

Synthesis of Spirohydantoins and Schiff Bases of Indenoquinoxalinones and Indenopyridopyrazinones

J.H. Song^{1,*,0}, S.M. BAE^{1,0}, H.Y. SHIN^{1,0}, D.I. JUNG^{1,0} and J.H. CHO^{2,*}

¹Department of Chemistry, Dong-A University, Busan 604-714, Republic of Korea ²Department of Medical Biotechnology, Dong-A University, Busan 604-714, Republic of Korea

*Corresponding authors: E-mail: jhsong@dau.ac.kr, jhcho@dau.ac.kr

Received: 16 February 2020;	Accepted: 28 April 2020;	Published online: 27 July 2020;	AJC-19969
-----------------------------	--------------------------	---------------------------------	-----------

The main structure of many compounds containing spirohydantoin and Schiff bases of indenoquinoxalines and indenopyridopyrazinones expose valuable pharmacological properties. Herein, an effective synthesis and stereochemistry of indenoquinoxalinones (**2a**, **2b**+**bi**~**2d**+**di**) and indenopyridopyrazinones (**2e**+**ei**~**g**+**gi**) *via* the reaction of ninhydrin with desirable diamines is reported. We synthesized the corresponding spirohydantoins (**3a**, **3b**~**d** and **3bi**~**di**) from synthesized indeno[1,2-*b*]quinoxalinones and indeno[1,2-*b*]pyrido[3,2-*e*]pyrazinones with the standard Bucherer-Bergs conditions (KCN, ammonium carbonate, acetonitrile, refluxing, without NaHSO₃). And also synthesized the azomethine analogs (**4~8+8i**) of tetracyclic indeno[1,2-*b*]quinoxalinones as a Schiff base.

Keywords: Spirohydantoin, Indenoquinoxalinones, Indenopyridopyrazinones, Ninhydrin, Diamine.

INTRODUCTION

Much attention during the past few years has been focused to a large range of nitrogen-containing heterocyclics and heterocyclic indenoquinoxalines because of their pharmacological properties and clinical applications [1-7]. Indenoquinoxalines as a significant group of aza-polycyclics are important classes of *N*-heterocycles since are useful intermediates for spiroindeno synthesis. The main structure of many spiro compounds containing spiroindenoquinoxalines expose valuable pharmacological properties such as anticancer, antitumor agents and antibacterial treatments, antimicrobial action of particular interest [8,9]. Especially spiro-*N*-heterocycles are also of noticeable interest because of the presence of a spirocarbon supplies a fortifying of the structural frame and together with a varity of hydantoins and spirohydantoins are the main significant core of many pharmacological agents [10,11].

Existing spirohydantoin and indenoquinoxaline moieties in structure of one spiro compound can be attractive to organic and bioorganic scientists due to the integration of more than one *N*-heterocyclic scaffold in structure of molecule causes interesting bioorganic and biological properties [12-18]. As away of our efforts to discover and develop novel studies on a group of spiroindenoquinoxalines with bicyclic group spiroattachted to hydantoin ring, herein the synthesis, stereochemistry and biological evaluation of new spiroindenoquinoxalines derivatives as potential pharmacological agents. Pharmacologically hydantoin and spirohydantoin derivatives possess a range of biochemical and pharmacological properties and subsequently are used to treat many human diseases as anticonvulsants in the treatment of seizure disorders, a muscle relaxant to treat neuroleptic malignant syndrome, malignant hyperthermia, ecstasy intoxication and spasticity [18,19]. But, there are only few studies concentrating on their potential as cancer therapeutic agents. In present work, develop a special and resourceful process for the combinatorial synthesis of a spiro-substituted indenoquinoxalines library for biological screening.

EXPERIMENTAL

Except where explicitly stated, all chemicals were purchased from Aldrich, Fisher and TCI, and used as received. Melting points were established using an electrothermal capillary melting point equipment and are uncorrected. ¹H & ¹³C NMR spectra were analyzed with Bruker AC 2000 (200 MHz) and Varian Gemini (200 or 300 MHz) spectrometers. Mass spectra were calculated with HP 5890 GC/Mass (70 eV, EI).

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

Indeno[1,2-b]pyrido[3,2-e]pyrazine-6-one: Ninhydrin (0.06 mol) and phenylenediamine (0.06 mol) were dissolved in MeOH (15 mL). The reaction mixture was allowed to mix at room temperature and observed by TLC to the point of completion. After mixing for 24 h, the reaction was poured into 15 mL of ice-water and the solid material was gathered. This material was then dissolved in CH₂Cl₂. The remaining residual water in the organic layer was separated from and dried over MgSO₄. Products were purified by column chromatography to afford the following compounds **2a-2gi**.

