

OPERATORI PE BIȚI ÎN LIMBAJUL C.

EXPLICAREA ÎN DETALIU A MODULUI DE UTILIZARE. MICI TRUCURI

Rezumat. Limbajele de programare oferă o serie de operatori, în principal pentru operațiile matematice

obișnuite. De obicei, au instrucțiuni asociate pe care microprocesorul le poate executa direct. Operatorii pe

biți corespund, de asemenea, instrucțiunilor pe care microprocesorul le are în set, chiar dacă nu corespund

neapărat cu operații cunoscute. Astfel, utilizarea lor pentru a îndeplini anumite sarcini face ca programele

să fie foarte rapide. În acest articol este prezentată sintaxa și efectul acestor operatori în limbajul C / C ++

și elucidate situații relevante în care anumite probleme pot fi rezolvate în mod elegant și printr-un cod care

este executat rapid, cu ajutorul operatorilor pe biți.

Cuvinte cheie. limbaje de programare, operatori pe biți, soluția problemei, instrucțiuni.

Introduction

They are operators that apply to data of whole types. In order to understand the effect

of their application, we must master the internal representation of integers in the reserved

memory area. To be simpler to write the examples, we will consider integer variables on 2

bytes (16 bits), which we will present being valid for the other types of whole data. The

first rule is that positive values are stored in their reserved bits according to the writing of

the value in base 2. Exemple:

short a;

a = 43;

The variable a will occupy 16 bits and following the assignment, their configuration

will be the following:

Bit position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit value 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

62

Acta et Commentationes, Sciences of Education, nr. 4 (18), 2019 ISSN 1857-0623
p. 62-72 E-ISSN 2587-3636

CZU: 004.02 DOI: 10.36120/2587-3636.v18i4.62-72

 BITWISE OPERATORS IN C LANGUAGE

THE EXPLANATION, IN DETAIL, OF THEIR USE. LITTLE TRICKS

Marius NICOLI, ”Frații Buzești” National College, Craiova, România

*Coordinator of the National Junior Lottery; Team Leader of the national team at

several international competitions; coordinator of the Scientific Commission at

the Balkan Youth Olympiad (2018); teacher didactic grade 1.

Summary. The programming languages provide a number of operators, primarily for the usual

mathematical operations. Usually they have associated instructions that the microprocessor can execute

directly. The bitwise operators also correspond to instructions that the microprocessor has in its set, even if

they do not necessarily correspond to widely known operations. Thus, using them to perform certain tasks

makes the programs very fast, especially if they are used in their critical sequences. In this material we will

present the syntax and the effect of these operators in the C / C ++ language and we will present relevant

situations where certain problems can be solved elegantly and by code that is executed quickly, with the

help of bitwise operators.

Keywords. Programming languages, bitwise operators, the solution of the problem, instructions.

According to the writing rule in base 10 we have 25 + 23 + 21 + 20 = 43. A

short variable type we know it may range between -215 and 215 - 1 (there are a total of

216 values, that is, for each configuration of 0 and 1 of length 16, one value in this range).

Therefore, the maximum positive value is 215 - 1. But this number is equal to the value

of the expression: 214 + 213 + ... + 21 + 20. This is a known thing in mathematics,

but we will see that there are more interpretations in informatics that justify this result. We

deduce that for the maximum value, all bits, except the first one, have the value 1. So, the

internal representation of 32767 is:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We deduce automatically: the other positive values have as internal representations

configurations that can have 0 values instead of the existing 1 values. The conclusion is as

follows: all configurations that have the first bit 0 correspond to positive values. If our

variable were of the unsigned short type, the value 1 for the first bit (the front bit, bit 15

or, more often said, the most significant bit) would have represented positive values

between 215 and 216 - 1. That's because at the positive values of the short 215 is added

(because it is the 1 the most significant bit).

For the short type (and the other integer types that are not written

unsigned), the configurations that have the most significant bit equal to 1 are

internal representations of negative numbers.

We will present below the rule after which the module is deduced when the

configuration stores a negative value. If we thought hastily, we could say that the presence

of 1 in front means a negative number and the conversion into the base 10 of the

configuration with the other bits is the absolute value. But it is not quite so. Here is a simple

justification, for example:

The number 1 stored in a short variable has the representation:

0000000000000001

Number -1, as in the above reasoning would be:

1000000000000001

The addition of the two values should be 0. But it is obvious that this is not the case.

