

Synthesis of Selective Bioactive Pyridylpyridones: in silico Studies and Biological Evaluations

SURESH RAMASAMY^{1,2}, SINGANAN PONNUCHAMY^{1,*} and SIVAKUMAR PONNUSAMY²

¹Alivira Animal Health Ltd, R & D Center, Visakhapatnam-530019, India ²Department of Chemistry, Arignar Anna Government Arts College, Namakkal-637002, India

*Corresponding author: E-mail: ponnuchamy_85@yahoo.co.in

Received: 24 June 2019;

Accepted: 18 August 2019;

Published online: 29 April 2020;

AJC-19824

Twenty three substituted pyridylpyridones were designed and performed for molecular docking studies against α -amylase enzyme. The top three hit molecules were synthesized and characterized by ¹H NMR, ¹³C NMR, ESI-mass and FT-IR spectroscopic techniques. Experimental biological applications were studied for these compounds. The DFT calculations were executed for the hit compounds. In addition, molecular electrostatic potential mapping was also executed for additional support.

Keywords: Pyridines, Anti-diabetic, Molecular docking, DFT studies, Molecular electrostatic map potential.

INTRODUCTION

Many heterocyclic compounds are originated by plants which showed numerous biological applications [1,2]. Especially, *N*-heterocyclic compounds have attracting biological and pharmacological properties [3]. Among various nitrogen containing heterocycles, 2-pyridone has a number of applications which is intermediate to the synthesis of the biologically active pyridine, quinoline, quinolizidine and indolizidine and also simple pyridones itself demonstrated as a bioactive compound [4]. In recent years, pyridones and its derivatives have a significant interest in the field of drug discovery. For example, the pyridone containing compounds showed multiple biological activities such as anti-inflammatory [5], antifungal [6], antibacterial [7] and antioxidant activities [8].

Similarly, pyridone based compounds such as milrinone and amrinone are used as cardiotonic agents [9]. Also, the researchers found that the ring-fused 2-pyridones act as acetylcholinesterase inhibitors [10], PARP-1 inhibitors [11] (PJ34) and anti-HIV agents [12]. Although Xu *et al.* [13] suggested that pyridone derivatives exhibited anticancer activity against lung cancer cells. Based on the prominence of pyridone, the research is motivated to synthesize pyridyl pyridone derivatives.

Molecular docking has been demonstrated a very efficient tool for novel drug discovery for targeting protein and most frequently used methods in structure-based drug design [14, 15]. It is generally known that molecular binding of one molecule (ligand) to the pocket of another molecule (receptor) [16]. This is a quicker and inexpensive method to identify drug candidates [17]. The major advantage of molecular docking is used to reduce the number of synthetic compounds in the field of drug discovery.

Structure activity relationship (SAR) is helping to understand the chemical-biological interactions in drug discovery research. SAR is useful to design the library of compound targeted toward particular receptors to increase the therapeutically active drug. Herein, 23 pyridone derivatives were screened for molecular docking studies. Out of 23 molecules, top three molecules are planning to synthesize because they may have good inhibitory activity. In continuation, experimental biological applications are planning to study for these compounds. DFT studies play an important role [18] in the identification of the properties of compounds under investigations, like HOMO, LUMO, band gap, chemical potential, electronegativity, global hardness and softness and electrophilicity index [19]. The comparative experimental and computational results give more information for biological studies [20]. The DFT calculations and molecular electrostatic potential are also focused to evaluate for the synthesized compounds.

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

EXPERIMENTAL

All the solvents used were analytical grade and purchased from Spectrochem and Sigma-Aldrich. Reactions were monitored by TLC analysis on precoated silica gel 60 F₂₅₄ in TLC sheets (0.2 mm thickness, Merck plate) and 60-120 mesh Merck silica gel used for column chromatography. Petroleum ether and ethyl acetate were used as the eluents. ¹H- and ¹³C-NMR spectra were recorded on Bruker 500 MHz and 125 MHz instruments, CDCl₃ and DMSO-*d*₆ were used as an internal solvent; δ in ppm relative to Me₄Si as internal standard, *J* in Hz. ESI-MS spectra were recorded in LCQ fleet mass spectrometer. FT-IR spectra were recorded in Thermo Scientific Nicolet iS50 FT-IR Spectrometer. Absorption measurements were carried out using a JASCO-V630 spectrophotometer (for α -amylase study).

