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1. Introduction

A metric space is just a non empty set X associated with a function d of two variables enabling us to measure the distance

between points. In advanced mathematics, we need to find the distance not only two between numbers and vectors, but also

between more complicated objects like sequences, sets and functions. In order to find an appropriate concept of a metric

space, numerous approaches exists in this sphere. Thus, new notations of distance lead to new notations of convergence and

continuity. A numbers of generalization of a metric space have been discussed by many eminent mathematicians.

The concept of fuzzy sets was introduced initially by Zadesh [10] in 1965. Since then, by using this concept in topology

and analysis many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [2]

and Karmosil and Michalek [4] have introduced the concept of fuzzy topological space induced by fuzzy metric which have

very important applications in quantum particle physics. many authors [3, 5, 7, 8] have proved fixed point theorem in fuzzy

metric spaces. As there is a generalization in generalised metric space or D-metric space initiated by Dhage [1] in 1922. He

proved some results on fixed points for a self-map satisfying the contraction for complete and bounded complete D-metric

spaces.

Rhoades [6] generalised Dhage’s contractive condition by increasing the number of factors and proved the existence of unique

fixed point of a self-map in D-metric space. Recently, motivated by the concept of compatibility for metric space, Singh and

Sharma [9] introduced the concept of D-compatibility of maps in D- metric space and proved some fixed point theorems

using a contractive condition. So far as our work is concerned, (X,D) will denote a D-metric space, N the set of natural

numbers and R+ the set of all positive real numbers.
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2. Main Results

Definition 2.1. Let X be a non empty set. A generalised metric space (D-metric) on X is a function D : X3 → R+ which

satisfies the following conditions foe each x, y, z, a ∈ X.

(i). D(x, y, z) ≥ 0,

(ii). D(x, y, z) = 0 if and only if x = y = z,

(iii). D(x, y, z) = D(p{x, y, z}), (symmetry) where p is a permutation function, [i.e. D(x, y, z) = D(y, z, x) = D(z, x, y)].

(iv). D(x, y, z) ≤ D(x, y, a) +D(a, z, z).

The pair (X,D) is called a generalised metric (or D-metric) space. Such functions are illustrated as

(a). D(x, y, z) = max{d(x, y), d(y, z), d(z, x)},

(b). D(x, y, z) = d(x, y) + d(y, z) + d(z, x). where d is the ordinary metric on X.

(c). If X = Rn then we define as

D(x, y, z) = (||x− y||p + ||y − z||p + ||z − x||p)
1

p

for every p ∈ R+.

(d). If X = R+ then we define

D(x, y, z) =


0 if x = y = z

max{x, y, z} otherwise

Remark 2.2. In a D-metric space, we prove that D(x, x, y) = D(x, y, y). For

(a). D(x, x, y) ≤ D(x, x, x) +D(x, y, y) = D(x, y, y) and similarly.

(b). D(y, y, x) ≤ D(y, y, y) +D(y, x, x) = D(y, x, x).

Hence from above (a) and (b) we have D(x, x, y) = D(x, y, y).

Definition 2.3. Let (X,D) be a D-metric space, then we define a ball defined as BD(x, r) for r > 0, with centre c and

radius r as

BD(c, r) = {x ∈ X : D(c, x, x) < r}

is called an open ball.

Example 2.4. Let X = R. Let us D(x, y, z) = |x− y|+ |y − z|+ |z − x| for all x, y, z ∈ R. Then

BD(1, 2) = {y ∈ R : D(1, y, y) < 2}

= {y ∈ R : |y − 1|+ |y − 1| < 2}

= {y ∈ R : |y − 1| < 1} = (0, 2).

Definition 2.5. Let (X,D) be a D-metric space and A ⊂ X.

(1). The subset A of X is said to be an open suset of X If for every x ∈ X there exists r > 0 such that BD(x, r) ⊂ A.
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(2). The subset A of X is said be D-bounded if there exists r > 0 such that D(x, y, y) < r for all x, y ∈ A.