0000000000000001 +

1000000000000001 =

1000000000000010

Here is the correct rule of finding the absolute value at the negative numbers (called

the rule of the complement against 2): all the bits are complemented (the values 1 are

replaced by 0 and the 0 are replaced by 1), then they are added to the value 1 (based on 2).

Marius Nicoli

63

Here is an example:

Internal representation 1111111100010100

After complementary 0000000011101011

After adding 1 0000000011101100 (bits of 1 at the end become 0 and the first

0 becomes 1, the remaining values of the bits are kept).

Now, writing in base 10 the obtained number (0000000011101100) we have 27 +

26 + 25 + 23 + 22 = 236.

So the initial sequence, that is 1111111100010100, represents the internal representation

of the number -236.

Here's a sample:

-236 + 1111111100010100 +

236 0000000011101100

0 10000000000000000

It is observed that the last 16 bits reach all 0, and the front bit, 1 (given by transport),

is outside the allocated memory area, so the result is 0.

Remarks:

 the value -1 will be represented by all bits 1 (if we add the value 1 the transport always

propagates and the value 0 is obtained);

 the value with all bits 1 is at the same time the maximum value of the corresponding

unsigned type;

 a configuration consisting only of bits 1 represents a power shape number of 2 – 1;

 the odd numbers are those that have the least significant bit equal to 1 (the only odd

power of 2 that appears in sum when transforming from base 2 to base 10).

We can say that the following rule for transforming a number from base 10 to base

2 is valid (apart from the general one where we repeatedly divide to 2 and take the

remaining values in reverse order): For the given number, we look for the highest power

of 2 less than or equal to the given number, then subtract it from the number and resume

for the remaining value. We repeat this until the value reached is 0. This approach is correct

because we will not determine twice the same power of 2 (the sum of two powers of 2 is

also a power of 2 and would mean that at a step we would not have found correctly the

power of 2 less than or equal to the current value). Also, the fact that the powers of 2 that

appear are distinct is consistent with the fact that we have only the digit 0 and the digit 1

in the base 2.

Exemple: We would like to write in base 2 the number 41. We look for the biggest

power of 2 less than or equal to 41 and we find 32. We continue with 9 (41 - 32). We

find 8 and we continue with 1 (9-8). Now we have 1 and so we reach 1-1 = 0, meaning

that we can stop. So 41 = 32 + 8 + 1 = 25 + 23 + 20. So the writing in base 2 of

the number 41 is: 101001.

Bitwise operators in C language. The explanation, in detail, of their use. Little tricks

64

Bitwise operators are divided into two categories: logical bitwise operators and shift

operators.

Logical bitwise operators

We emphasize what we said before, they apply to whole data.

They are:

~ not logical on bits, it is a unary

operator

& and logical on bits, binary

| or logical on bits, binary

^ exclusive (xor) logical on bits,

binary

We notice that operators and/or are written differently than logical ones that

contain the double sign character. The operator ~ is unary, it is applied to an integer

operand and the result is the one obtained by complementing the bits of the operand.

Obviously, it has no effect on the operand, which can be any kind of expression.

Examples:

Code sequence What is

displayed

Explanation

short a;

a = -1;

cout<<(~a);

0 The internal representation of -1 is formed only of bits 1.

After complementing them, only bits 0 are obtained which

represents the internal encoding of the value 0.

short a;

a = -236;

cout<<(~a);

235 The internal writing of - 236 is:

1111111100010100

Its negation:

0000000011101011 (235)

The & operator is binary, it is applied to two integer values and the result is what we

get by applying ”and” bit by bit between all pairs of bits in the same position. At ”and”

the result is 1 only if both ”operands” are 1.

Examples:

Code sequence What is displayed Explanation

short a, b, c;

a = 101;

b = 87;

c = (a&b);

cout<<c;

69 a: 0000000001100101

b: 0000000001010111

c: 0000000001000101

short a, b, c;

a = 501;

b = -236;

c = (a&b);

cout<<c;

276 a: 0000000111110101

b: 1111111100010100

c: 0000000100010100

Marius Nicoli

65

If we imagine the writings in base 2 as being sets represented by a characteristic

vector, we can say that after applying the operator & we obtain the intersection of the two

sets.

The | operator is binary, it is applied to two integer values and the result is what we

get by applying ”or” bit by bit between all pairs of bits in the same position. In ”or” the

result is 1 only if there is 1 in at least one operand.

