

International Journal of Mathematics And its Applications

k-Isolate Domination Number of Splitting Graph of Simple Graphs

G. Rajasekar^{1,*} and A. Jeslet Kani Bala¹

1 Department of Mathematics, Jawahar Science College, Neyveli, Tamilnadu, India.

Abstract:	A dominating set S of a graph G is said to be a k-isolate dominating set if $\langle S \rangle$ has at least k-isolated vertices [4]. In this paper the k-isolate dominating set of splitting graph of some graphs such as path, cycle and complete graphs are found.
MSC:	05C69.
Kouwonda	Dominating get Isolate dominating get hisolate dominating get hisolate domination number golitting graph with

Keywords: Dominating set, Isolate dominating set, k-isolate dominating set, k-isolate domination number, splitting graph, path, cycle and complete graph.

© JS Publication.

1. Introduction

In a graph G = (V, E), the degree of a vertex v in V is the number of edges incident with v and is denoted by deg (v). A dominating set S is such that the sub graph $\langle S \rangle$ induced by S has at least one isolated vertex is called an isolate dominating set. The concept of isolate domination number is first developed by I.Sahul Hamid and S. Balamurugan [1]: A dominating set S of a graph G is said to be a k-isolate dominating set if $\langle S \rangle$ has at least k-isolated vertices [4]. The k-isolate dominating set S is said to be a minimal k -isolate dominating set if proper subset of S is not an isolate dominating set. Splitting graph was first studied by Sampathkumar and Walikar [2]. Also it was developed by Patil and Thangamari [3]. For each vertex v of a graph G, take a new vertex v' and v' is adjacent with all the vertices of G which are adjacent to v. The graph S(G) thus obtained is called splitting graph of G. In this paper we discussed about the k-isolate domination number of splitting graph.

2. Preliminary Results

Theorem 2.1 ([4]). For the path P_n we have

$$\gamma_{ki}\left(P_{n}\right) = \begin{cases} \left\lceil \frac{n}{3} \right\rceil, & k \leq \left\lceil \frac{n}{3} \right\rceil \\ k, & \left\lceil \frac{n}{3} \right\rceil < k \leq \left\lceil \frac{n}{2} \right\rceil \\ Does \ not \ exists, & k > \left\lceil \frac{n}{2} \right\rceil \end{cases}$$

^{*} E-mail: grsmaths@mail.com

Remark 2.2 ([5]). Let C_n be a cycle with n vertices $(n \ge 3)$, then

$$\gamma_{ki}(C_n) = \begin{cases} \left\lceil \frac{n}{3} \right\rceil, & k \le \left\lceil \frac{n}{3} \right\rceil \\ k, & \left\lceil \frac{n}{3} \right\rceil < k \le \left\lfloor \frac{n}{2} \right\rfloor \\ Does \ not \ exists, & k > \left\lfloor \frac{n}{2} \right\rfloor \end{cases}$$

3. Main Result

Theorem 3.1. For the splitting graph of path $S[P_n]$ we have

$$\gamma_{ki}[S(P_n)] = \begin{cases} 2\left\lceil \frac{n}{3}\right\rceil, & \text{for } k \le 2\left\lceil \frac{n}{3}\right\rceil\\ k, & \text{for } 2\left\lceil \frac{n}{3}\right\rceil < k \le 2\left\lceil \frac{n}{2}\right\rceil\\ \text{Does not exists, for } k > 2\left\lceil \frac{n}{2}\right\rceil \end{cases}$$

Proof. Let P_n be the path on n vertices namely $\{v_1, v_2, \ldots, v_n\}$ and $S[P_n]$ be a splitting graph of path containing 2n vertices namely $\{v_1, v_2, \ldots, v_n, v_1', v_2', \ldots, v_n'\}$.

Figure 1. Splitting graph of path

Case (i): $k \leq 2 \left\lceil \frac{n}{3} \right\rceil$.

We can split $S[P_n]$ into two paths namely P_1 and P_2 with each 'n' vertices. That is P_1 is a path with $v_1, v_2', v_3, v_4', \ldots, v_{n-1}', v_n$ vertices and P_2 is a path with $v_1', v_2, v_3', \ldots, v_{n-1}', v_n$ vertices and no one vertices are common to both the path. Hence by Case (i) of Theorem 2.1, we have,

$$\gamma_{ki}[S(P_n)] = \gamma_{ki}[S(P_1)] + \gamma_{ki}[S(P_2)]$$
$$= \left\lceil \frac{n}{3} \right\rceil + \left\lceil \frac{n}{3} \right\rceil$$
$$= 2 \left\lceil \frac{n}{3} \right\rceil$$

Hence $\gamma_{ki}[S(P_n)] = 2\left\lceil \frac{n}{3} \right\rceil$, when $k \leq 2\left\lceil \frac{n}{3} \right\rceil$.