11*H***-Indeno[1,2-***b***]quinoxalin-11-one (2a)**: Yield: 93.2%; m.p.: 151-153 °C; R_f: 0.82 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 234.07 (1.2), 233.07 (16.2), 232.06 (100); ¹H-NMR (CDCl₃, 400 MHz): δ 8.22 (d, 1H), 8.08 (dd, 2H), 7.91 (d, 1H), 7.76 (dd, 3H), 7.59 (d, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 189.41, 156.58, 149.94, 142.26, 141.96, 141.08, 137.06, 136.76, 132.88, 132.55, 131.07, 130.47, 129.49, 124.33, 122.39. Elemental analysis calcd. (found) %: C, 77.58 (77.58); H, 3.47 (3.47); N, 12.06 (12.06); O, 6.89 (6.89).

7-Methyl-11*H***-indeno[1,2-***b***]quinoxalin-11-one (2b):** Yield: 90.4%; m.p.: 113-115 °C; R_f: 0.79 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 248.09 (1.4), 247.08 (17.3), 246.08 (100); ¹H-NMR (CDCl₃, 400 MHz): δ 8.05 (d, 2H), 7.94 (d, 1H), 7.86 (m, 2H), 7.70 (dd, 2H), 2.58 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 189.39, 156.59, 148.87, 143.25, 142.22, 140.27, 136.83, 132.64, 132.34, 130.52, 129.87, 126.90, 126.45, 124.14, 122.15, 21.41. Elemental analysis calcd. (found) %: C, 78.02 (78.03); H, 4.05 (4.09); N, 11.39 (11.38); O, 6.51 (6.50).

8-Methyl-11*H*-indeno[1,2-*b*]quinoxalin-11-one (2bi): Yield: 90.4%; m.p.: 106-107 °C; R_f: 0.79 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 248.09 (1.4), 247.08 (17.3), 246.08 (100); ¹H-NMR (CDCl₃, 400 MHz): δ 8.05 (d, 2H), 7.94 (d, 1H), 7.86 (m, 2H), 7.70 (dd, 2H), 2.58 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 190.42, 156.60, 143.24, 141.92, 140.95, 140.73, 136.90, 136.84, 134.42, 129.87, 128.20, 124.19, 124.22, 122.15, 21.40. Elemental analysis calcd. (found) %: C, 78.02 (78.03); H, 4.05 (4.09); N, 11.39 (11.38); O, 6.51 (6.50).

7-Chloro-11*H***-indeno[1,2-***b***]quinoxalin-11-one (2c):** Yield: 90.4%; m.p.: 149-150 °C; R_f: 0.78 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 267.03 (16.2), 268.02 (32), 266.02 (100); ¹H-NMR (DMSO-*d*₆, 400 MHz): δ 7.57 (m, 3H), 7.36 (m, 4H). Elemental analysis calcd. (found) %: C, 67.56 (67.57); H, 2.65 (2.69); Cl, 13.29 (13.30); N, 10.50 (10.52); O, 6.00 (6.01).

8-Chloro-11*H***-indeno[1,2-***b***]quinoxalin-11-one (2ci):** Yield: 90.4%; m.p.: 391-394 °C; R_f: 0.78 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 267.03 (16.2), 268.02 (32), 266.02 (100); ¹H-NMR (DMSO- d_6 , 400 MHz): δ 7.57 (m, 3H), 7.36 (m, 4H) Elemental analysis calcd. (found) %: C, 67.56 (67.57); H, 2.65 (2.69); Cl, 13.29 (13.30); N, 10.50 (10.52); O, 6.00 (6.01).

7-Benzoyl-11*H***-indeno[1,2-***b***]quinoxalin-11-one (2d):** Yield: 95.7%; m.p.: 88-90 °C; R_f: 0.81 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 338.10 (2.7), 337.09 (23.8), 331.09 (100). ¹H-NMR (CDCl₃, 400 MHz): δ 8.60 (d, 1H), 8.33 (d, 1H), 8.26 (m, 1H), 8.17 (dd, 2H), 7.96 (m, 1H), 7.88 (m, 2H), 7.83 (m, 1H), 7.68 (m, 1H), 7.54 (m, 1H), 7.26 (m, 1H); ¹³C-NMR (DMSO-*d*₆, 100 MHz): δ 195.01, 189.21, 159.46, 151.58, 144.52, 141.45, 141.11, 138.31, 137.55, 136.88, 133.83, 133.68, 133.26, 132.20, 130.28, 129.23, 124.81, 123.19. Elemental analysis calcd. (found) %: C, 78.55 (78.54); H, 3.66 (3.69); N, 8.33 (8.31); O, 9.51 (9.51).