Examples:

Code sequence What is displayed Explanation

short a, b, c;

a = 101;

b = 87;

c = (a|b);

cout<<c;

119 a: 0000000001100101

b: 0000000001010111

c: 0000000001110111

short a, b, c;

a = 501;

b = -236;

c = (a|b);

cout<<c;

-11 a: 0000000111110101

b: 1111111100010100

c: 1111111111110101

If we imagine the writings in base 2 as being sets represented by a characteristic

vector, we can say that following the application of the operator | the reunion of the two

sets is obtained.

The operator ^ is binary, it is applied to two integer values and the result is what we

obtain by applying ”exclusive or” bit by bit between all pairs of bits in the same

position. At ”exclusive or” the result is 1 only if exactly one operand is 1.

Examples:

Code sequence What is displayed Explanation

short a, b, c;

a = 101;

b = 87;

c = (a^b);

cout<<c;

50 a: 0000000001100101

b: 0000000001010111

c: 0000000000110010

short a, b, c;

a = 501;

b = -236;

c = (a^b);

cout<<c;

-287 a: 0000000111110101

b: 1111111100010100

c: 1111111011100001

If we imagine the writings in base 2 as some sets represented by a characteristic

vector, we can say that following the application of the operator ̂ the symmetric difference

of the two sets is obtained.

Bitwise operators in C language. The explanation, in detail, of their use. Little tricks

66

The shift operators

There are two shift operators, the left shift operator and the right shift operator. The

operator << (moving left) is binary, both operands being integers. The result is obtained by

translating to the left the bits of the left operand with as many positions as the value of the

right operand. The values of the bits that were in front and are out of the memory area will

be lost and the right side will be filled with 0.

Examples:

Code sequence What is displayed Explanation

short a, b;

a = 101;

b = (a << 3);

cout<<b;

808 a: 0000000001100101

b: 0000001100101000

short a, b;

a = -236;

b = (a << 2);

cout<<c;

-944 a: 1111111100010100

b: 1111110001010000

Here's a very important observation: the operation a << b is equivalent to a * 2b.

If we look at the first example, it is easy to prove what we said earlier. Moving to the left

with 3 positions all the exponentials of the powers of 2 that made up the representation

reach with 3 larger ones, that is, if at the new representation we give common factor 23 we

get in parenthesis even the initial value.

101 = 26 + 25 + 22 + 20.

808 = 101 << 3 = 29 + 28 + 25 + 23 = 23 * (26 + 25 + 22 + 20) =

23 * 101.

The >> operator (moving to the right) is binary, both operands being integers. The

result is obtained by translating to the right the bits of the left operand with as many

positions as the value of the right operand. The values of the bits that were in the back and

are out of the memory area will be lost and the left side will be filled with the sign bit. So,

in the negative numbers it will be filled with 1 (on all the necessary positions), and in the

positive numbers, analogous, with 0. Thus, the sign of the result will be the same as the

sign of the left operand. With a similar reasoning to the one shown to the left shift operator,

we deduce that the shift to the right is equivalent to the division to a power of 2. More

precisely, the expression a >> b is equivalent to a / 2b. Here is just the quotient of the

division (bits of 1 can be lost on the right when the division is not complete).

Marius Nicoli

67

Examples:

Code sequence What is displayed Explanation

short a, b;

a = 101;

b = (a >> 1);

cout<<b;

50 a: 0000000001100101

b: 0000000000110010

short a, b;

a = -236;

b = (a >> 2);

cout<<c;

-59 a: 1111111100010100

b: 1111111111000101

Bitwise operators (all except ~) can be combined with the assignment operator to

obtain new shortcut operators. Thus, you can write form expressions:

variable op = expression

where op can be: &, |, ^, <<, >>.

Exemple: n = (n >> 1) may be written as n>>=1

Pay attention to the use of bitwise operators in expressions with other operators as

they have very low application priority and so it is recommended to use as many brackets

as possible for grouping.

Using bitwise operators in expressions leads to increased running speed because for each

of them the processor has its own instructions.

Here are some things we can do elegantly using bit operators.

1<<k This expression is equivalent to 2k. By using the operator we

obtain this result directly compared to the classical calculation

that requires repetition.

