International Journal of Mathematics And its Applications

The Approximation of Laplace-Stieltjes Transforms in the Half Plane

Gyan Prakash Rathore ${ }^{1, *}$ and Anupma Rastogi ${ }^{1}$

1 Department of Mathematics and Astronomy, Lucknow University, Lucknow, Uttar Pradesh, India.

Abstract

In this paper, we study the growth of the analytic function represented by Laplace-Stieltjes transform of infinite order which is convergent in the right half plane. We also investigate the error in approximation defined on Laplace-Stieltjes transform of finite γ_{U}-order in the half plane, and some relations between the error and growth of Laplace-Stieltjes transform of finite γ_{U}-order.

MSC: $\quad 44 \mathrm{~A} 10,30 \mathrm{E} 10$.

Keywords: Growth, Laplace-Stieltjes transform, approximation, γ_{U}-order.
(C) JS Publication.

1. Introduction

Let Laplace-Stieltjes transform

$$
\begin{equation*}
F(s)=\int_{0}^{\infty} e^{-s x} d \alpha(x), \quad s=\sigma+i t \tag{1}
\end{equation*}
$$

where $\alpha(x)$ is a bounded variation on any finite interval $[0, Y](0<Y<+\infty), \sigma$ and t are real variables. If $\alpha(t)$ is a step function and satisfies,

$$
\alpha(t)= \begin{cases}a_{1}+a_{2}+\cdots+a_{n}, & \lambda_{n}<x<\lambda_{n+1} \\ 0, & 0 \leq x<\lambda_{1} \\ \frac{\alpha(x+)+\alpha(x-)}{2}, & x>0\end{cases}
$$

where the sequence $\left\{\lambda_{n}\right\}_{n=0}^{\infty}$ satisfies

$$
\begin{equation*}
0 \leq \lambda_{1}<\lambda_{2}<\cdots<\lambda_{n}<\ldots, \quad \lambda_{n} \longrightarrow \infty \quad \text { as } \quad n \longrightarrow \infty \tag{2}
\end{equation*}
$$

where $\alpha(x)$ is stated in (1) and $\left\{\lambda_{n}\right\}$ satisfy (2),

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=h<+\infty, \quad \limsup _{n \rightarrow \infty} \frac{n}{\lambda_{n}}=E<+\infty \tag{3}
\end{equation*}
$$

Set

$$
A_{n}^{*}=\sup _{\lambda_{n} \leq x \leq \lambda_{n+1},-\infty<t<+\infty}\left|\int_{\lambda_{n}}^{x} e^{-i t y} d \alpha(y)\right|
$$

[^0]\[

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log A_{n}^{*}}{\lambda_{n}}=0 . \tag{4}
\end{equation*}
$$

\]

Thus, $F(s)$ becomes Dirichlet series,

$$
\begin{equation*}
F(s)=\sum_{n=1}^{\infty} a_{n} e^{\lambda_{n} s}, \quad s=\sigma+i t, \tag{5}
\end{equation*}
$$

where σ, t are real variables and a_{n} are non-zero complex numbers.
The author studied the growth and value distribution of Laplace-Stieltjes transform (1) in 1963, J. R. Yu [9], and we get Valiron-Knopp-Bohr formula with associated abscissas of bounded convergence, absolute convergence and uniform convergence of Laplace-Stieltjes transform and to investigate the singular direction-borel line of Laplace-Stieltjes transform. After his work, some mathematician investigated properties on the growth and the value distribution of Laplace-Stieltjes transforms in ([3, 5, 6, 14, 16, 17]) and J. R. Yu, L. N. Shang, Z. S. Gao, and H. Y. Xu investigated the value distribution of such functions ([7-9, 11]). Furthermore, for Dirichlet series (3), a special form of Laplace-Stieltjes transform, authors paid considerable attention to the growth and value distribution of analytic functions defined by Dirichlet series. They founded many interesting results in ($[1,2,4,10,12,13,15,18-20]$).

In 1963, Yu [9] proved the Valiron-Knopp-Bohr formula of the associated abscissas of bounded convergence, absolute convergence, and uniform convergence of Laplace-Stieltjes tranforms;

Theorem 1.1 ([9]). Suppose that Laplace-Stieltjes transform (1) satisfy (3) and

$$
\limsup _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}<+\infty
$$

then

$$
\limsup _{n \rightarrow \infty} \frac{\log A_{n}^{*}}{\lambda_{n}}<\sigma_{u}^{F} \leq \limsup _{n \rightarrow \infty} \frac{\log A_{n}^{*}}{\lambda_{n}}+\limsup _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}
$$

where σ_{u}^{F} is called the abscissa of uniformly convergent.
It follows that from (3), (4) and Theorem 1.1 such that $\sigma_{u}^{F}=0$, i.e., $F(s)$ is analytic in the right half plane. Put

$$
\begin{aligned}
M(\sigma, F) & =\sup _{-\infty<t<+\infty}|F(\sigma+i t)|, \\
\mu(\sigma, F) & =\max _{n \in N}\left\{A_{n}^{*} e^{-\lambda_{n} \sigma}\right\} \\
M_{u}(\sigma, F) & =\sup _{0<x<+\infty,-\infty<t<+\infty}\left|\int_{0}^{x} e^{-(\sigma+i t) y} d \alpha(y)\right| \quad(\sigma>0) .
\end{aligned}
$$