(3). A sequence {xn} in X is said to converges to x if and only if D(xn, xn, x) = D(x, x, xn) → 0 as n → ∞. That is for

each ε > 0 there exists n0 ∈ N such that for all

n ≥ n0 ⇒ D(x, x, xn) < ε (∗)

This is equivalent with, for each ε > 0 there exists n0 ∈ N such that

m,n ≥ n0 ⇒ D(x, xn, xm) < ε (∗∗)

Now from (∗) we have

D(xn, xm, x) = D(xn, x, xm) ≤ D(xn, x, x) +D(x, xm, xn) <
ε

2
+
ε

2
= ε.

Conversely, by setting m = n in (∗∗) we have D(xn, xm, x) < ε.

(4). Sequence xn in X is called a Cauchy sequence if for each ε > 0, there exists n0 ∈ N such that D(xn, xn, xm) < ε for

each m,n ≥ n0. The D-metric space (X,D) is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all A ⊂ X with x ∈ A if and only if there exists r > 0 such that BD(x, r) ⊂ A then τ is a topology on X

induced by the D-metric D.

Theorem 2.6. Let (X,D) be a D-metric space. If sequence xn in X converges to x, then x is unique.

Proof. Let xn → y and x 6= y. Since xn converges to x and y, for each ε > 0 there exists n1 ∈ N such that for every

n ≥ n1 ⇒ D(x, x, xn) < ε
2

and n2 ∈ N such that for every n1 ≥ n2 ⇒ D(y, y, xn) < ε
2
. If we suppose n0 = max{n1, n2},

then for every n ≥ n0 then by triangle inequality we have D(x, x, y) ≤ D(x, x, xn) + D(xn, y, y) < ε
2

+ ε
2

= ε. Hence

D(x, x, y) = 0 which is a contradiction. So x = y.

Theorem 2.7. Let (X,D) be a D-metric space. If sequence xn in X converges to x, then sequence{xn} is a cauchy sequence.

Proof. Since xn → x for each ε > 0 there exists n1 ∈ N such that for every n ≥ n1 ⇒ D(xn, xn, x) < ε
2

and n2 ∈ N such

that for every m ≥ n2 ⇒ D(x, xm, xm) < ε
2
. If we assume that n0 = max{n1, n2}, then for every n,m ≥ n0 then by triangle

inequality we have D(xn, xn, xm) ≤ D(xn, xn, xn) +D(x, xm, xm) < ε
2

+ ε
2

= ε. Hence {xn} is a Cauchy sequence.

Definition 2.8. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is continuous triangular norm (t-norm) if for all a, b, c ∈ [0, 1],

the following conditions are satisfied

(i). a ∗ 1 = a.

(ii). a ∗ b = b ∗ a.

(iii). If b ≤ c then a ∗ b ≤ a ∗ c.

(iv). a ∗ (b ∗ c) = (a ∗ b) ∗ c.

(v). ∗ is continuous.

For examples Tp(a, b) = a.b, Tm(a, b) = min(a, b) and TL(a, b) = max(a+ b− 1, 0) are the t-norms.
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Definition 2.9. A 3-tuple (X,M, ∗) is said to be a M-fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm

and M is a continuous fuzzy set on X × (0,∞) satisfying the following conditions for each x, y, z, a ∈ X,

(i). M(x, y, z, t) > 0.

(ii). M(x, y, z, t) = 1 for all t > 0 if and only if x = y = z.

(iii). M(x, y, z, t) = M(p{x, y, z}t), (symmetric ) where p is a permutation function.

(iv). M(x, y, a, t) ∗M(a, z, z, s) ≤M(x, y, z, t+ s) for all t, s > 0.

(v). M(x, y, z, .) : (0,∞)→ [0, 1] is continuous.

Remark 2.10. Let (X,M, ∗) be a M-fuzzy metric space. We assert that for every t > 0 M(x, x, y, t) = M(x, y, y, t). For

every ε > 0 by triangle inequality we have

(i). M(x, x, y, ε+ t) ≥M(x, x, x, ε) ∗M(x, y, y, t) = M(x, y, y, t).

(ii). M(y, y, x, ε+ t) ≥M(y, y, y, ε) ∗M(y, x, x, t) = M(y, x, x, t).