8-Benzoyl-11*H***-indeno[1,2-***b***]quinoxalin-11-one (2di):** Yield: 95.7%; m.p.: 96-97 °C; R_f : 0.81 (TLC eluent; *n*-hexane :ethyl acetate = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 338.10 (2.7), 337.09 (23.8), 336.09 (100); ¹H-NMR (DMSO-*d*₆, 400 MHz): δ 8.61 (d, 1H), 8.33 (d, 1H), 8.26 (m, 1H), 8.17 (dd, 2H), 7.96 (m, 1H), 7.88 (m, 2H), 7.83 (m, 1H), 7.66 (m, 1H), 7.54 (m, 1H), 7.26 (m, 1H); ¹³CNMR (DMSO-*d*₆, 100 MHz): δ 195.01, 189.22, 158.48, 151.59, 144.52, 141.45, 141.11, 138.31, 137.55, 136.88, 133.83, 133.68, 133.26, 132.20, 130.28, 129.22, 124.81, 123.19. Elemental analysis calcd. (found) %: C, 78.56 (78.54); H, 3.66 (3.69); N, 8.33 (8.31); O, 9.51 (9.51).

6*H*-Indeno[1,2-*b*]pyrido[3,2-*e*]pyrazin-6-one (2e): Yield: 97.7%; m.p.: 96-97 °C; R_f: 0.81 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 234.06 (1.1), 234.06 (15.1), 233.06 (100); ¹H NMR (DMSO*d*₆, 400 MHz): δ 9.15 (d, 1H), 8.62 (d, 1H), 8.17 (m, 1H), 7.91 (dd, 2H), 7.76 (m, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 189.91, 159.97, 155.68, 151.48, 151.33, 141.11, 140.24, 137.57, 133.85, 126.11, 124.77, 123.36. Elemental analysis calcd. (found) %: C, 72.10 (72.14); H, 3.03 (3.01); N, 18.02 (18.02); O, 6.86 (6.87).

10*H***-Indeno[1,2-***b***]pyrido[2,3***e*]**pyrazin-10-one (2ei)**: Yield: 97.7%; m.p.: 96-97 °C; R_f: 0.81 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. int. %): 236.07 (1.1), 236.08 (15.1), 235.07 (100); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 9.15 (d, 1H), 8.62 (d, 1H), 8.17 (m, 1H), 7.92 (dd, 2H), 7.76 (m, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 189.91, 159.97, 155.68, 151.48, 151.33, 141.11, 140.24, 137.57, 133.85, 126.11, 124.77, 123.36. Elemental analysis calcd. (found) %: C, 72.10 (72.14); H, 3.03 (3.01); N, 18.02 (18.02); O, 6.86 (6.87).

6*H*-Indeno[1,2-*b*]pyrido[4,3-*e*]pyrazin-6-one (2f): Yield: 91.35%; m.p.: 246-247°C; R_f: 0.77 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. Int. %): 234.06 (1.1), 234.06 (15.1), 233.06 (100); ¹H NMR (DMSO*d*₆, 400 MHz): δ 8.60 (d, 1H), 8.33 (d, 2H), 8.26 (m, 1H), 8.17 (dd, 2H), 7.88 (m, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 189.33, 157.80, 150.74, 143.05, 141.03, 140.98, 137.46, 133.61, 132.98, 131.18, 128.18, 124.74, 122.98. Elemental analysis calcd. (found) %: C, 72.10 (72.10); H, 3.03 (3.06); N, 18.02 (18.04); O, 6.86 (6.87).

10*H***-Indeno[1,2-***b***]pyrido[3,4**-*e*]**pyrazin-10-one (2fi)**: Yield: 91.35%; m.p.: 246-247 °C; R_f: 0.77 (TLC eluent; ethyl acetate:*n*-hexane = 1:1, v/v). Mass (70 eV), *m/z* (rel. Int. %): 234.06 (1.1), 234.06 (15.1), 233.06 (100); ¹H NMR (DMSO*d*₆, 400 MHz): δ 8.60 (d, 1H), 8.33 (d, 2H), 8.26 (m, 1H), 8.17 (dd, 2H), 7.88 (m, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 189.33, 157.80, 150.74, 143.05, 141.03, 140.98, 137.46, 133.61, 132.98, 131.18, 128.18, 124.74, 122.98. Elemental analysis calcd. (found) %: C, 72.10 (72.10); H, 3.03 (3.06); N, 18.02 (18.04); O, 6.86 (6.87). **3-Bromo-10***H***-indeno[1,2-***b***]pyrido[2,3-***e***]pyrazin-10one (2g): Yield: 96.0%; m.p.: 140-142 °C; R_{f}: 0.25 (TLC eluent; ethyl acetate:***n***-hexane = 1:1, v/v). Mass (70 eV),** *m/z* **(rel. Int. %): 311.97 (15.1), 312.97 (97.3), 310.97 (100); ¹H NMR (DMSO-***d***₆, 400 MHz): \delta 9.22 (d, 1H), 8.98 (d, 1H), 8.17 (m, 1H), 7.94 (dd, 2H); ¹³C NMR (DMSO-***d***₆, 100 MHz): \delta 189.01, 158.35, 156.08, 154.49, 153.53, 150.18, 141.53, 140.17, 138.96, 137.66, 133.96, 124.91, 123.16, 120.79. Elemental analysis calcd. (found) %: C, 53.87 (53.88); H, 1.94 (1.94); Br, 25.60 (25.61); N, 13.46 (13.46); O, 5.13 (5.13).**