Definition 1.2 ([7]). If the Laplace-Stieltjes transform (1) satisfy $\sigma_{u}^{F}=0$, then

$$
\limsup _{\sigma \rightarrow \infty} \frac{\log ^{+} \log M_{u}(\sigma, F)}{-\log \sigma}=\rho,
$$

we call $F(s)$ is of order ρ in the right half plane, where $\log ^{+} x=\max (\log x, 0)$.
For $\rho=\infty$, we get the definition of γ-order of Laplace-Stieltjes transform (1) as follows that.
Definition 1.3 ([8]). If Laplace-Stieltjes transform (1) of γ-order satisfy,

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log ^{+} M_{u}(\sigma, F)\right)}{-\log \sigma}=\rho_{\gamma},
$$

where $\gamma(x) \in \Im$, then ρ_{γ} is called the γ-order of $F(s)$, and \Im is the class of all functions $\gamma(x)$ satisfies the following conditions:
(i). $\gamma(x)$ is positive, strictly increasing, differentiable and tends to $+\infty$ as $x \rightarrow+\infty$ and is defined on $[a, \infty), a>0$,
(ii). $x \gamma^{\prime}(x)=o(1)$ as $x \rightarrow+\infty$.

Theorem 1.4 ([8]). Let Laplace-Stieltjes transformationF $(s) \in \overline{L_{\beta}}$ of infinite order has finite γ-order $\rho_{\gamma}\left(0<\rho_{\gamma}<+\infty\right)$ and the sequence (2) satisfies (3) and (4), then

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma(\log \mu(\sigma, F))}{-\log \sigma}=\rho_{\gamma} \Longleftrightarrow \limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log M_{u}(\sigma, F)\right)}{-\log \sigma}=\rho_{\gamma},
$$

Theorem 1.5 ([8]). Let Laplace-Stieltjes transformation $F(s) \in \overline{L_{\beta}}$ of infinite order has finite γ-order $\rho_{\gamma}\left(0<\rho_{\gamma}<+\infty\right)$ and the sequence (2) satisfies (3) and (4), then

$$
\limsup _{n \rightarrow \infty} \frac{\gamma\left(\lambda_{n}\right)}{\log \lambda_{n}-\log ^{+} \log ^{+} A_{n}^{*}}=\rho_{\gamma} \Longleftrightarrow \limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log M_{u}(\sigma, F)\right)}{-\log \sigma}=\rho_{\gamma} .
$$

Theorem 1.6 ([4]). Let Laplace-Stieltjes transform $F(s) \in \overline{L_{\beta}}$ is of infinite γ-order, then

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log ^{+} M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}=T \Longleftrightarrow \limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log ^{+} \mu(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}=T
$$

where $0<T<\infty$ and $U(x)=x^{\rho(x)}$ satisfies the following conditions,
(i). $\rho(x)$ is monotone and $\lim _{x \rightarrow \infty} \rho(x)=\infty$;
(ii). $\lim _{x \rightarrow \infty} \frac{\log U\left(x^{\prime}\right)}{\log U(x)}=1$, where $x^{\prime}=x\left(1+\frac{1}{\log U(x)}\right)$.

Definition 1.7 ([7]). Let Laplace-Stieltjes transform $F(s)$ of infinite order has infinite γ-order and satisfies,

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log ^{+} M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}=T \text {, }
$$

then T is called γ_{U}-order of Laplace-stieltjes transform $F(s)$.
We denote L to be the class of all the functions $F(s)$ of the form (1) which is analytic in the half plane $\operatorname{Re}(s)>0$ and the sequence $\left\{\lambda_{n}\right\}$ satisfies (2), (3) and (4), and denote $\overline{L_{\beta}}$ to the class of all the functions $F(s)$ of the form (1) which is analytic in the half plane $\operatorname{Re}(s) \leq \beta(-\infty<\beta<+\infty)$ and the sequence $\left\{\lambda_{n}\right\}$ satisfies (2) and (3).
Thus, if $-\infty<\beta<0$ and $F(s) \in L$, then $F(s) \in \overline{L_{\beta}}$; if $0<\beta<+\infty$ and $F(s) \in \overline{L_{\beta}}$ then $F(s) \in L$. If $A_{n}^{*}=0$ for $n \geq k+1$, and $A_{n}^{*} \neq 0$, then $F(s)$ will be called an exponential polynomial of degree k usually denoted by P_{k} i.e., $P_{k}(s)=\int_{0}^{\lambda_{k}} \exp (-s y) d \alpha(y)$. Since, $F(s)$ is an analytic in the half plane, $H=\{s=\sigma+i t, \sigma>0, t \in \Re\}$. We denote \prod_{n} to the class of all exponential polynomial of degree n i.e., $\prod_{n}=\left\{\sum_{i=1}^{n} b_{i} \exp \left(-s \lambda_{i}\right) ;\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathbb{C}^{n}\right\}$.
For $F(s) \in \overline{L_{\beta}},-\infty<\beta<+\infty$, we denote $E_{n}(F, \beta)$ be the error in approximating the function $F(s)$ by exponential polynomial of degree n in the uniform norms.