Now taking limit as ε→ 0 from (i) and (ii) we obtain M(x, x, y, t) = M(x, y, y, t).

Definition 2.11. Let (X,M, ∗) be a M-fuzzy metric space. For t > 0, we define an open ball BM (x, r, t) with centre x ∈ X

and radius 0 < r < 1 is defined by

BM (x, r, t) = {y ∈ X : M(x, y, y, t) > 1− r}.

Definition 2.12. A subset A of X is called open set if for each x ∈ A there exists t > 0 and 0 < r < 1 such that

BM (x, r, t) ⊆ A. A sequence {xn} in X converges to x if and only if M(x, x, xn, t)→ 1 as n→∞, for each t > 0. Similarly

it is called a Cauchy sequence if for each 0 < ε < 1 and t > 0, there exists n0 ∈ N such that M(xn, xn, xm, t) > 1 − ε for

each m,n ≥ n0. The M-fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy sequence is convergent.

Example 2.13. Let X be a non empty set and D is the D-metric space on X. Let us denote a ∗ b = a.b for all a, b ∈ [0, 1].

For each t ∈ (0,∞) and define

M(x, y, z, t) =
t

t+D(x, y, z)

For all x, y, z ∈ X. Then it is easy to see that (X,M, ∗) is a M-fuzzy metric space.

Theorem 2.14. Let (X,M, ∗) is a fuzzy metric space. If we define M : X3 × (0,∞)→ [0, 1] by

M(x, y, z, t) = M(x, y, t) ∗M(y, z, t) ∗M(z, x, t)

for every x, y, z ∈ X, then (X,M, ∗) is a M-fuzzy metric space.

Proof.

(1). It is easy to see that for every x, y, z ∈ X,M(x, y, z, t) > 0 for all t > 0.

(2). M(x, y, z, t) = 1 if and only if M(x, y, t) = M(y, z, t) = M(z, x, t) = 1 if and only if x = y = z.

(3). M(x, y, z, t) = M(p{x, y, z}, t), where p is a permutation function.
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(4). M(x, y, z, t+ s) = M(x, y, t+ s) ∗M(y, z, t+ s) ∗M(z, x, t+ s)

≥M(x, y, t) ∗M(y, a, t) ∗M(a, z, s) ∗M(z, a, s) ∗M(a, x, t)

= M(x, y, a, t) ∗M(a, z, s) ∗M(z, a, s) ∗M(z, z, s)

= M(x, y, a, t) ∗M(a, z, z, s)

for every s > 0.

Lemma 2.15. Let (X,M, ∗) be a M-fuzzy metric space. Then M(x, y, z, t) is non decreasing with respect to t, for all

x, y, z ∈ X.

Proof. By definition of M -fuzzy metric space for each x, y, z, a ∈ X and t, s > 0 we have M(x, y, a, t) ∗M(a, z, z, s) ≤

M(x, y, z, t+ s), that is M(x, y, z, t+ s). Let us set a = z we get M(x, c, y, z, t) ∗M(z, z, z, s) ≤M(x, y, z, t+ s), which gives

M(x, y, z, t+ s) ≥M(x, y, z, t).

Definition 2.16. Let (X,M, ∗) be a M-fuzzy metric space. M is said to be continuous function on X3 × (0,∞) if

lim
n→∞

M(xn, yn, zn, tn) = M(x, y, z, t)

Whenever a sequence {(xn, yn, zn, tn)} in X3 × (0,∞) converges to a point (x, y, z, t) ∈ X3 × (0,∞) i.e. lim
n→∞

xn =

x, lim
n→∞

yn = y, lim
n→∞

zn = z and lim
n→∞

M(x, y, z, tn) = M(x, y, z, t).

Theorem 2.17. Let (X,M, ∗) be a M-fuzzy metric space. Then M is continuous function on X3 × (0,∞).