General procedure for the synthesis of pyridone derivatives: To an ethanolic solution (10 mL) of acetyl pyridine (8.26 mmol), ethyl cyanoacetate (8.26 mmol), corresponding aldehyde (8.26 mmol) and ammonium acetate (66.08 mmol) was added. The reaction mixture was refluxed for 1-6 h. The completion of the reaction was monitored by thin layer chromatography. Then the reaction mixture was poured into crushed ice and filtered. The filtered solid was dried and purified by column chromatography using dichloromethane:methanol as a eluent (**Scheme-I**).

4-(2-Chlorophenyl)-6-oxo-1,6-dihydro[2,4'-bipyridine]-5-carbonitrile (3c): ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.64 (d, *J* = 5.4 Hz, 2H), 7.97 (d, *J* = 5.4 Hz, 2H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.53 - 7.49 (m, 2H), 7.45 (d, *J* = 8.4 Hz, 1H), 6.77 (s, 1H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.89, 153.40, 152.37, 148.31, 144.13, 135.56, 130.00, 129.75, 128.80, 128.07, 125.57, 119.74, 117.03, 104.00, 95.57. ESI-mass: calcd. (found): 307.05 (306.10) (M-1)⁻; IR (KBr disc, v_{max}, cm⁻¹): 3019, 2821, 2205, 1660, 1538, 824, 762.

6-Oxo-4-phenyl-1,6-dihydro[2,3'-bipyridine]-5-carbonitrile (3f): ¹H NMR (500 MHz, DMSO- d_6) δ 13.08 (s, 1H), 9.14 (s, 1H), 8.78 (d, J = 4.7 Hz, 1H), 8.36 (d, J = 8.1 Hz, 1H), 7.87-7.80 (m, 2H), 7.70-7.59 (m, 3H), 7.05 (s, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 160.38, 158.57, 153.96, 152.38, 143.27, 137.96, 130.09, 128.79, 120.08, 118.10, 112.57, 105.35, 99.20, 91.43. ESI-mass: calcd. (found): 273.09 (272.18) (M-1)⁻; IR (KBr disc, v_{max} , cm⁻¹): 3069, 2973, 2211, 1661, 1551, 809, 760.

4-(2,5-Difluorophenyl)-6-oxo-1,6-dihydro-[2,3'-bipyridine]-5-carbonitrile (3g): ¹H NMR (500 MHz, DMSO--*d*₆) δ 9.15 (s, 1H), 8.62 (bs, 1H), 8.37 (d, *J* = 8.0 Hz, 1H), 7.55-7.50 (m, 1H), 7.44-7.39 (m, 3H), 6.82 (s, 1H). ¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.27, 159.94, 158.05, 157.21, 156.78, 154.76, 150.77, 150.08, 148.92, 135.66, 135.00, 124.84, 120.05, 118.73, 118.46, 117.88, 105.52, 95.67. ESI-mass; calcd. (found): 309.07 (309.85) (M+1)⁺; IR (KBr disc, v_{max}, cm⁻¹): 3169, 2963, 2205, 1657, 1534, 819, 725.

α-Amylase inhibition activity

 α -Amylase inhibition assay was carried out by the reported literature [21]. In brief, various concentrations of synthesized compounds and acarbose solution were prepared in phosphate buffer (pH = 6.9, 0.2 M). To that solution, 0.5 % of α -amylase in phosphate buffer was added. The mixture was incubated for 10 min at 37 °C. Then a 1% starch solution was added and incubated for 30 min at 37 °C. To that mixture, 3,5-dinitrosalicylic acid (DNSA) reagent was added to stop the enzymatic reaction and incubated in boiling water bath for 15 min. Then the absorbance measured at 540 nm on a spectrophotometer. From the absorbance results, the % inhibition was calculated as follows:

Inhibition (%) =
$$\frac{A_t - A_c}{A_t} \times 100$$

where, $A_t = O.D.$ of test solution, $A_c = O.D.$ of control.

