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Abstract: Let By 5(n) denote the number of (2, 5)-regular bipartitions of a positive integer n into distinct parts . In this paper, we
establish several infinite families of congruences modulo powers of 2 for Bz 5(n). For example,

22a+2 . 52[5 -1

oo

n=0

) g =2f1f2 (mod 2?),

for o, 8 > 0.
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1. Introduction

Throughout this paper, we let |g| < 1. We use the standard notation

fri= (04"
Following Ramanujan, we define
F=0) = flma,=a) = Y (=1)"¢" TV = (i), (1)

which is special case of Ramanujan’s general theta function [1]

fla,b)i= > "D gp <1, (2)

n=—oo

In Ramanujan’s notation, Jacobi’s famous triple product identity becomes,

f(a,b) = (=a; ab)oo (—b; ab) oo (ab; ab)oo. ®3)
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Congruences for (2, 5)-regular Bipartitions into Distinct Parts

A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. An f¢-regular partition
is a partition in which none of its parts is divisible by ¢. Let b¢(n) denotes the number of ¢-regular partitions of n with

be(0) = 1. The generating function for be(n) is

.k
fi’

g
g
s
S

Recently, arithmetic propertities of ¢-regular partition functions have been studied by a number of mathematicians. Calkin
[2] have established congruences for 5-regular partitions modulo 2 and 13-regular partitions modulo 2 and 3 using the theory
of modular forms. For more details, one can see [3, 5, 6] and [7].

Suppose £, m > 0 and (¢,m) = 1. A partition is an (¢, m)-regular partition of the positive integer n if none of the parts
is divisible by £ or m. Let a¢,m(n) denote the number of such partitions of n into distinct parts with a¢m,(0) = 1 . The

generating function is given by

- n_ GG @e(=4"14"™)
g”f’m(”)q (05000 (™5 0™ )oo @

For example, there are 3 partitions for a3 5(11), namely
11, 8+2+1, 7+4.

For details, one can see [9] and [10].
Let Be,m(n) denote the number of (¢, m)-regular bipartitions of n into distinct parts with B¢, (0) = 1 and the generating

function is given by

- n (6% (=d"d"™E R fETR
Bom = = X
2 Bemd" = (= e B e ~ TR i ®)

For example, there are 12 bipartitions for Bz 5(11), namely

(0, 11), (11,0), (3, 7+1), (7+1,3), (7, 3+1), (3+1,7)
(1, 7+3), (7+3,1), (9+1, 1), (1, 9+1), (7+3+1,0), (0, 7+3+1).

2. Preliminary Results

Lemma 2.1 ([3, Theorem 2.2]). For any prime p > 5,

p—1
2

L 3k2+k 3p2+(6k+1)p 3p2—(6k+1)p tp—1 p32-1
=), (=) e f<—q > ,-q + (=17 g = fpe. (6)

k=—2z1

ket (£p—1)/6

Furthermore, for —(p—1)/2<k<(p—1)/2 and k # (£p —1)/6,

324+ k , p*—1
2 # 24

(mod p).

Lemma 2.2. The following 2-dissections holds

E — f8f220 +qu§f10f40
fr o fifao 13 fs fa0

and

fi  fafsfi fi fao

s fafiofao qfsffo.
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The equation (7) was proved by Hirschhorn and Sellers [5]; see also [11]. Replacing ¢ by —¢ in (7) and using the fact that

, _ 3
( q; q)OO - f1f47
we obtain (8).
Lemma 2.1 ([8]). We have
4 2 2 42
3 2, .3 3 3 fifiofio  f5fiof20
=2 + -2 - , 9
fifs q fafa0 + f2 f10 q Faf2 q 1 9)
6 2 2 2
P fs = 2¢° f4f420f210 I fafiofa 212 fao — g fafls. (10)
f2f5 /30 f20
We shall prove the following Theorems:
Theorem 2.3. For a,8 >0,
0 . 92042 520 _ 1\
> B <22 52 4+ f> " =2f1f2 (mod 2%), (11)
n=0
o0 92042 528 _ )
Z Ba s (22a+2 520 4 +> — 2fff5 (mod 22)7 (12)
n=0
0 . 9o+l 52641 _ 1\
> B <22 g2y, 4 f) " =2f3fs (mod 2%), (13)
n=0
C- sate papr1 220150 5 2
> Bas (2 at2 526+ n+f) " =2f1f2 (mod 2%). (14)
n=0
Corollary 2.4. For o, >0, a € {7,13} and b € {11, 14},
92041 28
Bas (220‘“ 52y 4 ”%) =0 (mod 2%), (15)
.92042 528 _
Bss (220‘” 52 4 %) =0 (mod 2%). (16)