3-Bromo-6H-indeno[1,2-*b***]pyrido[3,2-***e***]pyrazin-6-one (2gi): Yield: 96.0%; m.p.: 140-142°C; R_f: 0.25 (TLC eluent; ethyl acetate:***n***-hexane = 1:1, v/v). Mass (70 eV),** *m/z* **(rel. Int. %): 311.97 (15.1), 312.97 (97.3), 310.97 (100); ¹H NMR (DMSO-***d***₆, 400 MHz): \delta 9.22 (d, 1H), 8.98 (d, 1H), 8.17 (m, 1H), 7.94 (dd, 2H); ¹³C NMR (DMSO-***d***₆, 100 MHz): \delta 182.91, 158.35, 156.08, 154.49, 153.53, 150.18, 141.53, 140.17, 138.96, 137.66, 133.96, 124.91, 123.15, 120.79. Elemental analysis calcd. (found) %: C, 53.87 (53.88); H, 1.94 (1.95); Br, 25.60 (25.61); N, 13.46 (13.46); O, 5.13 (5.13).**

Spirohydantoins : Indeno[1,2-*b*]quinoxalin-11-one (0.03 mol), KCN (0.045 mol) and ammonium carbonate (0.06 mol) were dissolved in acetonitrile (75 mL). The reaction mixture was heated under stirring to 80 °C for 72 h. After cooling to room temperature, the mixture was water down with 35 mL of water and filtered. The filtrate was acidified with diluted HCl to pH 7 and permited to mix at room temperature for 30 min. The precipitated solids were gathered by filteration, air dried and recrystallized from CH₂Cl₂-CH₃OH to give **3a-3di**.

Spirohydantoin 3a: Yield: 50.7%; R_f: 0.81 (TLC eluent ; *n*-hexane:ethyl acetate = 1:1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.708 (d, 1H), 8.196 (d, 1H), 7.907 (m, 1H), 7.796 (dd, 2H), 7.719 (m, 1H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 172.860, 158.247, 153.622, 142.406, 140.827, 137.245, 132.991, 131.213, 130.316, 129.346, 129.146, 124.902, 122.479, 70.064.

Spirohydantoin 3b: Yield: 43.3%; R_f : 0.81 (TLC eluent ; *n*-hexane:ethyl acetate = 1:1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.708 (d, 1H), 8.196 (d, 1H), 7.907 (m, 1H), 7.796 (dd, 2H), 7.719 (m, 1H), 2.674 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 172.860, 158.247, 153.622, 142.406, 140.827, 137.245, 132.991, 131.213, 130.316, 129.346, 129.146, 124.902, 122.479, 70.064, 23.233.

Spirohydantoin 3c: Yield: 60.2%; R_f : 0.35 (TLC eluent ; *n*-hexane:ethyl acetate = 2:1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 10.742 (d, 1H), 8.165 (d, 1H), 7.696 (m, 1H), 6.912 (dd, 2H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 167.518, 154.614, 142.807, 139.496, 135.295, 133.304, 131.040, 127.903, 124.623, 122.627, 120.259, 109.644, 108.484, 67.414.

Spirohydantoin 3d: Yield: 46.3%; R_f : 0.35 (TLC eluent ; *n*-hexane:ethyl acetate = 2:1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.504 (s, 1H), 8.364 (d, 1H), 8.238 (m, 2H), 7.881 (m, 3H), 7.746 (m, 3H), 7.625 (m, 3H), 4.796 (s, 1H).

Schiff bases: Indeno[1,2-*b*]quinoxalin-11-one (0.03 mol) and 4-fluoroaniline (0.03 mol) were dissolved in CH₃Cl (30 mL). The reaction mixture was allowed to stir at 40 °C. After stirring for 48 h, cool to room temperature, the mixture was poured with 30 mL of water and filtered. The filtrate was permited

to mix at room temperature for 30 min. The precipitated solids were gathered by filteration, air dried and recrystallized from CH_2Cl_2 -MeOH to give products, which were purified by column chromatography to afford the corresponding compounds **4-8i**.

