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INTRODUCTION

Supramolecular structures with metal organic framework
arise due to intermolecular interactions with donor, acceptors
or fusion of donors and acceptors. Modification of these mole-
cular structures evolve due to dense participation of charge
has diverted attention of researchers for design novel molecular
structures for numerous applications in chemical and biological
sensors, actuators and related optoelectronic devices. A recent
study with charge transfer interactions relates chemical prop-
erties of metal organic complexes with liquid chromatography
[1], X-ray diffraction method [2] and elemental analysis [3].
These synthesized metal organic complexes depend on oxidation,
coordination number and reactivity in formation of self assem-
bled supramolecular structures [4] that enable to understand
biological evaluation [5] and optoelectronic properties [6].
Forces like short range repulsive forces, electrostatic forces,
ion pairs, dipole-dipole interactions evolve due to dense charge
carriers with non-covalent interactions responsible in formation
of supramolecular structures in metal organic framework. Focus
of present article is supramolecular structure due to self assem-
bling in terms of charge, functionality, structure and transition
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between partially filled states with the electron density method.
The method culminate electron correlation and exchange inter-
action that provide insights of metal and organic complexes
with focus on structural properties, non-linear properties [7]
and molecular docking [8]. Present frame work of complexes
is with metal oxide nanoparticles (aluminium oxide (ALO) [9],
copper oxide (CUO) [10] and iron oxide (IO) [11]) with p-
azoxy-anisole using ultrasonication. Accurate molecular
structure of p-azoxyanisole (AZ) and complexes AZIO, AZCUO
and AZALO with chemdraw are illustrated in Fig. 1. Bonding
mechanism of these deigned structures were interpreted for
bonding mech-anism with FTIR and FT Raman spectra along
with shifts in wave numbers. Electron density method (B3LYP)
with 6-31(d) basis set for molecular properties, frontier
molecular orbital contours (FMO), polarization and first order
hyperpolariza-bility responsible for electrooptical activity.

EXPERIMENTAL

Metal oxide nanoparticles and p-azoxyanisole were purc-
hased form Sigma-Aldrich, used as such without further purifi-
cation. Size of metal oxide nanoparticles were less than 50 nm
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(IO-19 nm, ALO-47 nm and CUO-14 nm). Ultrasonication
was performed with PCi analytics 250 W ultrasonic processor
with a 12 mm probe operating at a fixed frequency of 50 Hz
AC supply ; 220V. Sonication is a turbulence with ultrasonic
frequencies for speed dissolution of the two compounds.

Synthesis of p-azoxyanisole nanoparticle complexes:
Powdered compounds of metal oxides were synthesized accor-
ding to respective molar mass with respect to the organic
compound. Synthesis of p-azoxyanisole with metal oxides was
carried with preparing solutions for the powdered form of comp-
ounds. In the first step, 500 mg of p-azoxyanisole was dissolved
in respective proportions of ethanol for the process of ultrasoni-
cation. In the next step, in a separate beaker iron oxide (0.075
mg), copper oxide (0.010 mg) and aluminium oxide (0.012
mg) was dissolved in ethanol solution for ultrasonication. The
resultant mixtures were subjected to further ultrasonication and
dried with desiccators in obtaining a yield of 96%. Spectro-
scopic studies were performed for bonding mechanism with
infrared and Raman spectra; molecular and electronic properties
were attributed with Gaussian package.

RESULTS AND DISCUSSION

IR and Raman spectral analysis: Infrared spectra was
recorded with ThermoNicolet 6700 spectrometer in 4000-400

cm-1 wavenumbers with shifts in wavenumbers for bonding in
p-azoxyanisole and complexes. Typical infrared spectrum of
p-azoxyanisole in Fig. 2 and complex (AZALO) is illustrated
in Fig. 3 with respective characteristic bands of fingerprint and
functional groups in all complexes are listed in Table-1.
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Fig. 2. Infrared spectra of p-azoxyanisole
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Fig. 1. Bonded molecular structure of p-azoxyanisole (AZ) and complexes
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TABLE-1 
INFRARED SPECTRAL REGIONS OF  

p-AZOXYANISOLE AND COMPLEXES 

Compd. C-H CH)2 C-O NH)OPB CH)IPB 
AZ 3007 1563 1299 1091 807 

AZIO 3084 1594 1298 1020 837 
AZALO 3035 1564 1298 1092 837 
AZCUO 3085 1598 1296 1019 836 

 
Significant peaks with wavenumbers (cm-1) in p-azoxy-

anisole were 3007 (C-H), 1563 (CH)2, 1299 (C-O), 1091 (NH)OPB

and 807 (CH)IPB. Analyzing infrared spectra revealed the hypso-
chromic shift (≈ 80 cm-1) with complexes of oxides iron and
copper and (≈ 30 cm-1) with aluminium corresponding to C-H.
Bathochromic shift of (≈ 70 cm-1) corresponds to (NH)OPB with
complexes of iron and copper. All the complexes of p-azoxy-
anisole attribute a upward trend in wavenumbers in finger print
region CH)IPB. A significant feature of study is functional group
C-O has not influenced complexes of p-azoxyanisole with
unaltered shifts in complex AZALO corresponding to CH2 and
(NH)OPB. These shifts in wavenumbers attribute bonding in
the formation of complex with p-azoxyanisole.