Theorem 2.5. Let r € {11,17,23}, s € {29,53,77,101} and r1 € {7,13,19}. Then for all non-negative integers c, 3 and

n, we have

.92a+l 528 4
B, r 5

)

5 (22a+3 5% 4

Bas <z2a+4 52 4 3 ) =0 (mod 2%), (18)
Bas (22a+4 526, 92atl  g26+1 _ 1) _ 2 (mod 2%) if n=k(3k+1)/2 for somek € Z, (19)
3 0 (mod 2?) otherwise.
92042 | 28 _
Bas (2“*5 5%y 4 T2 3 > 1) =0 (mod 2%), (20)
92a+2 26 _ 4 2 (mod 2?) if n=Fk(Bk+1)/2 for somek € Z,
Bas (22a+5 5280 4 35 ) _ ( ) if ( )/2 f (21)
0 (mod 22) otherwise.
Theorem 2.6. For a > 0,
o0 2042 2 )
Z Bas (22a+2n i 2 1) g = 2f4f10f5 (mod 2%), (22)
sy 3 fa0f1
%) 5. 22a+3 -1 f3f20f2
Bas (20 + 7> " =6227275 (mod 2°). 23
nz::O o ( 3 I fafrof? ( ) (23)



Congruences for (2, 5)-regular Bipartitions into Distinct Parts

Theorem 2.7. Let ro € {83,107} and s2 € {31,79}. Then for all o, 8 > 0,

() 20+1 23
. 11-9220+1 526 1\ ,
E By s (22 5% 4 3 ) " =4ff2 (mod 2%),

B s (22°‘+4 L5y, + 22a+1 5% 1) =0 (mod 23),
B s (22‘”4 522, 4 B2 A 52B+1 1) =0 (mod 2%,
i Bas <22a+5 5%+ %) " =4f1fs (mod 2%),
n=0
Bas (22a+5 522y 4 B2 22”23' 5 — 1) =0 (mod 2%),
Bss (22a+5 526ty 4 12 2 35%“ — 1) =0 (mod 2%),

Theorem 2.8. For o, 3,7 >0,

= 11229+ . 520 .27
Z 32’5 <22a+4 . 52ﬂ . pQ'yn + p ) qn = 4f1f10 (mod 23),

3

11 - 22o¢+1 . 52ﬁ . p2'y+2 _

Bas (22a+4 52 pP (pn 4 i) + 1) =0 (mod 2%,

3
i Bas (22a+4 52 2T 4 T2 5;8“”% — 1) ¢ =4fafs (mod 2%),
2% (22‘”4 2P P o ) + T2 '52§+1p27+2 — 1) =0 (mod 2%,
i Bos (22a+5 528 P 4 7. 92042 ,5326 P = 1) S = 4ffs (mod 29,
Bas (_22‘”5 52 pP " (o 4 4) + T2 52; P 1) =0 (mod 2%),
i Bas (22a+5 5Ly 11 . 92042 . 5;E+1 2~ 1) " =4fif10 (mod 2%),
Bys (22°‘+5 52T (o 4 4) + 125 5QZ+1 ki 1) =0 (mod 2%),

where 1 =1,2,3,..p— 1.

3. Proof of the Theorem (2.3)

From (5), we find that

> n f24f220 f52
B = =,
2 Bas(md” = X g3

2n+1

Using (7) in (38) and extracting the terms involving ¢ from both sides, we arrive

723275(271—}- l)q ffl2ff.1§

From binomial theorem, it is easy to see that for any positive integers k and m,
i =3 (mod 2),

fT = F3 (mod 27),

g = fam o (mod 2°).

(24)

(25)

(26)

(27)

(38)

(40)
(41)

(42)
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Using (40) in (39), we find that

> Bas(2n+1)g" =2f1f] (mod 2%). (43)

n=0
which is the @ = 8 = 0 case of (11).

Ramanujan recorded the following identity in his notebooks without proof:
f1=fas(R(¢°) " —q—q’R(¢%)), (44)

4
where R(q) = % For a proof of (44), one can see [4, 12].