$$
E_{n}(F, \beta)=\inf _{P \in \Pi_{n}}\|F-P\|_{\beta}, n=1,2, \ldots
$$

where

$$
\|F-P\|_{\beta}=\max _{-\infty<t<+\infty}|F(\beta+i t)-P(\beta+i t)| .
$$

The authors ($[2,11]$) investigated the approximation of analytic function defined by Laplace-Stieltjes transforms of finite order. In this paper, we study the approximation of analytic function defined by Laplace-Stieltjes transform and obtain relation between the error $E_{n}(F, \beta)$ and growth order of $F(s)$, when $F(s)$ is of infinite order.

To prove our results we use the following Lemma's;

Lemma $1.8([7])$. Let $\gamma(x) \in \Im$ and c be a constant, and $\psi(x)$ be the function such that

$$
\limsup _{x \rightarrow+\infty} \frac{\log ^{+} \psi(x)}{\log x}=\rho, \quad(0 \leq \rho<\infty)
$$

and if the real function $M(x)$ satisfies

$$
\limsup _{x \rightarrow+\infty} \frac{\gamma(\log M(x))}{\log x}=\nu(>0) .
$$

Then we have

$$
\limsup _{x \rightarrow+\infty} \frac{\gamma(\log M(x)+c)}{\log x}=\nu, \quad \limsup _{x \rightarrow+\infty} \frac{\gamma(\psi(x) \log M(x))}{\log x}=\nu
$$

Lemma 1.9 ([7]). If the abscissa $\sigma_{u}^{F}=0$, of the uniform convergent Laplace-Stieltjes transformation and the sequence (2) satisfies (3), then for any given $\epsilon \in(0,1)$, and for $\sigma(>0)$ sufficiently reaching 0 we have

$$
\frac{1}{3} \mu(\sigma, F) \leq M_{u}(\sigma, F) \leq K(\epsilon) \mu((1-\epsilon) \sigma, F) \frac{1}{\sigma}
$$

Where $K(\epsilon)$ is a constant depending on ϵ.

2. Main Results

Theorem 2.1. Let Laplace-Stieltjes transform $F(s) \in \overline{L_{\beta}}$ of infinite order has infinite γ-order, then

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log ^{+} M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}=T \Longleftrightarrow \limsup _{n \rightarrow \infty} \frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{\log U\left(\frac{\lambda_{n}}{\log ^{+} A_{n}^{*}}\right)}=T,
$$

Proof. We want to proof only sufficient part.
Suppose that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{\log U\left(\frac{\lambda_{n}}{\log ^{+} A_{n}^{*}}\right)}=T \tag{6}
\end{equation*}
$$

Then, for any positive real number $\epsilon>0$, for sufficiently large n, we have

$$
\log ^{+} A_{n}^{*}<J\left((T+\epsilon) \log U\left(\frac{\lambda_{n}}{\log ^{+} A_{n}^{*}}\right)\right)
$$

where $J(x)$ is the inverse of $\gamma(x)$. Let $V(x)$ is the inverse function of $U(x)$, then

$$
\begin{aligned}
\frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{T+\epsilon} & <\log U\left(\frac{\lambda_{n}}{\log ^{+} A_{n}^{*}}\right) \\
\log A_{n}^{*} & <\frac{\lambda_{n}}{V\left(\exp \left(\frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{T+\epsilon}\right)\right)} \\
\log A_{n}^{*} & <\lambda_{n}\left[V\left(\exp \left(\frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{T+\epsilon}\right)\right)\right]^{-1} .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\log A_{n}^{*} e^{-\lambda_{n} \sigma}<\lambda_{n}\left[\left(V\left(\exp \left(\frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{T+\epsilon}\right)\right)\right)^{-1}-\sigma\right] . \tag{7}
\end{equation*}
$$

For any fixed and sufficiently small $\sigma>0$, set

$$
I=J\left[(T+\epsilon) \log U\left(\frac{1}{\sigma}+\frac{1}{\sigma \log U\left(\frac{1}{\sigma}\right)}\right)\right]
$$

$$
\begin{align*}
\gamma(I) & =(T+\epsilon) \log U\left(\frac{1}{\sigma}+\frac{1}{\sigma \log U\left(\frac{1}{\sigma}\right)}\right) \\
\frac{1}{\sigma}+\frac{1}{\sigma \log U\left(\frac{1}{\sigma}\right)} & =V\left(\exp \left(\frac{\gamma(I)}{T+\epsilon}\right)\right) \tag{8}
\end{align*}
$$