FT-Raman spectra of the complexes revealed similar trend
in wavenumbers in respective regions but with reduced inten-
sity. Typical Raman spectra of p-azoxyanisole (Fig. 4) and
approximate wavenumbers of infrared and Raman spectra are
illustrated in Fig. 5.

Computational studies: Molecular and electronic prop-
erties were studied with electron density method B3LYP; 6-
31(d) basis set of Gaussian package 03. These studies employ
visualization of molecules, molecular orbital studies related
to frontier molecular orbital contours and electrostatic potential
(ESP) contour maps, which are responsible for electro-optical
activity. Molecules are visualized in ball and stick model with
representative atoms in grey (carbon), white (hydrogen), red
(oxygen), blue (nitrogen) and brown (ALO, CUO and IO),
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Fig. 4. Raman spectra of p-azoxyanisole
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Fig. 5. IR and Raman shifts of p-azoxyanisole and complexes

for molecular properties with Molecular Editor Avagadro
as shown in Fig. 6. Optimized structures of complexes with
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Fig. 3. Infrared spectra of complex AZALO
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p-azoxyanisole exhibited an increase in number of atoms, bonds,
normal modes and molecular weight with designed molecular
formula (Table-2).

TABLE-2 
MOLECULAR PROPERTIES OF  

p-AZOXYANISOLE AND ITS COMPLEXES 

Compd. 
Number 
of atoms 

Number 
of bonds 

Normal 
modes 

Designed 
molecular formula 

AZ 32 33 93 C14H14N2O2 
AZIO 45 47 135 C28H28N4O7 Fe2 

AZALO 41 44 126 C28H28N4O7Al2 
AZCUO 41 44 126 C28H28N4O6Cu 

 
Molecular orbital studies [12] infer energies associated with

charges in terms of ionization potential [13], electron affinity
[13] responsible for charge transfer mechanism in formation

of complex elucidated with frontier molecular orbital contours
(FMO) [14]. These contours specify regions of electropositive
(green regions) and electronegative (red regions) responsible
for charge distribution. Contours in red are LUMO (lowest
onoccupied molecular orbital), green are HOMO (highest
occupied molecular orbital) relate the electron affinity and
ionization potential separated with energy gap as illustrated
in Fig. 7 with electronic properties listed in Table-3.

Electronic properties responsible for electrooptical activity
are the difference in energy gap (∆E), dipole moment (ρ),
chemical hardness (η), susceptibility (χ = −µ), electrophilicity
index (ω = µ2/2η), anisotropy of polarizability(∆α), and first
order hyperpolarizability (β) in respective units. Increase in
high kinetic stability and dipole moment is a consequence of
reduced energy gap responsible for electronic properties related
electrooptical activity in terms of polarization and first order

AZ
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AZCUO AZIO

Fig. 6. Optimized structure p-azoxyanisole and complexes

TABLE-3 
ELECTRONIC PROPERTIES OF p-AZOXYANISOLE AND COMPLEXES 

Compound EHOMO ELUMO ∆E (eV) ρ (debye)
 ω = µ2/2η (eV) ∆α (a.u.)

 
β (a.u.)

 AZ 8.2356 5.3711 2.8645 2.094 16.15 122.96 77.22 
AZALO 6.2087 5.5306 0.6781 3.522 50.81 543.75 176.70 
AZIO 5.1132 4.9842 0.1290 3.214 202.28 311.88 616.09 

AZCUO 5.0612 5.0123 0.0489 2.712 521.53 364.71 203.80 
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Fig. 7. Frontier molecular orbitals of p-azoxyanisole and complexes
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Fig. 8. ESP contour maps of p-azoxyanisole and complexes
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hyperpolarizability [15,16]. The performed studies reveal a
intermolecular interactions with reduced energy gap and enha-
nced dipole moment with stabilization. The reciprocal behaviour
of energy and wavelength, there is red shift resulted in high
degree of aromacity as result of electronic transition. Softness
is a reciprocal of hardness infer tendency of nanoparticles in
the formation of complexes AZALO, AZIO, and AZCUO with
susceptibility with ultrasonication. Electronic properties [17-19]
in complexes of p-azoxyanisole with high electrophilicity
index infer electrooptical properties the polarizabilty and first
order hyperpolarizability.

ESP contours maps itemized the electron distribution that
favour low potential for high wavelength and high potential
for low wavelength with gradient of colours. p-Azoxyanisole
and its complexes revealed a greater influence of metallic oxides
with large participation electron distribution (yellow lines) with
high potential (Fig. 8).

Conclusion

Charge transfer interactions credit complexes of p-azoxy-
anisole with metal oxide nanoparticles. Synthesis of complexes
infers greater participation of nanoparticles in exchange of
charge carriers with high yield. Spectroscopic studies with
shifts in wavenumbers substantiate intermolecular interactions
with sharp peaks in infrared spectra. Studies with Molecular
Editor symbolize enrichment in molecular properties with opti-
mized geometry. Electronic properties assisted the formation
of complexes in frontier molecular orbitals with high kinetic
stability, electrophilicity index, polarization and first order
hyper polarizability. Electron distribution with contour maps
conveys a greater participation of electron transition with closely
space contours of high potential.
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