1LL<<k Thus it must be written if we want to obtain powers of 2 greater

than 32. In the above expression constant 1 was of type int (so

it is implicit in C / C ++) so we must put the suffix to force the

representation of 1 on 64 bits.

n>>1 Equivalent to n / 2

n&1 This expression is equivalent to n%2. This means we can test

the parity of a number this way. Here is the justification: the

number 1 has only bits 0, except the least significant bit which

is 1. Putting 1 as an operand next to & all bits of the result, minus

the last one, will be 0. The last bit is obtained as & between bit

1 (from number 1) and the last bit of the other operand. So you

get 1 only if that bit is 1, too.

n^n 0

n^n^n n (xor applied by an even number of times on the same value

leads to 0, and xor applied by an odd number of times on the

same value leads to that value).

n^0 n

Bitwise operators in C language. The explanation, in detail, of their use. Little tricks

68

(n >> k) & 1 This is the expression we write to get the value of bit k of n. In

practice, by shifting we ”take” that bit to the last position, and

according to the previous example, it remains to apply & with

the number 1.

n = n + (1<<k)

or

n += (1<<k)

This instruction adds to 2k the value n. If the bit at position k

of n is 0, this expression has the effect of setting that value to 1

in n of that bit. Note that if the bit in position k is already 1, it

becomes 0 and more significant bits will be affected as transport

to the assembly operation in base 2 appears.

n = (n | (1<<k))

or

n |= (1<<k)

This is the expression that sets to 1 the bit value at position k in

n regardless of its previous value, the rest of the bits remaining

unchanged. If we imagine the binary representation of n as a

characteristic vector associated with a set, by this operation we

add (if it does not already exist), to the set the element k.

Here, more detailed, we prove what happens:

k = 4

n: XXXXXXXXXXXXXXXX

1: 0000000000000001

1<<k 0000000000010000

At ”or” with bit 1, at that position the obtained bit will be 1,

and the others remain unchanged since 0 is a neutral element in

this operation.

n = (n & ~(1<<k))

or

n &= ~(1<<k)

These are ways to set to 0 a certain bit of a variable, regardless

of its previous value and without affecting the values of the

other bits. If we knew for sure that the bit k is 1, to make it 0

we could use the expression n - = (1 << k)

Here, more detailed,it is what happens:

k = 4

n: XXXXXXXXXXXXXXXX

1: 0000000000000001

1<<k 0000000000010000

~(1<<k) 1111111111101111

After the operation & with bit 0, 0 is obtained, and otherwise no

changes occur as 1 is a neutral element in ”and”.

n & -n The value of this expression is always a power of 2. It represents

the least significant bit of n.

If we analyze the complement rule for 2 in order to find the

absolute value for a negative number, we notice that that is the

only bit that remains 1 at both n and - n (the remaining

positions have a maximum operand 1).

for (;n;n-=(n&-n))

{

 cnt++;

}

This code sequence counts in cnt how many bits of 1 it has n

written in base 2. It is observed that at every step it is eliminated

from its least significant bit. It is interesting that the number of

repetitive steps is equal to this value. In the following example

we will also present the raw variant that checks the value of each

bit separately.

Marius Nicoli

69

We emphasize that the current code sequence is also useful in

implementing the data structure called binary indexed trees.

for (i=15;i>=0;i--)

 if ((n>>i)&1)

 cnt++;

This is the sequence equivalent to the previous one but the

number of steps is always equal to the total number of bits of

the internal representation of n.

Exercises and solved problems

Problem Solution

1. For a given variable of type int,

write an expression that gives the

value obtained with its last k bits

(and the value k is given).

The operator & is applied between the value of n and

the one with 1 on the last k positions and in the rest

0. We have shown above that such values are powers

of 2 of which is subtracted 1. We obtain this:

n&((1LL<<k)-1).

2. For a given variable of type int,

write an expression that gives the

value obtained with its bits from

positions 6,7,8.

We reduce this problem to the previous one by

moving the three bits so that they reach the last three

positions. Then we apply the above code for k = 3.

(n>>6)&7.

We chose to use directly 7(1112) being equivalent

to (1LL<<k)-1)for k = 3.

3. Write an expression that sets to 1

the last 2 bits of the value of an int

variable, regardless of their

previous value. The rest of the bits

must keep their value.

n |= 3

I made ”or” with the number that has 1 on the last

two positions, in the rest 0. This is exactly 3.

4. Write an expression that sets to 0

the last 2 bits of the value of an int

- type variable, regardless of their

previous value. The rest of the bits

must keep their value.

n &= (-1 << 2)

Here we use ”and” the other operand having a value

that has 0 on the last two positions and subtract 1. We

obtained it using the fact that -1 contains only bits of

1 and the shift to the right introduces 0 at the end.