If $\log A_{n}^{*} \leq I$, then for sufficiently large n, let $V\left(\exp \left(\frac{\gamma(I)}{T+\epsilon}\right)\right) \geq 1$, for $\sigma>0$, from (7), (8) and definition of $U(x)$, we get

$$
\begin{align*}
\log ^{+}\left(A_{n}^{*} e^{-\lambda_{n} \sigma}\right) & \leq I\left[\left(V\left(\exp \left(\frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{T+\epsilon}\right)\right)\right)^{-1}-\sigma\right] \\
& \leq J\left((T+\epsilon) \log \left((1+o(1)) U\left(\frac{1}{\sigma}\right)\right)\right) \tag{9}
\end{align*}
$$

If $\log ^{+} A_{n}^{*}>I$ then from (7) and (8), we get

$$
\begin{align*}
\log \left(A_{n}^{*} e^{-\lambda_{n} \sigma}\right) & \leq \lambda_{n}\left(\left(V\left(\exp \left(\frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{T+\epsilon}\right)\right)\right)^{-1}-\sigma\right) \\
& <0 \tag{10}
\end{align*}
$$

For sufficiently large n from (9) and (10), we get

$$
\begin{aligned}
\log \mu(\sigma, F) & \leq J\left((T+\epsilon) \log \left((1+o(1)) U\left(\frac{1}{\sigma}\right)\right)\right) \\
& \leq J\left((T+\epsilon) \log U\left(\frac{1}{\sigma}\right)\right)
\end{aligned}
$$

Since ϵ is arbitrary by Theorem C and Lemma 2.2, we get

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)} \leq \limsup _{n \rightarrow \infty} \frac{\gamma\left(\log ^{+} A_{n}^{*}\right)}{\log U\left(\frac{\lambda_{n}}{\log ^{+} A_{n}^{*}}\right)}=T
$$

Suppose that

$$
\begin{equation*}
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}<T \tag{11}
\end{equation*}
$$

Then, there exist a real number $\epsilon\left(0<\epsilon<\frac{T}{2}\right)$. For any positive number n and sufficiently small $\sigma>0$ from Lemma 1.2, we have

$$
\begin{equation*}
\log ^{+}\left(A_{n}^{*} e^{-\lambda_{n} \sigma}\right) \leq \log M_{u}(\sigma, F) \leq J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma}\right)\right) \tag{12}
\end{equation*}
$$

From (6), there exist a subsequence $\{n(p)\}$ for sufficiently large p, we have

$$
\begin{equation*}
\gamma\left(\log ^{+} A_{n(p)}^{*}\right)>(T-\epsilon) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right) \tag{13}
\end{equation*}
$$

Taking a sequence $\left\{\sigma_{p}\right\}$ satisfy

$$
\begin{equation*}
J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma_{p}}\right)\right)=\frac{\log ^{+}\left(A_{n(p)}^{*}\right)}{1+\log U\left(\frac{\lambda_{n(p)}}{\log A_{n(p)}^{*}}\right)} \tag{14}
\end{equation*}
$$

From (12) and (13), we get

$$
\log A_{n(p)}^{*}-\lambda_{n(p)} \sigma_{p} \leq J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma_{p}}\right)\right)=\frac{\log ^{+}\left(A_{n(p)}^{*}\right)}{1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)}
$$

that is,

$$
\begin{align*}
\frac{1}{\sigma_{p}} & \leq \frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\left(1+\frac{1}{\log U\left(\frac{\lambda_{n(p)}}{\log A_{n(p)}^{*}}\right)}\right) \\
U\left(\frac{1}{\sigma_{p}}\right) & \leq U\left(\frac{\lambda_{n(p)}}{\log A_{n(p)}^{*}}\left(1+\frac{1}{\log U\left(\frac{\lambda_{n(p)}}{\log A_{n(p)}^{*}}\right)}\right)\right) \\
& \leq U^{(1+o(1))}\left(\frac{\lambda_{n(p)}}{\log A_{n(p)}^{*}}\right) \tag{15}
\end{align*}
$$

From (14) and (15), we get

$$
\begin{aligned}
\log ^{+}\left(A_{n(p)}^{*}\right) & =J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma_{p}}\right)\right)\left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right) \\
& =J\left((T-2 \epsilon)(1+o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right)\left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right)
\end{aligned}
$$

Thus, from the Cauchy mean value theorem and there exist a real number ξ between x_{1} and x_{2}, where

$$
\begin{aligned}
& x_{1}=J\left((T-2 \epsilon)(1+o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right) \text { and } \\
& x_{2}=J\left((T-2 \epsilon)(1+o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right)\left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right)
\end{aligned}
$$

such that

$$
\begin{aligned}
\gamma\left(\log ^{+}\left(A_{n(p)}^{*}\right)\right) & =\gamma\left\{\left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right) J\left((T-2 \epsilon)(1+o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right)\right\} \\
& =\gamma\left(J\left((T-2 \epsilon)(1+o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right)\right)+\log \left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)\right) \xi \gamma^{\prime}(\xi)
\end{aligned}
$$

Since,

$$
\lim _{p \rightarrow \infty} \frac{\log \left(1+\log U\left(\frac{\lambda_{n(p)}}{\log +A_{n(p)}^{*}}\right)\right)}{\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)}=0 .
$$

Then for sufficiently large p, we have

$$
\begin{equation*}
\gamma\left(\log ^{+}\left(A_{n(p)}^{*}\right)\right)=(T-2 \epsilon)(1+o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right)+K_{1} \xi \gamma^{\prime}(\xi) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} A_{n(p)}^{*}}\right) \tag{16}
\end{equation*}
$$

where K_{1} is a constant. From (13) and (16), we get a contradiction. Thus,

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}=T .
$$

Hence, the sufficient part is completed. The necessary part is similar.

