A Note on Multiplication Operators Between Orlicz Spaces

Heera Saini ${ }^{1, *}$ and Isha Gupta ${ }^{2}$
1 Department of Mathematics, G.C.E.T, Jammu, Jammu and Kashmir, India.
2 Department of Statistics, University of Jammu, Jammu, Jammu and Kashmir, India.

Abstract

In this paper, we study the boundedness of multiplication operators between any two Orlicz spaces. MSC: 47B38, 46E30. Keywords: Multiplication operators, Boundedness, Orlicz spaces, Musielak-Orlicz spaces. (C) JS Publication.

1. Introduction

Let $X=(X, \Sigma, \mu)$ be a σ - finite complete measure space. A nondecreasing continuous convex function $\phi:[0, \infty) \rightarrow[0, \infty)$ for which $\phi(0)=0$ and $\lim _{x \rightarrow \infty} \phi(x)=\infty$ is said to be an Orlicz function. For any $f \in L^{0}(X)$, we define the modular

$$
I_{\phi}(f)=\int_{X} \phi(|f(x)|) d \mu(x)
$$

and the Orlicz space

$$
L^{\phi}(\mu)=\left\{f \in L^{0}(X) \mid I_{\phi}(\lambda f)<\infty \text { for some } \lambda=\lambda(f)>0\right\}
$$

This space is a Banach space with two norms: the Luxemburg - Nakano norm

$$
\|f\|_{\phi}=\inf \left\{\lambda>0 \mid I_{\phi}(f / \lambda) \leq 1\right\}
$$

and the Orlicz norm

$$
\|f\|_{\phi}^{0}=\inf _{k>0}\left(1+I_{\phi}(k f)\right) / k
$$

For the study of Orlicz spaces, one can refer to [11, 13-15]. Multiplication operators on Orlicz spaces have also been studied in [5], [8] and references therein. The techniques used in this paper essentially depend on the conditions of embedding of one Orlicz space into another (see, [13, Page 45] for details).

[^0]
2. Boundedness of Multiplication Operators

In this section, we study the boundedness of multiplication operators on weighted Orlicz spaces.
Lemma 2.1 ([13, Lemma 8.3]). Let (X, Σ, μ) be a σ-finite nonatomic measure space, $\left\{\alpha_{n}\right\}$ a sequence of positive numbers and $\left\{s_{n}\right\}$ a sequence of measurable, finite, non-negative functions on X such that for $n=1,2, \ldots$

$$
\int_{X} s_{n}(x) d \mu(x) \geq 2^{n} \alpha_{n} .
$$

Then there exist an increasing sequence $\left\{n_{k}\right\}$ of integers and a sequence $\left\{A_{k}\right\}$ of pairwise disjoint measurable sets such that for $k=1,2, \ldots$

$$
\int_{A_{k}} s_{n_{k}}(x) d \mu(x)=\alpha_{n_{k}} .
$$

Theorem 2.2. Let (X, Σ, μ) be a σ-finite nonatomic measure space and $\theta: X \rightarrow \mathbb{C}$ be a measurable function. Then the multiplication operator $M_{\theta}: L^{\phi_{1}}(X) \longrightarrow L^{\phi_{2}}(X)$ is bounded if and only if there exist $a, b>0$ and $0 \leq h \in L^{1}(X)$ such that $\left.\phi_{2}(a|\theta(x)| u)\right) \leq b \phi_{1}(u)+h(x)$ for almost all $x \in X$ and for all $u \geq 0$.

Proof. Suppose that the converse holds. Let $0 \neq f \in L^{\phi_{1}}(X)$ and choose any $M \geq 1$ such that $M\left(b+\|h\|_{1}\right) \geq 1$. Then

$$
\begin{aligned}
I_{\Phi_{2}}\left(\frac{M_{\theta} f}{\left(M\left(b+\|h\|_{1}\right)\|f\|_{\Phi_{1}}\right) / a}\right) & =\int_{X} \phi_{2}\left(\frac{a|\theta(x) f(x)|}{M\left(b+\|h\|_{1}\right)\|f\|_{\Phi_{1}}}\right) d \mu(x) \\
& \leq \frac{1}{M\left(b+\|h\|_{1}\right)} \int_{X} \phi_{2}\left(\frac{a|\theta(x) \| f(x)|}{\|f\|_{\Phi_{1}}}\right) d \mu(x) \\
& \leq \frac{1}{M\left(b+\|h\|_{1}\right)} \int_{X}\left(b \phi_{1}\left(\frac{|f(x)|}{\|f\|_{\Phi_{1}}}\right)+h(x)\right) d \mu(x) \\
& \leq 1 .
\end{aligned}
$$

