem shows that a under certain condition, (p : q) ∈ L is φ-δ-primary if p ∈ L is φ-δ-primary element

where q ∈ L.

Theorem 2.37. Let a proper element p ∈ L be φ-δ-primary. Then (p : q) is φ-δ-primary for all q ∈ L if (φ(p) : q) 6 φ(p : q).

Proof. Clearly, pq 6 p implies p 6 (p : q) and so δ(p) 6 δ(p : q). Now let ab 6 (p : q), ab 
 φ(p : q) and a 
 (p : q) for

a, b ∈ L. Then abq 6 p, abq 
 φ(p) and aq 
 p since ab 
 (φ(p) : q). Now as p is φ-δ-primary, we have b 6 δ(p) 6 δ(p : q)

and hence (p : q) is φ-δ-primary.

In the next result, we show that under a certain condition δ1(p) 6 δ(p), for every φ-δ-primary p ∈ L.

Theorem 2.38. If a proper element p ∈ L is φ-δ-primary element such that δ1(φ(p)) 6 δ(p), then δ1(p) 6 δ(p).

Proof. Assume that a proper element p ∈ L is φ-δ-primary. For a ∈ L, let a 6 δ1(p) =
√
p. Then there exists a least

positive integer k such that ak 6 p. If k = 1, then a 6 p 6 δ(p). Now let k > 1. If ak 6 φ(p), then a 6 δ1(φ(p)) 6 δ(p). So

let ak 
 φ(p). Clearly, ak−1a 6 p where ak−1 
 p. As p ∈ L is φ-δ-primary, it follows that a 6 δ(p). Thus in any case, we

have δ1(p) 6 δ(p).

Note that, if p ∈ L is δ-primary, then by consequence of Theorem 2.5 of [8], we have φ(p) 6 p implies δ1(φ(p)) 6 δ1(p) 6 δ(p)

and hence δ1(φ(p)) 6 δ(p).

Corollary 2.39. If a proper element p ∈ L is φ-δ-primary element such that δ1(φ(p)) 6 δ(p) with δ(p) 6 δ1(p), then

δ1(p) = δ(p).

Proof. The proof follows from Theorem 2.38.

According to [8], an expansion function δ on L1 and on L2 is said to have global property if for any lattice isomorphism

f : L1 −→ L2, δ(f−1(a)) = f−1(δ(a)) for all a ∈ L2 where L1 and L2 are multiplicative lattices. Similarly, now we define

global property of a function φ on multiplicative lattices.

Definition 2.40. Let L1 and L2 be multiplicative lattices. A function φ on L1 and on L2 is said to have global property

if for any lattice isomorphism f : L1 −→ L2, φ(f−1(a)) = f−1(φ(a)) for all a ∈ L2.

Lemma 2.41. Let the function β on L1 and on L2 have the global property where L1 and L2 are multiplicative lattices. If

the function g : L1 −→ L2 is a lattice isomorphism, then g(β(q)) = β(g(q)) for all q ∈ L1.

Proof. For q ∈ L1, the global property of β gives β(q) = β(g−1(g(q))) = g−1(β(g(q))). Then since g is onto, we have

g(β(q)) = β(g(q)).

The next result shows that if q ∈ L is φ-δ-primary with some conditions on δ and φ, then δ(q) ∈ L is φ-prime.

Theorem 2.42. Let the expansion function δ on L be a lattice isomorphism. Let the function φ on L have the global

property. If a proper element q ∈ L is φ-δ-primary and satisfies δ(δ(q)) 6 δ(q), then δ(q) is a φ-prime element of L.
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Proof. By Lemma 2.41, we have δ(φ(q)) = φ(δ(q)). Let xy 6 δ(q), xy 
 φ(δ(q)) = δ(φ(q)) and x 
 δ(q) for x, y ∈ L. So

δ−1(x) · δ−1(y) = δ−1(xy) 6 q, δ−1(x) · δ−1(y) = δ−1(xy) 
 φ(q) and δ−1(x) 6 q. As q is φ-δ-primary, we have δ−1(y) 6 δ(q)

which implies y 6 δ(δ(q)) 6 δ(q) and hence δ(q) is a φ-prime element of L.

Note that, in the Theorem 2.42, the idea behind taking the expansion function δ on L as a lattice isomorphism and the

function φ on L with the global property is to get δ(φ(q)) = φ(δ(q)). The following theorem is a similar version of Theorem

2.42.

Theorem 2.43. If a proper element q ∈ L is φ-δ1-primary such that δ1(φ(q)) = φ(δ1(q)), then δ1(q) is a φ-prime element

of L.