Now we establish some relation between $E_{n}(F, \beta)$ and growth of $F(s)$.
Theorem 2.2. Let Laplace-Stieljes transform $F(s) \in \overline{L_{\beta}},(0<\beta<+\infty)$ is of order ρ, then

$$
\rho=\limsup _{n \rightarrow \infty} \frac{\log ^{+} \log ^{+}\left(E_{n}(F, \beta) e^{\beta \lambda_{n+1}}\right.}{\log ^{+} \lambda_{n+1}-\log ^{+} \log ^{+}\left(E_{n}(F, \beta) e^{\beta \lambda_{n+1}}\right.} .
$$

Theorem 2.3. Let Laplace-Stieltjes transform $F(s) \in \overline{L_{\beta}}$ is of finite γ-order ρ_{γ}, for any real number $0<\beta<+\infty$, then

$$
\limsup _{n \rightarrow \infty} \frac{\gamma\left(\lambda_{n}\right)}{\log \lambda_{n}-\log ^{+} \log ^{+}\left(E_{n-1}(F, \beta) e^{\beta \lambda_{n}}\right)}=\rho_{\gamma}
$$

Theorem 2.4. Let $F(s) \in \overline{L_{\beta}}$ is of infinite γ-order, for any real number $0<\beta<+\infty$, then

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log ^{+} M(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}=T \Longleftrightarrow \limsup _{n \rightarrow+\infty} \phi_{n}\left(F, \beta, \lambda_{n}\right)=T
$$

where

$$
\phi_{n}\left(F, \beta, \lambda_{n}\right)=\frac{\gamma\left(\log ^{+}\left(E_{n-1}(F, \beta) e^{\beta \lambda_{n}}\right)\right)}{\log U\left(\frac{\lambda_{n}}{\log ^{+}\left(E_{n-1}(F, \beta) e^{\beta \lambda_{n}}\right)}\right)}
$$

Proof. We want to proof only sufficient part of the theorem.
Suppose that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \phi_{n}\left(F, \beta, \lambda_{n}\right)=\limsup _{n \rightarrow \infty} \frac{\gamma\left(\log ^{+}\left(E_{(n-1)} e^{\beta \lambda_{n}}\right)\right)}{\log U\left(\frac{\lambda_{n}}{\log ^{+}\left(E_{n-1} e^{\beta \lambda_{n}}\right)}\right)}=T \tag{17}
\end{equation*}
$$

For sufficiently large positive integer n and any positive real number $\epsilon>0$, we have

$$
\log ^{+}\left(E_{n-1} e^{\beta \lambda_{n}}\right)<J\left((T+\epsilon) \log U\left(\frac{\lambda_{n}}{\log ^{+}\left(E_{n-1} e^{\beta \lambda_{n}}\right)}\right)\right)
$$

By using the similar argument of Theorem, we have

$$
\begin{equation*}
\log ^{+}\left(E_{n-1} e^{-(\sigma-\beta) \lambda_{n}}\right) \leq \lambda_{n}\left(\left(V\left(\exp \left(\frac{\gamma\left(\log ^{+}\left(E_{n-1} e^{-\beta \lambda_{n}}\right)\right)}{T+\epsilon}\right)\right)\right)^{-1}-\sigma\right) \tag{18}
\end{equation*}
$$

For any fixed and sufficiently small $\sigma>0$, Set

$$
I=J\left((T+\epsilon) \log U\left(\frac{1}{\sigma}+\frac{1}{\sigma \log U\left(\frac{1}{\sigma}\right)}\right)\right)
$$

i.e

$$
\begin{equation*}
\frac{1}{\sigma}+\frac{1}{\sigma \log U\left(\frac{1}{\sigma}\right)}=V\left(\exp \left(\frac{\gamma(I)}{T+\epsilon}\right)\right) \tag{19}
\end{equation*}
$$

If $\log ^{+}\left(E_{n-1} e^{\beta \lambda_{n}}\right) \leq I$, for sufficiently large positive integer n, let $V\left(\exp \left(\frac{\gamma\left(\log ^{+}\left(E_{n-1} e^{\beta \lambda_{n}}\right)\right)}{T+\epsilon}\right)\right) \geq 1$. Since $\sigma>0$, from (17) and (18), and definition of $U(x)$, we have

$$
\begin{align*}
\log ^{+}\left(E_{n-1} e^{-(\sigma-\beta) \lambda_{n}}\right) & \leq \lambda_{n}\left(\left(V\left(\exp \left(\frac{\gamma\left(\log ^{+}\left(E_{n-1} e^{\beta \lambda_{n}}\right)\right)}{T+\epsilon}\right)\right)\right)^{-1}-\sigma\right) \\
& \leq I=J\left((T+\epsilon) \log U\left(\frac{1}{\sigma}+\frac{1}{\sigma \log U\left(\frac{1}{\sigma}\right)}\right)\right) \\
& \leq J\left((T+\epsilon) \log \left((1+o(1)) U\left(\frac{1}{\sigma}\right)\right)\right) \tag{20}
\end{align*}
$$