Thus $\left\|M_{\theta} f\right\|_{\Phi_{2}} \leq \frac{M}{a}\left(b+\|h\|_{1}\right)\|f\|_{\Phi_{1}}$ and hence M_{θ} is bounded. Consider the function

$$
h_{n}(x)=\sup _{u \geq 0}\left(\phi_{2}\left(2^{-n}|\theta(x)| u\right)-2^{n} \phi_{1}(u)\right) .
$$

Write $X=\bigcup_{i=1}^{\infty} X_{i}$, where $\left\{X_{i}\right\}_{i=1}^{\infty}$ is a pairwise disjoint sequence of measurable subsets of X with $\mu\left(X_{i}\right)<\infty$ for every $i=1,2, \ldots$. For every $q \in \mathbb{Q}^{+}$, we put $f_{q, i}(x)=q \chi_{X_{i}}(x)$, where $\chi_{x_{i}}$ is the characteristic function of X_{i}. Then it can be shown that

$$
h_{n}(x)=\sup _{\substack{r \in 0^{+} \\ i \in \mathbb{N}}}\left(\phi_{2}\left(2^{-n}|\theta(x)| f_{r, i}(x)\right)-2^{n} \phi_{1}\left(f_{r, i}(x)\right)\right) .
$$

Taking $\left(f_{k}\right)$ to be a rearrangement of $\left(f_{q, i}\right)$ with $f_{1}=f_{0, i}$, the above equation can be rewritten as

$$
h_{n}(x)=\sup _{k \in \mathbb{N}}\left(\phi_{2}\left(2^{-n}|\theta(x)| f_{k}(x)\right)-2^{n} \phi_{1}\left(f_{k}(x)\right)\right)
$$

It is clear that h_{n} are measurable and $h_{n}(x) \geq 0$ for each $x \in X$. To complete the proof, we need only to show that $\int_{X} h_{n}(x) d \mu(x)<\infty$ for some n. Suppose this is not true. Denote

$$
b_{m, n}(x)=\max _{1 \leq k \leq m}\left(\phi_{2}\left(2^{-n}|\theta(x)| f_{k}(x)\right)-2^{n} \phi_{1}\left(f_{k}(x)\right)\right) .
$$

Then $b_{m, n}$ are measurable, $b_{m, n}(x) \geq 0$ and $b_{m, n}(x)$ is a non-decreasing sequence tending to $h_{n}(x)$ as $m \rightarrow \infty$ for every $x \in X$. Thus for any n, there exists m_{n} such that $\int_{X} b_{m_{n}, n}(x) d \mu(x) \geq 2^{n}$. Writing $b_{n}=b_{m_{n}, n}$, we have $\int_{X} b_{n}(x) d \mu(x) \geq 2^{n}$ for $n=1,2, \ldots$ Let

$$
E_{n, k}=\left\{x \in X \mid \phi_{2}\left(2^{-n}|\theta(x)| f_{k}(x)\right)-2^{n} \phi_{1}\left(f_{k}(x)\right)=b_{n}(x)\right\}
$$

and

$$
E_{n}=X \backslash\left(E_{n, 1} \cup E_{n, 2} \cup \cdots \cup E_{n, m_{n}}\right)
$$

Then $\mu\left(E_{n}\right)=0$. Let

$$
\tilde{f}_{n}(x)= \begin{cases}0 & \text { if } x \in E_{n, 1} \cup B_{n} \\ f_{k}(x) & \text { if } x \in E_{n, k} \backslash \bigcup_{j=1}^{k-1} E_{n, j}, k=2,3, \ldots, m_{n}\end{cases}
$$

Then

$$
\begin{align*}
b_{n}(x) & =\phi_{2}\left(2^{-n}|\theta(x)| \tilde{f}_{n}(x)\right)-2^{n} \phi_{1}\left(\tilde{f}_{n}(x)\right) \tag{1}\\
& \geq 0
\end{align*}
$$

Therefore,

$$
\begin{aligned}
\int_{X} \phi_{2}\left(2^{-n}|\theta(x)| \tilde{f}_{n}(x)\right) d \mu(x) & =2^{n} \int_{X} \phi_{1}\left(\tilde{f}_{n}(x)\right) d \mu(x)+\int_{X} b_{n}(x) d \mu(x) \\
& \geq \int_{X} b_{n}(x) d \mu(x) \\
& \geq 2^{n}
\end{aligned}
$$

Thus by Lemma ??, with $a_{n}(x)=\phi_{2}\left(2^{-n}|\theta(x)| \tilde{f}_{n}(x)\right)$ and $\alpha_{n}=1$, we obtain an increasing sequence $\left\{n_{k}\right\}$ and a sequence $\left\{A_{k}\right\}$ of pairwise disjoint measurable sets such that

$$
\begin{equation*}
\int_{A_{k}} \phi_{2}\left(2^{-n_{k}}|\theta(x)| \tilde{f}_{n_{k}}(x)\right) d \mu(x)=1, \quad k=1,2, \ldots \tag{2}
\end{equation*}
$$