Molecular docking study: Molecular docking of compounds was carried out with α-amylase enzyme. Autodock 4.2 software was used for docking studies [22]. Three dimensional structure of synthesized compounds (**3a-w**) were constructed using ChemBio 3D ultra 13.0 software and then they were energetically minimized using MMFF94 (number of interaction is 5000, RMS gradient is set as 0.10) [23]. The crystal structure of the enzyme (PDB ID: 1HNY) was taken from Protein Data bank (www.rcsb.org). The docked complexes were visualized using discovery studio 4.1 client.

Computational calculations: Computational calculations of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in the checkpoint files were performed with Gaussian 09 W program using DFT methods [24]. The three dimensional structures of the compounds were optimized with B3LYP/6.311 ++ G (d,p) basis set. The Gauss view software package was used to visualize the computed structures including HOMO, LUMO and molecular electrostatic potential (MEP) representations.

RESULTS AND DISCUSSION

The top three hit compounds (**3c**, **3f** and **3g**) from molecular docking results were synthesized. The corresponding aldehydes react with 4-pyridyl acetophenone/3-pyridyl acetophenone and ethyl cyanoacetate in the presence of ammonium acetate under reflux condition yielded the target compounds. The reaction was carried out by one-pot synthetic method. The ethanol is used as a solvent and the reaction time was 1-6 h.

The synthesized compounds were characterized using spectroscopic techniques. In ¹H NMR clearly showed the singlet at around 6.7 ppm which is appeared for pyridone C5 attached proton. It confirms the formation of pyridone unit. The peaks appeared at 8.6, 7.9 ppm in compound 3c and 9.1 to 8.3 ppm in compounds **3f** and **3g** indicates the presence of pyridyl ring. The remaining protons appeared for aryl units. Similarly, the ¹³C NMR also confirms the product formation. The carbon signal in the region of 90-96 ppm indicates the presence of nitrile group. The carbon signals around 168-172 ppm indicate the presence of pyridone C4 carbon. The carbon signals around 99-104 ppm appeared due to the presence of C5 pyridone carbon. The other peaks appeared for remaining carbon units. The mass spectrum also confirms the product formation. The compounds showed a molecular ion peak in either positive or negative mode. The FT-IR spectrum gave some additional information for the compounds. The absorbance around 2200 cm⁻¹ indicates the presence nitrile group which is appeared due to nitrile stretching frequencies. The peak around 1650 cm⁻¹ indicates the presence of

Scheme-I: Synthetic route of pyridylpyridones

pyridone carbonyl units. The absorbance around 3100-2800 cm⁻¹ appeared for aromatic CH stretching frequencies.

Molecular docking studies

Selection and preparation of protein/enzymes structures: Molecular docking of pyridylpyridones (**3a-w**) was carried out with α -amylase enzyme. The crystal structure of α -amylase was downloaded from the Protein Data bank (www.rcsb.org). Water and ligand molecules were excluded from the target and polar hydrogen was added to the target. α -Amylase is one of the important enzymes because it plays a key role in the breakdown of starch to glucose. Excess of glucose levels affects diabetic patients. So inhibitors of α -amylase can effectively retard the digestion as well as the significant delay of postprandial hyperglycemia [25,26]. Hence, α -amylase is considered to be one of the best targets for the development of type II diabetes therapeutic agents. Molecular docking of α -amylase with compounds 3a-w: The docking of designed pyridylpyridones (3a-w) into the active site of α -amylase was performed and identified hit compounds exhibited favorable docking scores and interactions. Particularly, compounds 3c, 3f and 3g showed better potent binding energy and inhibition constant together with more hydrogen interactions than other derivatives. The docking results are represented in Table-1 and molecular docking interactions of hit compounds are shown in Fig. 1.