Schiff base 4: Yield: 75.2%; R_f : 0.72 (TLC eluent; *n*-hexane:ethyl acetate = 2:1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.324 (d, 1H), 8.202 (d, 1H), 7.773 (m, 1H), 7.605 (dd, 2H), 7.273 (m, 1H), 7.191 (d, 2H), 7.089 (dd, 2H), 6.922 (m, 2H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 161.571, 159.150, 154.518, 151.573, 147.118, 147.089, 143.395, 142.595, 140.275, 133.547, 131.143, 131.265, 131.046, 129.907, 129.470, 126.800, 122.870, 119.584, 116.497, 116.272.

Schiff base 5: Yield: 78.5 %; R_f : 0.69 (TLC eluent; *n*-hexane: ethyl acetate = 2:1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.078 (d, 2H), 8.057 (m, 6H), 7.705 (m, 4H), 2.587 (s, 3H), 1.987 (s, 3H).

Schiff base 6: Yield: 76.5%; R_f: 0.72 (TLC eluent; *n*-hexane:ethyl acetate = 2:1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 9.196 (d, 1H), 8.993 (d, 1H), 8.987 (m, 6H), 8.093 (dd, 1H), 7.933 (m, 2H), 7.785 (m, 1H), 7.777 (m, 1H), 2.449 (s, 3H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 161.526, 159.707, 157.435, 155.843, 154.882, 153.573, 151.536, 142.885, 142.285, 141.986, 141.523, 140.317, 139.046, 135.436, 135.318, 126.264, 124.855, 124.509, 124.301, 122.145.

Schiff base 7: Yield: 75.2%; $R_f: 0.72$ (TLC eluent; *n*-hexane: ethyl acetate = 2:1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.302 (d, 3H), 7.774 (m, 2H), 7.418 (dd, 2H), 7.368 (m, 2H), 7.282 (m, 1H), 7.095 (m, 1H).

Schiff base 8: Yield: 60.2%; R_f: 0.72 (TLC eluent; *n*-hexane : ethyl acetate = 2 : 1, v/v); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.223 (d, 1H), 8.088 (d, 1H), 7.765 (m, 1H), 7.597 (dd, 3H), 7.260 (m, 4H), 1.679 (s, 3H).

RESULTS AND DISCUSSION

We report here in an effective synthesis and stereochemistry of indenoquinoxalinones and indenopyridopyrazinones via the reaction of ninhydrin with a variety of reagents as phenylenediamines, diaminopyridines, and diaminobenzophenone. A multi-component reaction between indenoquinoxalinones, potassium cyanide and ammonium carbonate, which result in the formation of spirohydantoins derived indenoquinoxalinones. Indenoquinoxalinones reacted quantitatively with highly funtionalized amines by refluxing to give Schiff bases derived indenoquinoxalinones with high yield. First of all the adjacent access of a hydroxyl group of ninhydrin to the presence of carbonyl groups makes this extremely reactive compound an attractive starting point for cascade reactions with diamino starting materials. The reaction of ninhydrin with o-phenylenediamine in MeOH is fully regiospecific and afforded the corresponding indeno[1,2-b]quinoxalin-11-one in 93.2% yield without the aid of any catalysts. A reasonable reaction mechanism is addition to C=O and substitution of two OH resulting from elimination of two water. IR spectrum of indeno[1,2-b]quinoxalin-11-one confirmed the existence of -C=N and C=O absorption bands at 1605 and 1728 cm⁻¹. The ¹H NMR spectrum revealed the ArH at δ 7.25-8.20 ppm. The mass spectrum indicated a molecular ion peak (M+) at m/z = 232.34 according to the molecular weight of the molecular formula $C_{15}H_8N_2O = 232.23$. As illustrated, indenoquinoxalinones and indenopyridopyrazinones are significant classes of nitrogen containing heterocycles and they consist useful intermediates in organic synthesis. In view of the biochemical and biological importance of indenoquinoxalinones and indenopyridopyrazinones, we report synthesis of indeno[1,2-b]quinoxalinones (2a, 2b+bi~2d+di) and indeno-[1,2-b]pyrido[3,2-e]pyrazin-6-ones (**2e+ei~g+gi**) from the reactions of ninhydrin with various phenylenediamines (ophenylenediamine (1a), 3,4-diaminotoluene (1b), 4-chloro-1,2-phenylenediamine (1c), 3,4-diaminobenzophenone (1d), 2,3-diaminopyridine (1e), 3,4-diaminopyridine (1f), 2,3-diamino-5-bromopyridine (1g), indeno[1,2-b]quinoxalin-11-one (2a), 7-methyl-11*H*-indeno[1,2-*b*]quinoxalin-11-one (**2b**), 8-methyl-11H-indeno[1,2-b]quinoxalin-11-one (2bi), 7-chloro-11Hindeno[1,2-b]quinoxalin-11-one (2c), 8-chloro-11H-indeno-[1,2-b]quinoxalin-11-one (**2ci**), 7-benzoyl-11*H*-indeno[1,2-b]quinoxalin-11-one (2d), 8-benzoyl-11H-indeno[1,2-b]quinoxalin-11-one (2di), 6H-indeno[1,2-b]pyrido[3,2-e]pyrazin-6one (2e), 10H-indeno[1,2-b]pyrido[2,3-e]pyrazin-10-one (2ei), 6H-indeno[1,2-b]pyrido[4,3-e]pyrazin-6-one (2f), 10H-indeno-[1,2-b]pyrido[3,4-e]pyrazin-10-one (2fi), 3-bromo-10H-indeno-[1,2-b]pyrido[2,3-e]pyrazin-10-one (**2g**), 3-bromo-6*H*-indeno-[1,2-*b*]pyrido[3,2-*e*]pyrazin-6-one (**2gi**). From here, we have a lot of concern for the stereochemistry of synthesized 11Hindeno[1,2-b]quinoxalin-11-ones and indeno[1,2-b]pyrido-[3,2-e]pyrazin-6-ones. As illustrated in Table-1, 7-methyl-11Hindeno[1,2-b]quinoxalin-11-one (2b) and 8-methyl-11H-indeno-[1,2-b]quinoxalin-11-one (2bi) as a stereoisomer were obtained with 90.4% yield by the reaction of ninhydrin with 3,4-diaminotoluene. The ¹H NMR spectrum of **2b**-CH₃ and **2bi**-CH₃ showed band at δ 2.60 ppm and 2.62 ppm, respectively. We couldn't separate 2b and 2bi as a single product. Compounds 2c~g and 2c'~g' as structural isomers like 2b and 2bi to form spirohydantoins and imines were used without separation. Spirohydantoin derivatives possess a range of biochemical and pharmacological characteristic and subse-quently are used to treat many human diseases. Synthesis of spirohydantoin from synthesized indeno-[1,2-b]quinoxalinones and indeno[1,2-b]pyrido[3,2-e]pyrazinones of a series of substituted spirohydantoins are described herein. When indeno[1,2-b]quinoxalinones were subjected to the standard Bucherer-Bergs conditions (KCN, (NH₄)₂CO₃, acetonitrile, refluxing, without NaHSO₃), spirohydantoins were isolated with high yield. Initially, we prepared spiro[imidazolidine-4,11'-indeno[1,2-b]quinoxaline]-2,5-dione (3a) from indeno[1,2-b]-quinoxalin-11-one (2a) with high yield as shown in Table-2 and Scheme-I.