Case (ii): $2\left\lceil \frac{n}{3} \right\rceil < k \leq 2\left\lceil \frac{n}{2} \right\rceil$.

From Case (i), when $k = 2 \lceil \frac{n}{3} \rceil$, we have $\gamma_{ki}[S(P_n)] = 2 \lceil \frac{n}{3} \rceil$ with k vertices. Again by applying Case (ii) of Theorem 2.1, to $S[P_n]$, we have $\gamma_{ki}[S(P_n)] = k$ if $2 \lceil \frac{n}{3} \rceil < k \le 2 \lceil \frac{n}{2} \rceil$. **Case (iii):** $k > 2 \lceil \frac{n}{2} \rceil$.

Clearly for the graph $S[P_n]$ which contains the path P_1 and P_2 , we have only $\frac{n}{2}$ vertices for the dominating set for each path. Hence when k exceeds more than $2\left\lceil \frac{n}{2} \right\rceil$ vertices, $\gamma_{ki}[S(P_n)]$ does not exist. **Theorem 3.2.** Let $S(C_n)$ be the splitting graph of cycle C_n $(n \ge 3)$, then

$$\gamma_{ki}[S(C_n)] = \begin{cases} 2 \left\lceil \frac{n}{3} \right\rceil, & \text{for } k \le 2 \left\lfloor \frac{n}{3} \right\rfloor \\ k, & \text{for } 2 \left\lfloor \frac{n}{3} \right\rfloor < k \le n \\ \text{Does not exists, for } k > n \end{cases}$$

Proof. Let C_n be the cycle of n vertices with n edges whose degree of each vertex be two. Let the vertex of C_n be $\{v_1, v_2, \ldots, v_n\}$. And $S(C_n)$ be the splitting graph of C_n . Let the vertices of $S(C_n)$ be adjacent to $\{v_1, v_2, \ldots, v_n, v_1', v_2', \ldots, v_{n-1}', v_n'\}$ where v_i is not adjacent with v_i' and v_i is adjacent with $v_{i+1}', v_{i+1}, v_{i-1}, v_{i-1}'$ where $i = 2, 3, 4, \ldots, n-1$ and in particular v_1 is adjacent with v_2, v_2', v_n, v_n' . Therefore, in $S(C_n), d(v_i) = 4, 1 \le i \le n$ and $d(v_i') = 2, 1 \le i \le n$ where v_i' is adjacent with v_{i+1}, v_{i-1} and in particular v_1 is adjacent with v_2 and v_n .

Figure 2. Splitting graph of cycle

Case (i): $k \leq 2 \left\lceil \frac{n}{3} \right\rceil$.

In this case, the vertices of $S(C_n)$ can be rearranged as two cycles namely $v_1, v_2', v_3, v_4', \ldots, v_{n-1}', v_n, v_1$ and $v_1', v_2, v_3', \ldots, v_{n-1}', v_n, v_1'$ along with the edge v_1v_n containing the same 2n vertices. Consider the set of vertices $\{v_2', v_5, v_8', \ldots, v_{n-4}', v_{n-1}\}$ which belongs to the cycle $C_n(1)$ and $\{v_2, v_5', v_8, \ldots, v_{n-4}, v_{n-1}'\}$ which belongs to the cycle $C_n(2)$ (where the cycle $C_n(1)$ and $C_n(2)$ connected with the edge v_1v_n) in which the above two sets does not adjacent with each other. The above two sets together forms a minimal k-isolate dominating set. Hence by Case (i) of Remark 2.2, we have when $k \leq 2 \lfloor \frac{n}{3} \rfloor$

$$\gamma_{ki}[S(C_n)] = \gamma_{ki}[S(C_n(1))] + \gamma_{ki}[S(C_n(2))]$$
$$= \left\lceil \frac{n}{3} \right\rceil + \left\lceil \frac{n}{3} \right\rceil$$
$$= 2 \left\lceil \frac{n}{3} \right\rceil$$

Hence $\gamma_{ki}[S(C_n)] = 2 \left\lceil \frac{n}{3} \right\rceil$, when $k \le 2 \left\lceil \frac{n}{3} \right\rceil$. Case (ii): $2 \left\lceil \frac{n}{3} \right\rceil < k \le n$.