Molecular docking analysis of compound 3c in 1HNY: The docking pose of compound 3c in the active site of 1HNY was given in its three dimensional mode. The docking pose analysis revealed that pyridylpyridone is oriented in π -alkyl and π -sigma interactions surrounded by the amino acid side chains of Ala198, Leu162 and Trp59 in the active site of 1HNY. Five hydrogen bond interactions, one being between C=O group of compound 3c and imidazolyl nitrogen present in the residue

TABLE-1 MOLECULAR DOCKING INTERACTION OF THE PYRIDYLPYRIDONES (3a-w) AGAINST α -AMYLASE							
Compound No.	Binding energy (Kacal/mol)	Inhibition constant (µM)	Number of hydrogen bonding	Interacted amino acid residue (1HNY)			
3 a	-6.14	31.75	2	LYS200, GLU233			
3b	-6.54	16.16	5	GLU233, ARG195, ASP197, HIS299, TYR62			
3c	-7.72	2.2	5	ASP197, GLU233, ARG195, ASP300, HIS299			
3d	-6.14	31.75	3	ASP300, ARG195, HIS101			
3e	-6.43	19.44	5	ASP300, ARG195, ASP197, TYR62, ALA198			
3f	-7.64	2.52	5	GLU233, ARG195, ASP197, HIS299, TYR62			
3g	-7.45	3.42	5	HIS299, ARG195, GLU233, ASP197, ASP197			
3h	-6.47	18.1	0	-			
3i	-6.39	20.66	0	-			
3ј	-6.42	19.61	4	ARG195, ARG195, HIS101, TRP59			
3k	-6.23	27.03	1	TRP59			
31	-6.36	21.80	2	HIS201, TRP58			
3m	-6.54	16.14	1	HIS201			
3n	-6.86	9.32	1	GLU233			
30	-6.85	9.47	5	ARG252, ARG252, ARG252, ARG252, ARG398			
3р	-6.67	12.84	2	ARG195, ARG195			
3q	-6.38	20.07	1	THR163			
3r	-6.67	12.84	3	HIS101, ARG195, ARG195			
3s	-6.39	20.85	1	HIS101			
3t	-6.72	11.8	2	ARG195, ARG195			
3u	-6.42	19.78	0	0			
3v	-6.97	7.76	1	ASP300			
3w	-6.67	12.84	3	ARG398, ARG252, ARG252			

 Compound 3c
 Compound 3i
 Compound 3i

 Fig. 1. Molecular docking studies of synthesized compounds (3c, 3f and 3g) against α-amylase enzymes

of His299 (C=O.....N_{His299} = 2.77 Å), a second H-bonding interaction between Cl group of compound **3c** and the acidic side chain of α -carboxylic acid residue in Asp197 (OH_{Asp197}.....Cl_{pyridone ring} = 3.14 Å). Other three hydrogen bonds were observed between the CN group of pyridone ring with amino acid residues Glu233, Arg195 and Asp300. Their bonding distance is found to be 2.90, 2.90 and 2.55 Å. These interactions increase the binding affinity of the molecule as indicated by the docking score of the compound **3c** as -7.72 Kcal/mol and inhibitions constant is 2.2 μ M.

Molecular docking analysis of compound 3f in 1HNY: Compound **3f** showed five hydrogen bonding interactions, H-bonding interacted amino acid residues were found to be Gly104, Gln63/Gln63 and Trp59/Trp59. And also it showed a very good binding energy (-7.64 Kcal/mol) and inhibition constant (2.52 µM). Pyridine ring of Compound 3f has hydrogen bonding interaction with Gly104, the bond distance is found to be 3.13 Å. A NH group of Gln63 has two hydrogen bonding interactions through pyridone ring with the bond distance of 3.00 and 3.74 Å. Trp59 has π -donor hydrogen bond interaction with the pyridone carbonyl and nitrile. The hydrogen bonding distance is found to be 3.51 and 3.58 Å. Further, pyridine ring has π -alkyl and π - σ interactions with the amino acid residue of Val107 and Gly104, respectively. Similarly, benzene ring has π - σ interaction with Leu165. Pyridone ring was surrounded by π - π stacked with the amino acid of Trp59.