Proof. Assume that ab 6 δ1(q), ab 
 φ(δ1(q)) and a 
 δ1(q) for a, b ∈ L. Then there exists n ∈ Z+ such that

an · bn = (ab)n 6 q. If (ab)n 6 φ(q), then by hypothesis ab 6 δ1(φ(q)) = φ(δ1(q)), a contradiction. So we must have

an ·bn = (ab)n 
 φ(q). Since q is φ-δ1-primary and an 
 q for all n ∈ Z+, we have bn 6 δ1(q) and hence b 6 δ1(δ1(q)) = δ1(q).

This shows that δ1(q) is a φ-prime element of L.

Lemma 2.44. Let the expansion function δ on L1 and on L2 have the global property where L1 and L2 are multiplicative

lattices. Let the function φ on L1 and on L2 have the global property. If f : L1 −→ L2 is a lattice isomorphism, then for

any φ-δ-primary element p ∈ L2, f−1(p) ∈ L1 is φ-δ-primary.

Proof. Assume that a proper element p ∈ L2 is φ-δ-primary. Let ab 6 f−1(p), ab 
 φ(f−1(p)) = f−1(φ(p)) and a 
 f−1(p)

for a, b ∈ L1. Then f(ab) = f(a)·f(b) 6 p, f(ab) = f(a)·f(b) 
 φ(p) and f(a) 
 p. As p is φ-δ-primary, we have f(b) 6 δ(p).

Now the global property of δ gives b 6 f−1(δ(p)) = δ(f−1(p)) showing that f−1(p) ∈ L1 is φ-δ-primary.

The following result gives another characterization of φ-δ-primary elements of L.

Theorem 2.45. Let the expansion function δ on L1 and on L2 have the global property where L1 and L2 are multiplicative

lattices. Let the function φ on L1 and on L2 have the global property. Let f : L1 −→ L2 be a lattice isomorphism. Then a

proper element a ∈ L1 is φ-δ-primary if and only if f(a) ∈ L2 is φ-δ-primary.

Proof. Assume that a proper element a ∈ L1 is φ-δ-primary. Clearly, by Lemma 2.41, the global property of δ gives

f(δ(a)) = δ(f(a)). Also, by Lemma 2.41, the global property of φ gives f(φ(a)) = φ(f(a)). Now, let xy 6 f(a), xy 
 φ(f(a))

and x 
 f(a) for x, y ∈ L2. Then there exists b, c ∈ L1 such that f(b) = x, f(c) = y. So f(bc) = f(b) · f(c) = xy 6 f(a),

f(bc) = f(b) · f(c) = xy 
 φ(f(a)) = f(φ(a)) and f(b) = x 
 f(a). As a is φ-δ-primary in L1, bc 6 a, bc 
 φ(a) and b 
 a,

we have c 6 δ(a). So y = f(c) 6 f(δ(a)) and hence y 6 δ(f(a)) showing that f(a) ∈ L2 is φ-δ-primary. The converse follows

from Lemma 2.44.

Now we relate idempotent element of L with φn-δ-primary element (n > 2) of L.

Theorem 2.46. Every idempotent element of L is φω-δ-primary and hence φn-δ-primary (n > 2).

Proof. Let p be an idempotent element of L. Then p = pn for all n ∈ Z+. So φω(p) = p. Therefore p is a φω-δ-primary

of L. Hence p is a φn-δ-primary element (n > 2) of L by Theorem 2.13.

As a consequence of Theorem 2.46, we have following result whose proof is obvious.

Corollary 2.47. Every idempotent element of L is φ2-δ-primary.
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However, a φ2-δ-primary element of L need not be idempotent as shown in the following example (by taking δ as δ1 for

convenience).

Example 2.48. Consider the lattice L of ideals of the ring R =< Z8 , + , · >. Then the only ideals of R are the principal

ideals (0),(2),(4),(1). Clearly, L = {(0), (2), (4), (1)} is a compactly generated multiplicative lattice. Its lattice structure and

multiplication table is as shown in Figure 3. It is easy to see that the element (4) ∈ L is φ2-δ1-primary but not idempotent.

Figure 3.

We conclude this paper with the following examples, from which it is clear that,

1O a φ2-δ1-primary element of L need not be 2-potent δ0-primary,

2O a 2-potent δ0-primary element of L which is φ2-δ1-primary need not be prime.

Example 2.49. Consider L as in Example 2.17. Here the element (6) ∈ L is φ2-δ1-primary but not 2-potent δ0-primary.

Example 2.50. Consider L as in Example 2.48. Here the element (4) ∈ L is 2-potent δ0-primary, φ2-δ1-primary but not

prime.
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