By Case (i), We have k-isolate dominating set as $\{v_2, v_2', v_5, v_5', v_8, v_8', \dots, v_{n-4}, v_{n-4}', v_{n-1}, v_{n-1}'\}$ with k vertices when $k = 2 \lceil \frac{n}{3} \rceil$. To obtain the (k + 1)-isolate dominating set, v_2 is replaced with v_1' and v_3' . Hence we get the minimal (k + 1)-isolate dominating set as $\{v_1', v_2', v_3', v_5, v_5', v_8, v_8', \dots, v_{n-4}, v_{n-4}', v_{n-1}, v_{n-1}'\}$ containing k + 1 vertices. Again to obtain the (k + 2)-isolate dominating set v_5 is replaced with v_4' and v_6' . Continuing this process by replacing the vertex v_i by v_{i-1}' and v_{i+1}' , we get the maximal k-isolate dominating set $\{v_1', v_2', v_3', \dots, v_n'\}$. Hence $\gamma_{ki}[S(C_n)] = k$ when $2 \lceil \frac{n}{3} \rceil < k \le n$.

Case (iii): k > n.

Let k = n. By Case (i), $\{v_1', v_2', v_3', \dots, v_n'\}$ is the minimal k-isolate dominating set. Since in $S(C_n)$ we have n vertices which are non-adjacent with themselves, there is no isolate dominating set with (n + 1) vertices. Hence when k > n, $\gamma_{ki}[S(C_n)]$ does not exist.

Theorem 3.3. If $S(K_n)$ is the splitting graph of the complete graph K_n , then

$$\gamma_{ki}[S(K_n)] = \begin{cases} 2, for \ 1 \le k \le 2\\ n, & for \ 2 < k \le n\\ Does \ not \ exists, for \ k > n \end{cases}$$

Proof. Let K_n be the complete graph with n vertices. Let $S(K_n)$ be the splitting graph of the complete graph K_n with 2n vertices namely $v_1, v_2, v_3, \ldots, v_n, v_1', v_2', v_3', \ldots, v_n'$.

Figure 3. Splitting graph of complete

Case (i): $1 \le k \le 2$.

Obviously $\{v_i, v_i'\}(1 \le i \le n)$ is the minimal 2-isolate dominating set. Hence $\gamma_{ki}[S(K_n)] = 2$, when $k \le 2$.

Case (ii): $2 < k \le n$.

Let k = 2. By Case (i), $\{v_i, v_i'\}(1 \le i \le n)$ is the minimal k-isolate dominating set. Since all the v_i $(1 \le i \le n)$ vertices are adjacent with each other and also with all v_i' $(1 \le i \le n)$ vertices except their corresponding duplicate vertex, omit the particular v_i $(1 \le i \le n)$ vertex from the minimal k-isolate dominating set and add all the v_i' $(1 \le i \le n)$ vertices (i.e.). $\{v_1', v_2', v_3', \ldots, v_n'\}$. Hence $\gamma_{ki}[S(K_n)] = n$, when $2 < k \le n$.

Case (iii):
$$k > n$$
.

Obviously, $\gamma_{ki}[S(K_n)]$ does not exists when k > n.

References

- I. Sahul Hamid and S. Balamurugan, *Isolate domination in graphs*, Arab Journal of Mathematical Sciences, 22(2016), 232-241.
- [2] E. Sampathkumar and H. B. Walikar, On Splitting Graph of a Graph, J. Karnatak Univ. Sci., 25(13)(1980), 13-16.
- [3] H. P. Patil and S. Thangamari, Miscellaneous Properties of splitting graphs and Related concepts, in Proceedings of the National workshop on Graph Theory and its Application, Manonmaniam Sundaranar University, Tirunelveli, February 21-27, (1996), 121-128.
- [4] G. Rajasekar and A. Jeslet Kani Bala, k-Isolate Domination Number of Simple Graphs, Malaya Journal of Matematik, S(1)(2019), 113-115.
- [5] G. Rajasekar and A. Jeslet Kani Bala, k-Isolate Domination Number of Graphs inherited from Cycle Graph, The International Journal of Analytical and Experimental Modal Analysis, XI(X)(2019), 213-218.