Molecular docking analysis of compound 3f in 1HNY: Likewise, in case of compound 3g, five hydrogen bond interactions were found with 1HNY enzymes. Compound 3g has the least binding energy (-7.45 Kcal/mol) and exhibited better inhibition constant (3.42 μ M). The nitrile group formed two hydrogen bonding interactions with Glu233 and Arg195, respectively. Similarly, fluoro substitutions showed two hydrogen bonding interactions with Asp197/Asp197. Another hydrogen bonding interaction was observed between the C=O group of compound 3g and imidazole nitrogen of His299. In addition, fluoro benzene ring forms π -alkyl and π - σ interactions with Ala198 and Leu162, respectively. On the other hand, the pyridine ring forms π - σ interaction with Trp59. Furthermore, carbonyl group exhibited π -donor hydrogen bond interaction with Tyr62.

Biological studies

α-Amylase inhibitory activity: The compounds 3c, 3f and 3g were screened for α-amylase inhibitory activity. The α-amylase inhibitory study was carried out at different concentrations (10-200 μM). Acarbose is used as a standard to compare their inhibitions. In 10 μM concentration, standard acarbose showed 16.89 percentage inhibitions while the synthesized compounds displayed 12.45-10.89 percentage inhibition. At 25 μM concentration, compounds 3c, 3f and 3g have shown 23.85 -21.22 percentage inhibition which is a nearer activity to standard acarbose (26.95 % percentage inhibition). Synthesized compounds (**3c**, **3f** and **3g**) showed 47.70-45.01 percentage inhibitions at 50 μ M concentration whereas standard has 54.78 percentage inhibitions. Again, the percentage inhibition was tested at higher concentrations such as 100 and 200 μ M, particularly compound **3c** showed 62.47 and 84.33 percentage inhibition. Over all from the graphical chart of α -amylase inhibitory studies, synthesized compound **3c** showed good inhibitory activity because the percentage inhibitions were nearer to standard drug. Moreover, compound **3c** showed good α -amylase inhibitory activity than the other two derivatives. The percentage inhibitions are shown in Fig. 2.

Fig. 2. α-Amylase inhibitory activity of synthesized compounds

Frontier molecular orbitals: Frontier molecular orbitals of the molecules will explain the molecule's reactivity. HOMO energy is associated with reactivity to electrophilic attack while LUMO energy is associated with reactivity to nucleophilic attack. The DFT parameters are represented in Table-2. The negative energies of HOMO and LUMO indicating the stability of the compound [27]. The band gap of HOMO and LUMO has been used to predict the molecule reactivity and stability of the molecule. The decrease energy gap explains charge transfer interaction within the molecule. The lower band gap of the molecule is a more reactive molecule which may have more bioactivity [28]. Among these synthesized compounds, compound **3c** possess lower energy gap. This may be due to the introduction of a sterically hindered Cl- group (ortho-substitution) in the benzene ring. The more reactive compound 3c exposed more enzyme inhibition in vitro studies. The electrophilicity index is the ability to accept the electron from the environment [29]. The increasing order of electrophilicity index value is compound 3c (ω = 10.6607 > **3f** ($\omega = 4.5596$) > **3g** ($\omega = 4.9044$). The compound **3c** exhibited the highest value of electrophilicity index which

TABLE-2 DFT CALCULATIONS OF SYNTHESIZED COMPOUNDS								
Compound No.	Ind No. HOMO (eV) LUMO (eV) Band gap (ΔE) Chemical Global Global softness Electron inc							
3c	-6.0973	-3.8001	2.297	-4.9487	1.1486	0.4353	10.6607	
3f	-6.4579	-2.2757	4.182	-4.3668	2.0911	0.2391	4.5596	
3g	-6.6146	-2.4376	4.177	-4.5261	2.0885	0.2394	4.9044	