Let us consider the case a = 0 and prove induction on 8. Suppose that the congruence (11) holds for some integer 8 > 0.
Employing the equation (44) in (11) with o = 0, we find that

- g, A5 1N s 51 25 5 >

232,5 2-5""n + — 3 )1 = 2fs5 fos(R(¢°) ™" —q—q R(g”)) (mod 27). (45)

n=0
Extracting the coefficients of ¢°™ ! in (45), we find that

= ap1,  2-570 1N s >
> Bas(2-5 nt=——p—— )" =2fifs (mod 2). (46)
n=0

Again employing the equation (44) in (46), we find that

> 28+1 2.5 1\ 3 5v—1 25/ 5\43
ZBz,s 2-5 nJrf q" =2fsfo5(R(q")" —a—q R(q”))". (47)
n=0
Extracting the coefficients of ¢°" 12 in (47), we get
= 4-5%12 1\
Z Bsys <2 S5, 4 f) =211 f3 (mod 22), (48)

n=0

which implies that (11) is true for 8 4 1. Hence, by induction (11) is true for any non-negative integer S and o = 0.
Now, Suppose that the congruence (11) holds for some integers «, 8 > 0. Employing the equation (9) in the equation (11),
we find that

- sat1 gop 2207257 1 5 2
> s (0 5 4 B ) S0+ 2afi (mod 2) (19)
n=0

Extracting the coefficients of ¢*™ in (49), we arrive

[SS) S 28 22a+2 . 52[3 -1 3 5
> bas (205 BT g 2opigs (moa 2, (50)
n=0

which proves (12). Again, employing the equation (10), we obtain
c- sata q2p 2207757 1 3 2
> b (2005 T T ) =g apfl (mod 2) (51)
n=0

Extracting the coefficients of ¢*™ ™ in (51), we get

oo et 3 9 22a+4 . 52B -1 3 5
ZBQ’S (2 atd 5 Bn+f) q" =2f1f5 (mod 27). (52)
n=0

which implies that (11) is true for o + 1. Hence, by induction (11) is true for any non-negative integers o and 3. This
completes the proof.

Employing the equation (44) in the equations (11) and (12), we obtain (13) and (14) respectively.
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4. Proof of the Corollory (2.4)

Using the equations (11) and (12) along with the equation (44), we obtain (15) and (16) respectively.

5. Proof of the Theorem (2.5)

Extracting the coefficients of ¢>" 1! in (49), we get
oo 92a+1  526+1 _ 1
Z Bz}s (22a+2 . 52'871, + f) qn = 2f20 (I’IlOd 22) (53)
n=0

Again, extracting the coefficients of ¢*"*, we find that

92artl  52B+1 _ g

> Bags (22‘*” 522 (4n 44) + 5
n=0

> ¢" =0 (mod 2%). (54)

On simplification, we obtain (17). Extracting the coefficients of ¢*™ in (53), we obtain

oo 92041 52841 _ q
> Bas (22a+4 5% 4 f> ¢" =2fs (mod 2%). (55)
n=0

Extracting the coefficients of ¢°" 1%, for i = 1,2,3,4 and ¢°" in (55), we get (18) and (19) respectively.
Extracting the coefficients of ¢°" in (51), we get

oo et 3 ) 22a+2 . 52ﬁ -1 )
> Bas (2 atd 52y 4 f) =2f; (mod 2°). (56)
n=0

Collecting the terms involving the powers of ¢*"*" for i = 1,2,3 and ¢*" in (56), we obtain (20) and (21) respectively.

6. Proof of the Theorem (2.6)
Employing (41) in (39), we find that
i Bas(2n+1)¢" = 2% (mod 2°). (57)

n=0

Using (7) in (57) and then extracting the coefficients of ¢*™ on both sides, we see that

Z Bays(4n+1)¢" = 2%23{5 (mod 2%). (58)
n=0

which is the o = 0 case of (22). Suppose that the congruence (22) holds for some integer o > 0. Again using (7) in (22)

and extracting the terms involving ¢*" ™' on both sides along with (41), we get
0 2044 _ 2 42
Z Bas (22°‘+3n + u) q" = QM (mod 23). (59)
— 3 fafs
n=0
Using (8) in (59) and extracting the terms involoving ¢°", we obtain
o0 2044 2
> Bas (22“+4n + !> g = o d2f10f5 (mod 2%). (60)
= 3 faof1

which implies that (22) is true for oo + 1. Hence, by induction (22) is true for any non-negative integer . Using (7) in (22)

and then extracting the coefficients of ¢?"*! on both sides, we see that
e 22a+4 -1
Z Bss (22a+3n + 7) q" = 2f4f220 X h (mod 2%). (61)
n=0 3 f2 f5

