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Abstract: A graph index is a real number that is derived from molecular graphs of chemical compounds. In this paper, we introduce

the multiplicative total reduced index, multiplicative reduced inverse degree, multiplicative reduced zeroth order index,
general multiplicative reduced first Zagreb index of a graph and compute exact formulas for certain networks for chem-

ical importance such as silicate networks, chain silicate networks, hexagonal networks, oxide networks and honeycomb

networks.

MSC: 05C05, 05C07, 05C35.

Keywords: Multiplicative reduced first Zagreb index, multiplicative reduced F-index, multiplicative reduced zeroth order index,

network.

© JS Publication.

1. Introduction

We consider only finite, simple, connected graph G with vertex set V (G) and edge set E(G). The degree dG(v) of a

vertex v is the number of vertices adjacent to v. For other undefined notations, we refer [1]. In Chemical Graph Theory,

the methods of graph index computation can help to find out chemical, biological information of drugs. So that chemical

graph theory has an important effect on the development of chemical sciences. Numerous graph indices [2] considered in

Theoretical Chemistry and have found same applications, especially in QSPR/QSAR study see [3, 4].

In [5], Kulli introduced the multiplicative reduced first Zagreb index and multiplicative reduced modified first Zagreb index

of a graph, defined as

RM1II (G) =
∏

u∈V (G)

(dG (u) − 1)2

mRM1II (G) =
∏

u∈V (G)

1

(dG (u) − 1)2
.

Also in the same paper [5], Kulli introduced the multiplicative reduced F -index of a graph and it is defined as

RFII (G) =
∏

u∈V (G)

(dG (u) − 1)3 .

We now introduce the following multiplicative reduced indices:
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The multiplicative total reduced index of a graph G is defined as

TRII (G) =
∏

u∈V (G)

(dG (u) − 1) .

The multiplicative reduced inverse degree of a graph G is defined as

RIDII (G) =
∏

u∈V (G)

1

(dG (u) − 1)
.

The multiplicative reduced zeroth order index of a graph G is defined as

RZII (G) =
∏

u∈V (G)

1√
dG (u) − 1

.

We continue this generalization and introduce the general multiplicative first Zagreb index of a graph G, defined it as

RMa
1 II (G) =

∏
u∈V (G)

(dG (u) − 1)a , (1)

where a is a real number. Recently some reduced indices were studied, for example, in [6–20].

In this paper, the general multiplicative first Zagreb index for certain networks are computed. Also we compute some other

multiplicative reduced indices for certain networks.

2. Result for Silicate Networks

Silicates are very interesting and most complicated minerals. These are obtained by fusing metal oxides or metal carbonates

with sand. A silicate network of dimension n is denoted by SLn, where n is the number of hexagons between the center

and boundary of SLn. A 2-dimensional silicate network is depicted in Figure 1.

Figure 1. A 2-dimensional silicate network

Let G be the graph of a silicate network SLn with 15n2 + 3n vertices and 36n2 edges. From Figure 1, it is easy to see that

the vertices of SLn are either degree 3 or 6. In G, there are two types of vertices as given in Table 1.

dG(u) \ u ∈ V (G) 3 6

Number of vertices 6n2 + 6n 9n2 − 3n

Table 1. Vertex partition of SLn
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Theorem 2.1. The general multiplicative first Zagreb index of a silicate network SLn is

RMa
1 II (SLn) = 2a(6n2+6n) × 5a(9n2−3n). (2)

Proof. Let G be the graph of SLn. From Equation (1) and by using Table 1, we deduce

RMa
1 II (SLn) =

∏
u∈V (G)

(dG (u) − 1)a

= (3 − 1)a(6n2+6n) × (6 − 1)a(9n2−3n)

= 2a(6n2+6n) × 5a(9n2−3n).

By using Definitions and from Theorem 2.1, we establish the following results.

Corollary 2.2. Let SLn be an 2-dimensional silicate network. Then

(1). RM1II (SLn) = 212n2+12n × 518n2−6n.

(2). mRM1II (SLn) =
(
1
2

)12n2+12n ×
(
1
5

)18n2−6n
.