TABLE-3 BOND LENGTHS, BOND ANGLES AND DIHEDRAL ANGLES OF TOP THREE HIT COMPOUNDS (3c, 3f AND 3g)						
Bond length (Å)		Bond angle (°)		Dihedral angle (°)		
		Compou	nd 3c		• · · ·	
H30-C17	1.08784	H30-C17-C8	119.963	H30-C17-C18-H31	-0.110	
C17-C18	1.39365	C17-C18-H31	119.923	H30-C17-C18-C19	179.666	
C18-H31	1.08773	C17-C18-C19	120.085	C17-C18-C19-H32	179.881	
C18-C19	1.39668	H31-C18-C19	119.991	C17-C18-C19-C7	-0.373	
C19-H32	1.08825	C18-C19-H32	118.845	H31-C18-C19-H32	-0.326	
C19-C7	1.40402	C18-C19-C7	120.533	H31-C18-C19-C7	179.182	
C7-C15	1.40596	H32-C19-C7	120.621	C18-C19-C7-C6	179.813	
C15-C20	1.72872	C19-C7-C6	118.621	C18-C19-C7-C15	0.708	
C15-C16	1.39798	C19-C7-C15	118.806	H32-C19-C7-C15	-179.793	
C16-H29	1.08658	C7-C15-C20	121.702	C19-C7-C6-C5	85.834	
C16-C17	1.39468	C7-C15-C16	120.378	C19-C7-C15-C20	179.570	
C7-C6	1.48452	C20-C15-C16	117.920	C19-C7-C15-C16	-0.606	
C6-C5	1.35808	C15-C16-H29	120.438	C7-C15-C16-H29	-179.531	
C5-C21	1.42008	C15-C16-C17	120.107	C20-C15-C16-H29	0.300	
C21-N22	1.16075	H29-C16-C17	119.454	C20-C15-C16-C17	18.000	
C5-C4	1.49129	C16-C17-H30	120.028	C15-C16-C17-H30	-179.564	
C4-O9	1.22039	C16-C17-C18	120.008	C15-C16-C17-C18	0.176	
C4-C3	1.36853	C15-C7-C6	122.487	H29-C16-C17-H30	0.138	
N3-H24	1.01184	C7-C6-C5	119.697	C16-C17-C18-H31	-179.631	
N3-C2	1.37630	C6-C5-C21	125.099	C16-C17-C18-C19	-0.075	
C2-C1	1.34923	C6-C5-C4	115.983	C16-C15-C7-C6	-179.675	
C1-H23	1.08713	C5-C21-N22	177.686	C20-C15-C7-C6	0.501	
C1-C6	1.47429	C21-C5-C4	118.916	C15-C7-C6-C5	-95.095	
C2-C8	1.47409	C5-C4-O9	123.781	C7-C6-C5-C21	-0.298	
C8-C14	1.39845	C5-C4-N3	120.553	C7-C6-C5-C4	-179.730	
C14-H28	1.08507	O9-C4-N3	115.664	C6-C5-C21-N22	-11.818	
C10-H25	1.08386	C4-N3-H24	117.736	C6-C5-C4-O9	178.119	
C10-C8	1.39689	C4-N3-C2	122.389	C6-C5-C4-N3	-1.336	
C14-C13	1.38457	H24-N3-C2	119.700	N22-C21-C5-C4	167.598	
C13-H27	1.08672	N3-C2-C1	119.164	C21-C5-C4-O9	-1.350	
C13-N12	1.34892	N3-C2-C8	119.941	C21-C5-C4-N3	179.195	
N12-C11	1.34876	C2-C1-H23	121.587	C5-C4-N3-H24	176.546	
C11-H26	1.08599	C2-C1-C6	121.115	C5-C4-N3-C2	1.377	
C11-C10	1.38553	H23-C1-C6	117.280	O9-C4-N3-H24	2.951	
		C1-C6-C7	119.519	O9-C4-N3-C2	-178.121	
		C1-C6-C5	120.783	C4-N3-C2-C8	-179.458	
		C1-C2-C8	120.882	C4-N3-C2-C1	-0.769	
		C2-C8-C14	120.070	H24-N3-C2-C8	5.464	