The chemical structure of compound **3a** synthesized from compound **2a** was constituted on the base of spectral data. The ¹H NMR spectrum of compound **3a** revealed peaks of eight hydrogens for two ArH at δ 7.7-8.7 ppm. The mass spectrum indicated a molecular ion peak(M+) at m/z = 303.15 (M⁺ + 1), according to the molecular weight of the molecular formula C₁₇H₁₀N₄O₂ = 302.36. In a similar way, 7'-methylspiro[imidazolidine-4,11'-indeno[1,2-*b*]quinoxaline]-2,5-dione (**3b**) and 8'methylspiro[imidazolidine-4,11'-indeno[1,2-*b*]quinoxaline]-2,5-dione (**3bi**) from compounds **2b** and **2bi**, 7'-chlorospiro-

TABLE-1
PHYSICAL DATA AND YIELDS OF INDENO
QUINOXALINONES AND INDENO PYRIDOPYRAZINONES

Diamine	Product	Reaction time (h)	m.p. (°C)	Yield ^a (%)
1a	2a	12	151-153	93.2
1b	2b+2bi	12	156-160	90.4
1e	2e+2ei	12	131-132	97.7
1f	2f+2fi	24	160-162	91.3
1c	2c+2ci	12	126-129	90.4
1g	2g+2gi	12	154-155	96.0
1d	2d+2di	12	128-133	95.7

^aAll products were characterized using GC/MS and compared with authentic samples

TABLE-2	
PHYSICAL DATA AND YIELDS OF	7
SPIROHYDANTOIN DERIVATIVES	5

Starting material	Product	Reaction time (h)	m.p. (°C)	Yield ^a (%)
2a	3a	72	185-187	50.7
2b+2bi	3b+3bi	72	184-190	43.3
2c+2ci	3c+3ci	72	177-180	60.2
2d+2di	3d+3di	72	189-190	46.3
AALL and have a standard and a standard of CCARS and a standard with				

^aAll products were characterized using GC/MS and compared with authentic samples.