Again, using (8) in (61) and then extracting the coefficients of ¢*"*! on both sides, we obtain (23).
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7. Proof of the Theorem (2.7)
Using (7) in (39) and then extracting the coefficients of ¢*"*' on both sides, we find that

13 foo f3
fafrof?

i Bos (4n+3)q¢" =2 (mod 2%), (62)

n=0

Using (7) in (62) and then extracting the coefficients of ¢! on both sides, we find that

> Bas (8n47)q" = 4faf. (63)
n=0
which implies
Bas (16n+15) =0 (mod 2%), (64)
> Bss (16n+7)¢" = 4f: fro. (65)

n=0

2n+1

Using (7) in (23) and then collecting the coefficients of ¢ on both sides, we get

— 2ats_ | 11-229%3 17\ 2 3
S Bas (274 S ) ¢t =4 fh (mod 27), (66)
n=0
which implies
23 . 22a+3 -1
Bajs (2“*% + %) =0 (mod 2%, (67)
> o 112243 1\
> Bas (20 ) s (68)
n=0

In view of (65) and (68), we see that the congruence (24) is true for 5 = 0. Now, suppose the congruence (24) is true for

5n+1

B > 0. Utilizing (44) in (24) and then extracting the terms involving ¢ , we deduce that

oo 5 22a+4 52ﬁ+1 7. 22a+1 . 525+1 .
E 2,5 : nt g 4" =4fsf (69)
n=0

=4fsfs0(R(q") " — ¢ — ¢'R(¢"")), (70)

which implies

92artl | 52642

i Bas <22a+4 5282, 11- ;
n=0

)qn =4f1 fio. (71)

Thus, (24) is true for 8 > 0. Hence, by mathematical induction congruence (24) holds for all 8 > 0. Congruences (25) and
(26) follows from (24) and (70) respectively. Using (7) in (58) and then extracting the coefficients of ¢>" on both sides, we

find that

2fzf4flof52

oo f? (mod 2°). (72)

Z B 5(8n+1)¢" =

n=0

2n—+1

Using (7) in (72) and then extracting the coefficients of ¢ on both sides, we get

> Bys(16n+9)g" =4fafio  (mod 2%), (73)

n=0
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which implies

Bs5(32n+25) =0 (mod 2%), (74)

> Bas(32n+9)q" = 4fi fs. (75)

n=0

It follows from (75) and (22) that for all integers o > 0

= 2a+5 7- 22a+2 -1 n 2 3
E Bas (2 n+ — ) q" =4f1fs (mod 2°), (76)
n=0

which is f = 0 case of (27). The rest of the proof by mathematical induction is similar to that of (24), so we omit the

details. Congruences (28) and (29) follow immediately from the proof of (24).

8. Proof of the Theorem (2.8)

We prove the equation (30) by induction, the equation (24) is the v = 0 case of congruence (30). Suppose that the congruence
(30) holds for some integers v > 0. For a prime p > 5 and —(p — 1)/2 < k,m < (p — 1)/2, consider

B2+ ko, Bmiem _ 1lp® — 11

5 3 54 (mod p).

This is equivalent to (6k 4 1) + 10(6m + 1) = 0 (mod p). Since (;10) = —1, the only solution of the above congruence
p
is k =m = (£p —1)/6. Using (6) in (30), we obtain

oo 20+1 28 2v+2
N 119241 . 528, —1\ .
S B (2045 s ) 0 = afuey (mod 2 (77)
n=0
Colletcing the coefficients of g™ in (77), we arrive
oo 11 - 22a+1 LE2829+2 1
Z Bs (22a+4 . 528 ~p27+2n n 53 4 ) ¢" =4fifio (mod 23)7 (78)
n=0

which implies that (30) is true for v + 1 with «, 8 > 0. Hence by induction, (30) is true for all non-negative integers v > 0.
This proves (30). Collecting ¢""** on both sides of (77), we obtain (31).

Since the proofs of (32), (33), (34), (35), (36) and (37) are similar to the proofs of (30) and (31), we omit the details.
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