Put

$$
f(x)= \begin{cases}\tilde{f}_{n_{k}}(x) & \text { if } x \in A_{k} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

Then for any $\lambda>0$, using (2) and (3), we obtain

$$
\begin{aligned}
\int_{X} \phi_{2}\left(\lambda M_{\theta} f(x)\right) d \mu(x) & =\int_{X} \phi_{2}(\lambda|\theta(x)| f(x)) d \mu(x) \\
& =\sum_{k=1}^{\infty} \int_{A_{k}} \phi_{2}\left(\lambda|\theta(x)| \tilde{f}_{n_{k}}(x)\right) d \mu(x) \\
& \geq \sum_{k=p}^{\infty} \int_{A_{k}} \phi_{2}\left(2^{-n_{k}}|\theta(x)| \tilde{f}_{n_{k}}(x)\right) d \mu(x) \\
& =\infty
\end{aligned}
$$

where p is so large that $2^{-n_{p}} \leq \lambda$. And using (1), (2) and (3), we have

$$
\begin{aligned}
\int_{X} \phi_{1}(f(x)) d \mu(x) & =\sum_{k=1}^{\infty} \int_{A_{k}} \phi_{1}\left(\tilde{f}_{n_{k}}(x)\right) d \mu(x) \\
& =\sum_{k=1}^{\infty} 2^{-n_{k}} \int_{A_{k}} \phi_{2}\left(2^{-n_{k}}|\theta(x)| \tilde{f}_{n_{k}}(x)\right) d \mu(x)-\sum_{k=1}^{\infty} 2^{-n_{k}} \int_{A_{k}} b_{n_{k}}(x) d \mu(x) \\
& \leq \sum_{k=1}^{\infty} 2^{-n_{k}} \int_{A_{k}} \phi_{2}\left(2^{-n_{k}}|\theta(x)| \tilde{f}_{n_{k}}(x)\right) d \mu(x) \\
& =\sum_{k=1}^{\infty} 2^{-n_{k}}
\end{aligned}
$$

≤ 1.

Thus, $f \in L^{\phi_{1}}(x)(X)$ but $M_{\theta}(f) \notin L^{\phi_{2}}(X)$, which is a contradiction. Hence,

$$
\int_{X} h_{n}(x) d \mu(x)<\infty \text { for some } n
$$

This completes the proof.

References

[1] M. B. Abrahamese, Multiplication operators, Lecture Notes in Math., 693(1978), 17-36.
[2] S. C. Arora, G. Datt and S. Verma, Multiplication operators on Lorentz spaces, Indian Journal of Math., 48(3)(2006), 317-329.
[3] S. Chen, Geometry of Orlicz spaces, Dissertations Math., 356(1996), 1-204.
[4] L. Drewnowski and W. Orlicz, A note on modular spaces XI, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 16(1968), 877-882.
[5] S. Gupta and B. S. Komal, Multiplication operators between Orlicz spaces, Integral Equations and Operator Theory, 41(2001), 324-330.
[6] Y. Cui , H. Hudzik, R. Kumar and L. Maligranda, Composition operators in Orlicz spaces, J. Aust. Math. Soc., 76(2004), 189-206.
[7] H. Hudzik and L. Maligranda, Amenya norm equals Orlicz norm in general, Indag. Math. N. S., 11(2000), 573-585.
[8] B. S. Komal and S. Gupta, Multiplication operator between Orlicz spaces, Integr. Equ. Oper. Theory, 41(2001), 324-330.
[9] M. A. Krasnoselkii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Noordhoff, Graningen, (1961).
[10] R. Kumar, Composition operators on Orlicz spaces, Integral Equations and Operator Theory, 29(1997), 17-22.
[11] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Math. 5, Univ. Estadual de Campinas, Campinas SP, Brazil, (1989).
[12] L. Maligranda, Some remarks on Orlicz's interpolation theorem, Studia Math., 95(1989), 43-58.
[13] J. Musilek, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin-New York, (1983).
[14] M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York, (1991).
[15] M. M. Rao and Z. D. Ren, Applications of Orlicz spaces, Marcel Dekker, New York, (2002).
[16] H. Takagi and K. Yokouchi, Multiplication and composition operators between two L^{p}-spaces, in: Function Spaces (Edwardsville, IL 1998), Contemp. Math. 232, Amer. Math. Soc., Providence, RI (1999), 321-338.

[^0]: * E-mail: heerasainihs@gmail.com