Vol. 32, No. 5 (2020)	Synthe	esis of Selective Bioac	tive Pyridylpyridones:	in silico Studies and Biolog	cical Evaluations 991
		C8-C14-H28	121.654	H24-N3-C2-C1	-175.846
		C8-C14-C13	118.555	N3-C2-C8-C14	50.832
		H28-C14-C13	119.785	N3-C2-C1-H23	-178.236
		C14-C13-H27	121.015	N3-C2-C1-C6	0.153
		C14-C13-N12	123.769	C2-C1-C6-C5	-0.201
		H27-C13-N12	115.216	H29-C16-C17-C18	179.879
		C13-N12-C11	116.791	C2-C1-C6-C7	-179.722
		N12-C11-H26	115.132	H23-C1-C6-C7	-1.266
		N12-C11-C10	123.807	H23-C1-C6-C5	178.254
		H26-C11-C10	121.061	C1-C6-C7-C15	84.431
		C11-C10-H25	119.740	C1-C6-C7-C19	-94.640
		C11-C10-C8	118.515	C1-C6-C5-C21	-179.817
		H25-C10-C8	121.742	C1-C6-C5-C4	0.751
		C10-C8-C14	118.561	C2-C8-C14-H28	1.422
		C10-C8-C2	121.360	C2-C8-C14-C13	-179.498
				C8-C14-C13-H27	-179.702
				C8-C14-C13-N12	0.325
				H28-C14-C13-H27	-0.604
				H28-C14-C13-N12	179.424
				C14-C13-N12-C11	-0.029
				H27-C13-N12-C11	179.997
				C13-N12-C11-H20	1/9./09
				N12 C11 C10 H25	-0.005
				N12-C11-C10-C8	-0 584
				H26-C11-C10-C8	-179 969
				C11-C10-C8-C14	0.438
				C11-C10-C8-C2	179.401
				H25-C10-C8-C14	-178.934
				H25-C10-C8-C2	0.029
				C10-C8-C14-C13	-0.521
				C10-C8-C14-H28	-179.601
				C10-C8-C2-N3	-128.115
		2	1.00	C10-C8-C2-C1	53.218
1120 017	1.09642	LI20 C17 C18	110.020	1120 C17 C19 1121	0.002
H30-C17	1.08042	H30-C17-C18	119.939	H30-C17-C18-H31	-0.005
C18 H31	1.09403	C17 C18 C10	120.084	C17 C18 C10 H32	179.814
C18-C19	1 39579	H31-C18-C19	120.004	C17-C18-C19-C7	-0 529
C19-H32	1.08756	C18-C19-H32	118,959	H31-C18-C19-H32	-0.322
C19-C7	1.40076	C18-C19-C7	120.199	H31-C18-C19-C7	179.288
C7-C15	1.40142	H32-C19-C7	120.841	C18-C19-C7-C6	179.482
C15-H28	1.08745	C19-C7-C15	120.813	C18-C19-C7-C15	0.725
C15-C16	1.39589	C19-C7-C15	119.406	H32-C19-C7-C6	-0.916
C16-H29	1.08767	C7-C15-H28	120.677	H32-C19-C7-C15	-179.673
C16-C17	1.39369	C7-C15-C16	120.214	C19-C7-C15-H28	179.763
C7-C6	1.48068	H28-C15-C16	119.108	C19-C7-C15-C16	-0.477
C6-C5	1.35821	C15-C16-C17	120.075	С7-С15-С16-Н29	-179.740
C5-C20	1.42007	C15-C16-H29	120.009	C7-C15-C16-C17	0.032
C20-N21	1.16138	H29-C16-C17	119.915	H28-C15-C16-H29	0.024
C5-C4	1.49215	C16-C17-H30	120.043	H28-C15-C16-C17	179.796
C4-09	1.22011	C16-C17-C18	120.043	C15-C16-C17-H30	-1/9.565
C4-H23	1.01108	C16-C17-C18	120.018		0.169
N3-C2	1.3//13	CT3-C7-C6	119.709	H29-C16-C17-H30	0.207
C1 H22	1.54957	C7-C0-C3	120.002	C16 C17 C18 H31	179.942
C1-C6	1.47515	N21-C20-C5	178 462	C16-C17-C18-C19	0.079
C2-C8	1.47138	C20-C5-C4	118.762	C16-C15-C7-C6	-179.247
C8-C10	1.39875	C5-C4-O9	123.825	H28-C15-C7-C6	0.992
C10-H24	1.08697	C5-C4-N3	120.620	C15-C 7-C6-C5	-106.275
C10-C11	1.39390	C9-C4-N3	115.554	C7-C6-C5-C20	-0.111
С11-Н25	1.08449	C4-N3-H23	119.687	C7-C6-C5-C4	179.638
C11-C12	1.38483	C4-N3-C2	119.677	C6-C5-C20-N21	-13.142
C12-H26	1.08623	N3-C2-C8	119.997	C6-C5-C4-N3	-1.583
C12-N13	1.34952	N3-C2-C1	119.076	N21-C20-C5-C4	167.115
N13-C14	1.35489	C2-C1-H22	121.717	C20-C5-C4-O90	-1.955
C14-H27	1.08765	C2-C1-C6	121.233	C20-C5-C4-N3	178.184