5. Given a variable of type short,

write a sequence of instructions for

the interchange of its two bytes (the

sequence of the most insignificant 8

bits must arrive, in the same order

on the most significant 8 bits, and

vice versa).

n = ((n&255)<<8)+((n>>8)&255)

Number 255 represents the value with the last 8 bits

1. The first term obtains the value with the last 8 bits

and by moving it 8 positions to the left, it adds

practically 8 to 0 at the end, preparing it to add the

value with the first 8 bits (obtained in the the second

term by an ”and” with 255 after going to the last 8

positions, by moving with 8 positions to the right).

6. Write a sequence of assignments

that interchanges the values of two

variables a and b, using the xor

bitwise operator and without

additional variables.

a=a^b;

b=a^b;

a=a^b;

Bitwise operators in C language. The explanation, in detail, of their use. Little tricks

70

Problem: We give n and n non-negative values and we ask to say for each how many bits

of 1 it has in the internal representation. The given values are 32 bits and the number of

given values is up to 106.

Solution:

The first solution is to apply the raw algorithm that tests each of the 32 bits of each

number in turn. Thus, the number of steps taken is of the order n * 32 (32 = the number

of bits on which the values are represented).

Another solution is to use the optimized alternative to obtain the number of bits 1 of

a value (the one by which we always eliminate the least significant bit of 1 and count, that

is n - = (n & -n)). However, if all given numbers have large number of bits 1, the

execution time tends towards the one from the previous version.

There is also a third, much faster solution, which we will present below. It is based

on the precalculation, for certain numbers, of the number of bits and the use of this

information. Calculating how many bits of 1 has each value on 32 bits is not practical,

because they are of the order of 4 billion values and both the time to realize this and the

memory needed to store all the values would be too large. We will precalculate the number

of bits 1 for each possible number on 16 bits and then see how we use this information.

On 16 bits there are 65536 possible values, that is the memory used is not big and

we will see in the count that neither the time used. If we note B [i] = the number of bits

1 of the writing in the base 2 of i, we have:

B[0] = 0;

B[1] = 1;

B[i] = B[i/2] if i is even;

B[i] = 1+B[i/2] if i is odd.

This is because the value i / 2 contains exactly the same bits as i, except the last

bit of i (i / 2 is equivalent to i >> 1 and it is possible to lose a bit of 1, in which case

the number i would be odd and then the value 1 will be added to the result).

Therefore, the precalculation is as follows:

b[0] = 0;

b[1] = 1;

for (i=2;i<=(1<<16)-1;i++)

 b[i] = b[i/2] + i%2; /// or b[i] = b[i>>1] + (i&1);

If all given numbers are on 16 bits, we can use precalculation and solve the problem as

follows:

cin>>n;

for (i=1;i<=n;i++) {

 cin>>a;

 cout<<b[a];

}

But we can do a little trick and solve the problem also for 32-bit numbers:

Marius Nicoli

71

cin>>n;

for (i=1;i<=n;i++) {

 cin>>a;

 cout<<b[a & 0xFFFF] + b[(a>>16) & 0xFFFF];

}

What is the meaning ?

The value 0xFFFF represents a 16-bit number, all of 1, that is (216-1), I could also

write (1 << 16) -1, as we have used so far in the article. This is because F (15) is

written as 1111. Therefore, writing a & 0xFFFF gives us the value that is obtained by

taking into account only the last 16 bits of a, so accessing B at this position we obtain as

many as 1 among the last 16 bits of a. It remains to add the number of bits with the value

of 1 of the first 16 bits of a. We notice that if we move to the right with 16 positions, the

bits that interest us remain the last 16 so we can use on the new values formula from the

other 16 - bit group.

We can say that we now answer directly for each given number, using an expression,

without additional iterations.

Conclusions

A number of common operations (such as those with powers of 2) can be performed

very quickly using bitwise operators, often reducing the use of a repetitive code sequence

when evaluating a single expression. The usual operations with sets can also be done

elegantly by using bitwise operators, obtaining besides good execution time a reduction in

the memory used, too. For example, we can represent a set that can have values between 0

and 31 through a single int type date, this having the characteristic vector meaning for the

set. Thus, the intersection operation of two sets can be performed by applying the bitwise

operator & to the variables that encode the set and the meeting operation by applying the

operator |.

References

1. King K.N. C Programming: A Modern Approach, 2th Edition. W. W. Norton &

Company, New-York, 2008. 832 p.

2. Kelley A., Pohl I. A Book on C: Programming in C, 4th edition. Addison-Wesley

Professional, USA, 1998. 752 p.

3. Kochan S.G. Programming in C, 4th Edition. Addison-Wesley Professional, USA,

2014. 600 p.

Bitwise operators in C language. The explanation, in detail, of their use. Little tricks

72