[imidazolidine-4,11'-indeno[1,2-b]quinoxaline]-2,5-dione (3c) and 8'-chlorospiro[imidazolidine-4,11'-indeno[1,2-b]quinoxaline]-2,5-dione (3ci) from cmpounds 2c and 2ci, and 7'-(2,5-dioxo-4-phenylimidazolidin-4-yl)spiro[imidazolidine-4,9'-indeno[1,2-b]pyrazine]-2,5-dione (**3d**) and 8'-(2,5-dioxo-4-phenylimidazolidin-4-yl)spiro[imidazolidine-4,9'-indeno-[1,2-b]pyrazine]-2,5-dione (3di) from compounds 2d and 2di were synthesized with high yield. Like synthesized 11H-indeno-[1,2-b]quinoxalin-11-ones and indeno[1,2-b]pyrido[3,2-e]pyrazin-6-ones, we couldn't isolate spiroisomers 3b~d and 3bi~di synthesized from 2b~d and 2bi~di. Separation of synthesized isomers as a single product was the most difficult problem. In continuation of our research for potential anticancer agents, the present Schiff base synthesis describes azomethine analogs of tetracyclic indeno[1,2-b]quinoxalinones. A mixture of indeno-[1,2-b]quinoxalin-11-one (2a) and 4-fluoroaniline in CHCl₃ and HCl was refluxed for 48 h. Progress of reaction was confirmed by TLC. The mixture was cooled and concentrated, then dissolved in water, neutralized by K₂CO₃ and extracted with CH₂Cl₂ thrice. The organic layer evaporated in vacuo and purified by column chromatography (*n*-hexane:ethyle acetate = 10:1, v/v). The residue was dried to give (Z)-N-(4-fluorophenyl)-11H-indeno[1,2-b]quinoxalin-11-imine (4) as a yellow solid with 75.2% yield. The evidence of formation for (Z)-N-(4-fluorophenyl)-11Hindeno[1,2-b]quinoxalin-11-imine (4) using ¹H NMR spectrum revealed peaks of eleven hydrogens for three ArHs at δ 6.9~ 8.4 ppm. The mass spectrum showed a molecular ion peak (M+) at $m/z = 326.326.21 (M^+ + 1)$, corresponding to the molecular weight of the molecular formula $C_{17}H_{10}N_4O_2 = 325.23$. In a similar way, (Z)-N-(4-fluorophenethyl)-11H-indeno[1,2-b]quinoxalin-11-imine (5), (Z)-N-(3-fluoro-4-methylphenyl)-11H-indeno[1,2-b]quinoxalin-11-imine (6), (Z)-N-(4-fluoro-

Scheme-I: Structure of indenoquinoxalines, indeno pyridopyrazinones and spirohydantoins

3-nitrophenyl)-11*H*-indeno[1,2-*b*]quinoxalin-11-imine (7), (*Z*)-*N*-(4-fluorophenyl)-7-methyl-11*H*-indeno[1,2-*b*]quinoxalin-11-imine (8) and (*Z*)-*N*-(4-fluorophenyl)-8-methyl-11*H*indeno[1,2-*b*]quinoxalin-11-imine (8i) as Schiff bases from the corresponding amine (4-fluorophenethylamine, 3-fluoro-4-methylaniline, 4-fluoro-3-nitroaniline or 4-fluoroaniline) were synthesized with high yield (Table-3 and Scheme-II).

Conclusion

An effective synthesis and stereochemistry of indenoquinoxalinones and indenopyridopyrazinones *via* the reaction of ninhydrin with a variety of reagents as phenylenediamines, diaminopyridines and diaminobenzophenone are reported. A multi-component reaction between indenoquinoxalinones, KCN and $(NH_4)_2CO_3$, which contribute to the formation of spirohyd-

TABLE-3 PHYSICAL DATA AND YIELDS OF SCHIFF BASE DERIVATIVES (4-8)				
Diamine	Product	Reaction time (h)	m.p. (°C)	Yield ^a (%)
2a	4	48	131-133	75.2
2a	5	48	138-130	78.5
2a	6	48	125-130	76.5
2a	7	48	129-130	75.2

 $^{\mathrm{a}}\text{All}$ products were characterized using GC/MS and compared with authentic samples.