(3). RFII (SLn) = 218n2+18n × 527n2−9n.

(4). TRII (SLn) = 26n2+6n × 59n2−3n.

(5). RIDII (SLn) =
(
1
2

)6n2+6n ×
(
1
5

)9n2−3n
.

(6). RZII (SLn) =
(
1
2

)3n2+3n ×
(

1√
5

)9n2−3n

.

Proof. Put a = 2,−2, 3, 1,−1,− 1
2

in Equation (2), we get the desired results.

3. Results for Chain Silicate Networks

We now consider a family of chain silicate networks. This network is obtained by arranging n tetrahedral linearly and is

denoted by CSn. A chain silicate network is shown in Figure 2.

Figure 2. A chain silicate network

Let G be the graph of a chain silicate network CSn with 3n + 1 vertices and 6n edges. The vertices of CSn are either of

degree 3 or 6. In G, there are two types of vertices as given in Table 2.

dG(u) \ u ∈ V (G) 3 6

Number of vertices 2n + 2 n− 1

Table 2. Vertex partition of CSn
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Theorem 3.1. The general multiplicative first Zagreb index of a chain silicate network CSn is

RMa
1 II (CSn) = 2a(2n+2) × 5a(n−1). (3)

Proof. Let G be the graph of CSn. From Equation (1) and by using Table 2, we derive

RMa
1 II (CSn) =

∏
u∈V (G)

(dG (u) − 1)a

= (3 − 1)a(2n+2) × (6 − 1)a(n−3)

= 2a(2n+2) × 5a(n−1).

By using definitions and from Equation (3), we obtain the following results.

Corollary 3.2. Let CSn be an 2-dimensional chain silicate network. Then

(1). RM1II (CSn) = 24n+4 × 52n−2.

(2). mRM1II (CSn) =
(
1
2

)4n+4 ×
(
1
5

)2n−2
.

(3). RFII (CSn) = 26n+6 × 53n−3.

(4). TRII (CSn) = 22n+2 × 5n−1.

(5). RIDII (CSn) =
(
1
2

)2n+2 ×
(
1
5

)n−1
.

(6). RZII (CSn) =
(
1
2

)n+1 ×
(

1√
5

)n−1

.

Proof. Put a = 2,−2, 3, 1,−1,− 1
2

in Equation (3), we obtain the desired results.

4. Results for Hexagonal Networks

It is known that there exist three regular plane tilings with composition of same kind of regular polygons such as triangular,

hexagonal and square. Triangular tiling is used in the construction of hexagonal networks. This network is denoted by

HXn, where n is the number of vertices in each side of hexagon. A 6-dimensional hexagon network is shown in Figure 3.

Figure 3. Hexagonal network of dimension six
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Let G be the graph of a hexagonal network HXn. By calculation, G has 3n2 − 3n + 1 vertices and 9n2 − 15n + 6 edges.

From Figure 3, it is easy to see that the vertices of HXn are either of degree 3, 4, or 6. In HXn, there are three types of

vertices as given in Table 3.

dG(u) \ u ∈ V (G) 3 4 6

Number of vertices 6 6n− 12 3n2 − 9n + 7

Table 3. Vertex partition of HXn

Theorem 4.1. The general multiplicative first Zagreb index of a hexagonal network HXn is

RMa
1 II (HXn) = 26a × 3a(6n−12) × 5a(3n2−9n+7). (4)

Proof. Let G be the graph of HXn. From Equation (1) and by using Table 3, we obtain

RMa
1 II (HXn) =

∏
u∈V (G)

(dG (u) − 1)a

= (3 − 1)6a × (4 − 1)a(6n−12) × (6 − 1)a(3n2−9n+7)

= 26a × 3a(6n−12) × 5a(3n2−9n+7).

By using definitions and Table 3, we establish the following results.

Corollary 4.2. Let HXn, be a hexagonal network. Then

(1). RM1II (HXn) = 212 × 312n−24 × 56n2−18n+14.

(2). mRM1II (HXn) =
(
1
2

)12 × ( 1
3

)12n−24 ×
(
1
5

)6n2−18n+14
.