Proof. Let x, y, z ∈ X and t > 0, and let (x
′
n, y

′
n, z

′
n, t

′
n)n be sequence in X3 × (0,∞) that converges to (x, y, z, t). Since

(M(x
′
n, y

′
n, z

′
n, t

′
n))n is a sequence in [0, 1], there is subsequence (xn, yn, zn, tn)n of sequence (M(x

′
n, y

′
n, z

′
n, t

′
n))n such that

sequence (M(xn, yn, zn, tn))n converges to some point 0f [0, 1]. Fix δ > 0 such that δ < 1
2
. Then, there is n0 ∈ N such that

|t− tn| < δ for every n ≥ n0. Hence,

M((xn, yn, zn, tn) ≥M(xn, yn, zn, , t− s)

≥M
(
xn, yn, z, t−

4δ

3

)
∗M

(
z, zn, zn,

δ

3

)
≥
(
xn, z, y, t−

5δ

3

)
∗
(
y, yn, yn,

δ

3

)
∗M

(
z, zn, zn,

δ

3

)
≥M(z, y, x, t− 2δ) ∗M

(
x, xn, xn,

δ

3

)
∗M

(
y, yn, yn,

δ

3

)
∗M

(
z, zn, zn,

δ

3

)

and

M(x, y, z, t+ 2δ) ≥M(x, y, z, tn + δ)

≥M
(
x, y, zn, tn +

2δ

3

)
∗M

(
zn, z, z,

δ

3

)
≥M

(
x, zn, yn, tn +

δ

3

)
∗M

(
yn, y, y,

δ

3

)
∗M

(
zn, z, z,

δ

3

)
≥M(zn, yn, xn, t) ∗M

(
xn, x, x,

δ

3

)
∗M

(
yn, y, y,

δ

3

)
∗M

(
zn, z, z,

δ

3

)

for all n ≥ n0.By taking limit as n→∞, we have

lim
n→∞

M(xn, yn, zn, tn) ≥M(x, y, z, t− 2δ) ∗ 1 ∗ 1 ∗ 1 = M(x, y, z, t− 2δ)
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and

M(x, y, z, t+ 2δ) ≥ lim
n→∞

M(xn, yn, zn, tn)1 ∗ 1 ∗ 1 = lim
n→∞

M(xn, yn, zn, tn)

respectively. So by continuity of the function t→M(x, y, z, t), we immediately deduce that

lim
n→∞

M(xn, yn, zn, tn) = M(x, y, z, t).

Therefore M is continuous on X3 × (0,∞).

Definition 2.18. Let A and B be two self mappings of a M-fuzzy metric space (X,M, ∗) we say that A and B satisfy a

property, if there exists a sequence {xn} such that lim
n→∞

M(Axn, u, u, t) = lim
n→∞

M(Bxn, u, u, t) = 1. . . . (∗) for some u ∈ X

and t > 0.

Example 2.19. Let X = R and M(x, y, z, t) =
1

t+ |x− y|+ |y − z|+ |x− z| for every x, y, z ∈ X and t > 0. Let A and B

be defined as Ax = 2x+ 1, Bx = x+ 2. Consider the sequence xn = 1
n

+ 1, n = 1, 2, ... Thus we have

lim
n→∞

M(Axn, 3, 3, t) = lim
n→∞

M(Bxn, 3, 3, t) = 1

for every t > o. Then A and B satisfying the property (∗).

In the next example we show that there are some mappings which does not have the property (∗).

Example 2.20. Let X = R and M(x, y, z, t) =
1

t+ |x− y|+ |y − z|+ |x− z| for every x, y, z ∈ X and t > 0. Let Ax = x+1

and Bx = x+ 2, if there exists a sequence {xn} such that

lim
n→∞

M(Axn, u, u, t) = lim
n→∞

M(Bxn, u, u, t) = 1

for some u ∈ X. Therefore

lim
n→∞

M(Axn, u, u, t) = lim
n→∞

M(xn + 1, u, u, t) = lim
n→∞

M(xn, u− 1, u− 1, t) = 1

and

lim
n→∞

M(Bxn, u, u, t) = lim
n→∞

M(xn + 2, u, u, t) = lim
n→∞

M(xn, u− 2, u− 2, t) = 1

we conclude that, xn → u− 1 and xn → u− 2. Which is a contradiction. Hence A and B do not satisfy the property (∗).
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