If $\log ^{+}\left(E_{n-1 e} e^{\beta \lambda_{n}}\right)>I$, it follows that from (17) and (18),

$$
\begin{align*}
\log ^{+}\left(E_{n-1} e^{-(\sigma-\beta) \lambda_{n}}\right) & \leq \lambda_{n}\left(\left(V\left(\exp \left(\frac{\gamma(I)}{T+\epsilon}\right)\right)\right)^{-1}-\sigma\right) \\
& \leq \lambda_{n}\left(\left(\frac{1}{\sigma}+\frac{1}{\sigma \log U\left(\frac{1}{\sigma}\right)}\right)^{-1}-\sigma\right) \\
& <0 . \tag{21}
\end{align*}
$$

Hence from (19) and (20) for sufficiently large positive integer n, we get

$$
\begin{equation*}
\log ^{+}\left(E_{n-1} e^{-(\sigma-\beta) \lambda_{n}}\right) \leq J\left((T+\epsilon) \log \left((1+o(1)) U\left(\frac{1}{\sigma}\right)\right)\right) \tag{22}
\end{equation*}
$$

For any $\beta>0$, then from the definition of $E_{k}(\beta, F)$, then exist $P_{1} \in \prod_{n-1}$ satisfying

$$
\begin{equation*}
\left\|F-P_{1}\right\| \leq K_{2} E_{n-1} \tag{23}
\end{equation*}
$$

Since,

$$
\begin{aligned}
A_{n}^{*} \exp \left(-\beta \lambda_{n}\right) & =\sup _{\lambda_{n}<x \leq \lambda_{n+1},-\infty<t<+\infty}\left|\int_{\lambda_{n}}^{x} \exp \{-i t y\} d \alpha(y)\right| \exp \left(-\beta \lambda_{n}\right) \\
& \leq \sup _{\lambda_{n}<x \leq \lambda_{n+1},-\infty<t<+\infty}\left|\int_{\lambda_{n}}^{x} \exp \{-\beta-i t y\} d \alpha(y)\right| \\
& \leq \sup _{-\infty<t<+\infty}\left|\int_{\lambda_{n}}^{\infty} \exp \{-\beta-i t y\} d \alpha(y)\right|
\end{aligned}
$$

then for any $P \in \prod_{n-1}$, we have

$$
\begin{align*}
A_{n}^{*} \exp \left(-\beta \lambda_{n}\right) & \leq|F(\beta+i t)-P(\beta+i t)| \\
& \leq\|F-P\|_{\beta} . \tag{24}
\end{align*}
$$

Hence, for any $\beta>0$, and $F(s) \in \overline{L_{\beta}}$, it follows that from (22) and (23)

$$
\begin{align*}
A_{n}^{*} \exp \left(-\beta \lambda_{n}\right) & \leq K_{2} E_{n-1}, \\
i . e ., \quad A_{n}^{*} & \leq K_{2} E_{n-1} \exp \left(\beta \lambda_{n}\right) \\
A_{n}^{*} e^{-\sigma \lambda_{n}} & \leq K_{2} E_{n-1} e^{-(\sigma-\beta) \lambda_{n}} \tag{25}
\end{align*}
$$

Thus from (22), (24), by Lemma 1.8 and Theorem C as $\epsilon \rightarrow 0$, we have

$$
\underset{\sigma \rightarrow 0}{\limsup } \frac{\gamma\left(\log ^{+} M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)} \leq T
$$

Suppose that

$$
\underset{\sigma \rightarrow 0}{\limsup } \frac{\gamma\left(\log ^{+} M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}<T
$$

Then there exist any real number $\epsilon\left(0<\epsilon<\frac{T}{2}\right)$, and for any sufficiently small $\sigma>0$, we get

$$
\begin{equation*}
\log ^{+}\left(M_{u}(\sigma, F)\right) \leq J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma}\right)\right) \tag{26}
\end{equation*}
$$

Since,

$$
\begin{align*}
E_{n-1}(\beta, F) & \leq\left\|F-P_{n-1}\right\|_{\beta} \\
& \leq\left|F(\beta+i t)-P_{n-1}(\beta+i t)\right| \\
& \leq\left|\int_{\lambda_{n}}^{+\infty} \exp \{-(\beta+i t) y\} d \alpha(y)\right| \tag{27}
\end{align*}
$$

for $0<\beta<\sigma$, and

$$
\left|\int_{\lambda_{k}}^{+\infty} \exp \{-(\beta+i t) y\} d \alpha(y)\right|=\lim _{b \rightarrow+\infty}\left|\int_{\lambda_{k}}^{b} \exp \{-(\beta+i t) y\} d \alpha(y)\right| .
$$