Scheme-II: Structure of Schiff base derivatives

antoins derived indenoquinoxalinones. Indenoquinoxalinones reacted quantitatively with highly funtionalized amines by refluxing to give Schiff bases derived indenoquinoxalinones with high yield. Effectively indenoquinoxalinones, indeno-pyridopyrazinones, Schiff bases derived from indenoquinoxalinones, spirohydantoins formed from synthesized indeno[1,2-*b*]-quinoxalinones and indeno[1,2-*b*]pyrido[3,2-*e*]pyrazinones are the most important bioactive materials *in vivo*. Continually synthesis of novel meterials and bioactive evaluations of synthesized all products will be executed.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2015R1C1A1A01053578 and 2017R1C1B50-74137), BB21+ Project in 2019.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- C.H. Tseng, Y.L. Chen, P.J. Lu, C.N. Yang and C.C. Tzeng, *Bioorg. Med. Chem.*, 16, 3153 (2008); <u>https://doi.org/10.1016/j.bmc.2007.12.028</u>
- C.H. Tseng, Y.L. Chen, K.Y. Chung, C.M. Cheng, C.H. Wang and C.C. Tzeng, *Bioorg. Med. Chem.*, **17**, 7465 (2009); https://doi.org/10.1016/j.bmc.2009.09.021
- C.H. Tseng, C.C. Tzeng, C.L. Yang, P.J. Lu, H.L. Chen, H.Y. Li, Y.C. Chuang, C.N. Yang and Y.L. Chen, J. Med. Chem., 53, 6164 (2010); https://doi.org/10.1021/jm1005447
- C.H. Tseng, C.C. Tzeng, K.Y. Chung, C.L. Kao, C.Y. Hsu, C.M. Cheng, K.S. Huang and Y.L. Chen, *Bioorg. Med. Chem.*, **19**, 7653 (2011); https://doi.org/10.1016/j.bmc.2011.10.014
- C.H. Tseng, Y.L. Chen, C.L. Yang, C.M. Cheng, C.H. Han and C.-C. Tzeng, *Bioorg. Med. Chem.*, 20, 4397 (2012); https://doi.org/10.1016/j.bmc.2012.05.035
- C.H. Tseng, C.C. Tzeng, C.C. Chiu, C.L. Yang, P.J. Lu, C.K. Chou, C.Y. Liu and Y.L. Chen, *MedChemComm*, 5, 937 (2014); <u>https://doi.org/10.1039/C4MD00133H</u>
- L.W. Deady, J. Desneves and A.C. Ross, *Tetrahedron*, 49, 9823 (1993); https://doi.org/10.1016/S0040-4020(01)80184-8
- R. Sarges, J. Bordner, B.W. Dominy, M.J. Peterson and E.B. Whipple, J. Med. Chem., 28, 1716 (1985); <u>https://doi.org/10.1021/jm00149a030</u>
- R. Sarges, R.C. Schnur, J.L. Belletire and M.J. Peterson, J. Med. Chem., 31, 230 (1988);
- https://doi.org/10.1021/jm00396a037
 10. M.J. Nieto, A.E. Philip, J.H. Poupaert and C.R. McCurdy, J. Comb. Chem., 7, 258 (2005);
- https://doi.org/10.1021/cc049870t
- G.J.T. Kuster, L.W.A. van Berkom, M. Kalmoua, A. van Loevezijn, L.A.J.M. Sliedregt, B.J. van Steen, C.G. Kruse, F.P.J.T. Rutjes and H.W. Scheeren, J. Comb. Chem., 8, 85 (2006); <u>https://doi.org/10.1021/cc050072s</u>
- 12. N. Chatterjie and G.J. Alexander, *Neurochem. Res.*, **11**, 1669 (1986); https://doi.org/10.1007/BF00967745
- A. Czopek, H. Byrtus, M. Kolaczkowski, M. Paw³owski, M. Dyba³a, G. Nowak, E. Tatarczyñska, A. Wesolowska and E. Chojnacka-Wójcik, *Eur. J. Med. Chem.*, 45, 1295 (2010); https://doi.org/10.1016/j.ejmech.2009.11.053
- L.H. Goodson, J.L. Honigberg, J.L. Lehman and W.H. Burton, J. Org. Chem., 25, 1920 (1960); https://doi.org/10.1021/j001081a024
- H. Byrtus, M. Pawlowski, A. Czopek, A.J. Bojarski, B. Duszyňska, G. Nowak, A. Klodziňska, E. Tatarczyňska, A. Wesolowska and E. Chojnacka-Wójcik, *Eur. J. Med. Chem.*, 40, 820 (2005); https://doi.org/10.1016/j.ejmech.2004.07.013
- 16. P. Saluja, K. Aggarwal and J.M. Khurana, *Synth. Commun.*, **43**, 3239 (2013);

https://doi.org/10.1080/00397911.2012.760130

- Y. Shi, J. Zhang, P.D. Stein, M. Shi, S.P. O'Connor, S.N. Bisaha, C. Li, K.S. Atwal, G.S. Bisacchi, D. Sitkoff, A.T. Pudzianowski, E.C. Liu, K.S. Hartl, S.M. Seiler, S. Youssef, T.E. Steinbacher, W.A. Schumacher, A.R. Rendina, J.M. Bozarth, T.L. Peterson, G. Zhang and R. Zahler, *Bioorg. Med. Chem. Lett.*, **15**, 5453 (2005); <u>https://doi.org/10.1016/j.bmcl.2005.08.107</u>
- 18. N. Chatterjie and G.J. Alexander, IRCS Med. Sci., 12, 340 (1984).
- T. Krause, M.U. Gerbershagen, M. Fiege, R. Weisshorn and F. Wappler, Anaesthesia, 59, 364 (2004); <u>https://doi.org/10.1111/j.1365-2044.2004.03658.x</u>