(3). RFII (HXn) = 218 × 318n−36 × 59n2−27n+21.

(4). TRII (HXn) = 26 × 36n−12 × 53n2−9n+7.

(5). RIDII (HXn) =
(
1
2

)6 × ( 1
3

)6n−12 ×
(
1
5

)3n2−9n+7
.

(6). RZII (HXn) =
(
1
2

)3 × ( 1
3

)3n−6 ×
(

1√
5

)3n2−9n+7

.

Proof. Put a = 2,−2, 3, 1,−1,− 1
2

in Equation (4), we obtain the desired results.

5. Results for Oxide Networks

Oxide networks are of vital importance in the study of silicate networks. An n-dimensional oxide network is denoted by

OXn. A 5-dimensional oxide network is shown in Figure 4.
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Figure 4. A 5-dimensional oxide network

Let G be the graph of an oxide network OXn. By calculation, G has 9n2 + 3n vertices and 18n2 edges. From Figure

4, it is easy to see that the vertices of OXn are either of degree 2 or 4. In OXn, there are two types of vertices as given in

Table 4.

dG(u) \ u ∈ V (G) 2 4

Number of vertices 6n 9n2 − 3n

Table 4. Vertex partition OXn

Theorem 5.1. The general multiplicative first Zagreb index of an oxide network OXn is

RMa
1 II (OXn) = 3a(9n2−6n). (5)

Proof. Let G be the graph of OXn. From Equation (1) and by using Table 4, we deduce

RMa
1 II (OXn) =

∏
u∈V (G)

(dG (u) − 1)a

= (2 − 1)a6n × (4 − 1)a(9n2−3n) = 3a(9n2−3n).

By using definitions and Table 4, we obtain the following results.

Corollary 5.2. Let OXn be an oxide network. Then

(1). RM1II (OXn) = 318n2−6n.

(2). mRM1II (OXn) =
(
1
3

)18n2−6n
.

(3). RFII (OXn) = 327n2−9n.

(4). TRII (OXn) = 39n2−3n.

(5). RIDII (OXn) =
(
1
3

)9n2−3n
.

(6). RZII (OXn) =
(

1√
3

)9n2−3n

.

Proof. Put a = 2,−2, 3, 1,−1,− 1
2

in Equation (5), we get the desired results.
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6. Results for Honeycomb Networks

A honeycomb network of dimension n is denoted by HCn, where n is the number of hexagons between central and

boundary hexagon. These networks are very useful in Computer Graphics and Chemistry. The number of vertices in HCn

is 6n2 and the number of edges in HCn is 9n2 − 3n. A honeycomb network of dimension 4 is shown in Figure 5.

Figure 5. Honeycomb network of dimension 4

From Figure 5, it easy to see that the vertices of HCn are either of degree 2 or 3. Let G be the graph of HCn. In HCn,

there two types of vertices as given in Table 5.

dG(u) \ u ∈ V (G) 2 3

Number of vertices 6n 6n2 − 6n

Table 5. Vertex partition of HCn

Theorem 6.1. The general multiplicative first Zagreb index of a honeycomb network HCn is

RMa
1 II (HCn) = 2a(6n2−6n). (6)

Proof. Let G be the graph HCn. From Equation (1) and by using Table 5, we deduce

RMa
1 II (HCn) =

∏
u∈V (G)

(dG (u) − 1)a

= (2 − 1)a6n × (3 − 1)a(6n2−6n) = 2a(6n2−6n).

By using definitions and Table 5, we establish the following results.

Corollary 6.2. Let HCn be a honeycomb network. Then

(1). RM1II (HCn) = 212n2−12n.

(2). mRM1II (HCn) =
(
1
2

)12n2−12n
.

(3). RFII (HCn) = 218n2−18n.

(4). TRII (HCn) = 26n2−6n.

(5). RIDII (HCn) =
(
1
2

)6n2−6n
.

(6). RZII (HCn) =
(
1
2

)3n2−3n
.

Proof. Put a = 2,−2, 3, 1,−1,− 1
2

in Equation (6), we get the desired results.
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