Set,

$$
I_{j+k}(b ; i t)=\int_{\lambda_{j+k}}^{b} \exp (-i t y) d \alpha(y),\left(\lambda_{j+k} \leq b \leq \lambda_{j+k+1}\right)
$$

then we have $\left|I_{j+k}(b ; i t)\right| \leq A_{j+k}^{*}$. Thus, it follows

$$
\begin{aligned}
\left|\int_{\lambda_{k}}^{b} \exp \{-(\beta+i t) y\} d \alpha(y)\right| & =\left|\sum_{j=k}^{n+k-1} \int_{\lambda_{j}}^{\lambda_{j+1}} \exp (-\beta y) d y I_{j}(y ; i t)+\int_{\lambda_{n+k}}^{b} \exp (-\beta y) d y I_{n+k}(y ; i t)\right| \\
& \leq 2 \sum_{j=k}^{n+k} A_{n}^{*} e^{-\beta \lambda_{n+1}} .
\end{aligned}
$$

Because $b \rightarrow+\infty$ as $n \rightarrow+\infty$, thus it follows that

$$
\begin{equation*}
\left|\int_{\lambda_{k}}^{+\infty} \exp \{-(\beta+i t) y\} d \alpha(y)\right| \leq 2 \sum_{n=k}^{+\infty} A_{n}^{*} e^{-\beta \lambda_{n+1}} \tag{28}
\end{equation*}
$$

By Lemma 1.2, from (26) and (27), we have

$$
\begin{equation*}
E_{n-1}(\beta, F) \leq 6 M_{u}(\sigma, F) \sum_{k=n}^{\infty} \exp \left\{(-\beta+\sigma) \lambda_{k}\right\} \tag{29}
\end{equation*}
$$

From (3), we can take $h^{\prime}\left(0<h^{\prime}<h\right)$ such that $\left(\lambda_{(n+1)}-\lambda_{n}\right) \geq h^{\prime}$ for $n \geq 0$, then from (29) for $\sigma \leq \frac{\beta}{2}$, we get

$$
\begin{align*}
E_{n-1}(\beta, F) & \leq 6 M_{u}(\sigma, F) \exp \left\{(-\beta+\sigma) \lambda_{n}\right\} \sum_{n=k}^{+\infty} \exp \left\{\left(\lambda_{k}-\lambda_{n}\right)(-\beta+\sigma)\right\} \\
& \leq 6 M_{u}(\sigma, F) \exp \left\{(-\beta+\sigma) \lambda_{n}\right\}\left(1-\exp \left(-\frac{3}{2} \beta k h^{\prime}\right)\right)^{-1} \\
E_{n-1}(\beta, F) & \leq K_{3} M_{u}(\sigma, F) \exp \left\{(-\beta+\sigma) \lambda_{n}\right\} \tag{30}
\end{align*}
$$

where K_{3} is constant. Then for sufficiently small $\sigma>0$ and $0<\beta<\sigma<+\infty$, we have

$$
\begin{equation*}
M_{u}(\sigma, F) \geq K_{3} E_{n-1}(\beta, F) e^{\lambda_{n}(\beta-\sigma)}=K_{3} E_{n-1}(\beta, F) \exp \left(\beta \lambda_{n}\right) e^{\left(-\lambda_{n} \sigma\right)} \tag{31}
\end{equation*}
$$

where $K_{4}=1-\exp \left(-\frac{3}{2} \beta h^{\prime}\right)$. Hence, it follows that from (26) and (31)

$$
\begin{equation*}
\log ^{+}\left[K_{3} E_{n-1}(\beta, F) \exp \left(\beta \lambda_{n}\right) e^{\left(-\lambda_{n} \sigma\right)}\right] \leq \log M_{u}(\sigma, F) \leq J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma}\right)\right) \tag{32}
\end{equation*}
$$

From the assumption, there exist a subsequence $\left\{\lambda_{n(p)}\right\}$ such that for sufficiently large p,

$$
\begin{equation*}
\gamma\left(\log ^{+}\left(E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}\right)\right)>(T-\epsilon) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right) . \tag{33}
\end{equation*}
$$

Take a sequence $\left\{\sigma_{p}\right\}$ satisfying

$$
\begin{equation*}
J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma_{p}}\right)\right)=\frac{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}{1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right)} . \tag{34}
\end{equation*}
$$

From (31) and (34), by using the similar argument of Theorem 2.1, we get

$$
\begin{equation*}
\log ^{+}\left(E_{n(p-1)} e^{\beta \lambda_{n(p)}}\right)=J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma_{p}}\right)\right)\left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right)\right) . \tag{35}
\end{equation*}
$$

Then by Cauchy mean value theorem, then there exist a real number $\xi \in\left(x_{1}, x_{2}\right)$ where

$$
\begin{aligned}
& x_{1}=J\left((T-2 \epsilon) \log U\left(\frac{1}{\sigma_{p}}\right)\right) \\
& x_{2}=x_{1}\left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right)\right),
\end{aligned}
$$

such that

$$
\begin{aligned}
& \gamma\left(\log ^{+}\left(E_{n(p-1)} e^{\beta \lambda_{n(p)}}\right)\right)=\gamma\left(J\left((T-2 \epsilon)(1+o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right)\right)\right) \\
&+\log \left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right)\right) \xi \gamma^{\prime}(\xi)
\end{aligned}
$$

since

$$
\lim _{p \rightarrow \infty} \frac{\log \left(1+\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right)\right)}{\log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right)}=0,
$$

then for $p \rightarrow+\infty$ and let $\sigma \rightarrow 0^{+}$, it follows that

$$
\begin{equation*}
\gamma\left(\log ^{+}\left(E_{n(p-1)} e^{\beta \lambda_{n(p)}}\right)\right)=(T-2 \epsilon)(1+o(1)) \log U\left(\frac{\lambda_{n(p)}}{\log ^{+} E_{n(p-1)} \exp \left\{\beta \lambda_{n(p)}\right\}}\right)+o(1) . \tag{36}
\end{equation*}
$$

From (26) and (36) by Lemma 1.8, we obtain a contradiction with the assumption $0<\epsilon<\frac{T}{2}$. Thus,

$$
\limsup _{\sigma \rightarrow 0^{+}} \frac{\gamma\left(\log ^{+} M_{u}(\sigma, F)\right)}{\log U\left(\frac{1}{\sigma}\right)}=T \text {. }
$$

Hence, the sufficient part is proved. The necessary part is similar.

References

[1] A. Nautiyal, On the coefficients of analytic Dirichlet series of fast growth, Indian Journal of Pure and Appl. Math., 155(10), 1984, 1102-1114.
[2] A. Nautiyal and D. P. Shukla, On the approximation of an analytic function by exponential polynomials, Indian J. of Pure and App. Math., 14(6)(1983),722-727.
[3] C. J. K. Batty, Tauberian theorem for the Laplace-Stieltjes transform, Trans. Amer. Math.Soc., 322(2)(1990), 783-804.
[4] D. C. Sun, On the distribution of values of random Dirichlet Series II, Chin. Ann. Math. Ser. B, 11(1)(1990), 33-44.
[5] H. Y. Xu, The logarithmic order and logarithmic type of Laplace-Stieltjes transform, J. Jiangxi Norm. Univ. Nat. Sci., 41(2017), 180-183.
[6] H. Y. Xu, C. F. Yi and T. B. Cao, On proximate order and type function of Laplace - Stieltjes transformation convergent in the right half plane, Math.Commun., 17(2012), 355-369.
[7] H. Y. Xu and Z. X. Xuan, The growth and value distribution of Laplace -Stieltjes transformation with infinite order in the right half plane, Journal of Inequalities and Applications 2013(2013), Art. 273.
[8] H. Y. Xu and Z. X. Xuan, The singular points of analytic functions with finite X-order defined by Laplace-Stieltjes transformation, Journal of Functional Spaces, 2015(2015), Art.ID 865069, 9 pages.
[9] J. R. Yu, Borel's line of entire functions represented by Laplace-Stieltjes transformation (in chinese), Acta Math. Sinica, 13(1963), 471-484.
[10] J. R. Yu, X. Q. Ding and F. J. Tian, On the distribution of values of Dirichlet series and random Dirichlet Series, Wuhan: Press in Wuhan University, (2004).
[11] L. N. Shang and Z. S. Gao, The growth of entire functions of infinite order represented by Laplace-Stieltjes transformation, Acta Math. Sci., 27A(6)(2007), 1035-1043.
[12] M. S. Liu, The regular growth of Dirichlet series of finite order in the half plane, J. Syst. Sci. Math. Sci., 22(2)(2002), 229-238.
[13] J. R. Yu, Dirichlet Series and the Random Dirichlet Series, Science Press, Beijing, (1997).
[14] W. C. Lu, On the λ^{*}-logarithmic type of analytic functions represented by Laplace-Stieltjes transformation, J. Jiangxi Norm. Univ. Nat. Sci., 40(2016), 591-594.
[15] W. J. Tang, Y. Q. Cui, H. Q. Xu, On some q-order and q-type of Taylor-Hadamard Product function, J. Jiangxi Norm. Univ. Nat. Sci., 40(2016), 276-279.
[16] Y. Y. Kong and Y. Yang, On the growth properties of the Laplace-Stieltjes transform, Complex Variables and Elliptic Equation, 59(2014), 553-563.
[17] Y. Y. Kong and Y. Y. Huo, On general order and type of Laplace-Stieltjes transforms analytic in the right half plane, Acta Math. Sinica, 59A(2016), 91-98.
[18] X. Luo, X. Z. Liu and Y. Y. Kong, The regular growth of Laplace-Stieltjes transforms, J. of Math. (PRC) 34(2014), 1181-1186.
[19] X. Luo and Y. Y. Kong, On the order and type Laplace-Stieltjes transforms of slow growth, Acta Math. Sci., 32A(2012), 601-607.
[20] Z. S. Gao, The growth of entire functions represented by Dirichlet series, Acta Mathematica Sinica, 42A(1999), 741-748.

[^0]: * E-mail: gyan.rathore1@gmail.com