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C14-C8 C4-N3	1.39380 1.36874	H22-C1-C6 C1-C6-C5 C1-C2-C8 C8-C10-C11 H24-C10-C11 C10-C11-C12 H25-C11-C12 C11-C12-H26 C11-C12-H26 C11-C12-N13 H26-C12-N13 C12-N13-C14 C12-N13-C14 N13-C14-H27 N13-C14-C8 H27-C14-C8 C14-C8-C10 C14-C8-C2	117.043 120.730 119.262 120.813 119.919 119.260 118.364 120.614 121.068 123.640 115.292 116.708 114.164 124.402 121.431 116.964 122.225	$\begin{array}{c} C5-C4-N3-H23\\ C5-C4-N3-C2\\ O9-C4-N3-C2\\ C4-N3-C2-C8\\ C4-N3-C2-C8\\ C4-N3-C2-C1\\ H23-N3-C2-C1\\ H23-N3-C2-C1\\ N3-C2-C1-H22\\ N3-C2-C1-H22\\ N3-C2-C1-C6\\ C2-C1-C6-C7\\ C2-C1-C6-C7\\ H22-C1-C6-C5\\ H22-C1-C6-C7\\ H22-C1-C6-C5\\ C1-C6-C7-C19\\ C1-C6-C5-C20\\ C1-C6-C5-C4\\ C1-C6-C7-C15\\ C6-C1-C2-C17\\ H22-C1-C2-C8\\ C1-C2-C8-C10\\ C2-C8-C10\\ C2-C8-C10-H24\\ C2-C8-C10-C11\\ C8-C10-C11-H25\\ H24-C10-C11-H25\\ H24-C10-C11-H25\\ H24-C10-C11-H25\\ H24-C10-C11-H25\\ H24-C10-C11-C12\\ C10-C11-C12-N13\\ C10-C11-C12-N13\\ C10-C11-C12-N13\\ C11-C12-N13-C14\\ H26-C12-N13-C14-C8\\ N13-C14-C8-C2\\ H27-C14-C8-C2\\ H27-C14-C8-$	176.092 2.074 -3.780 -177.798 -179.743 -1.440 6.354 -175.343 50.094 -178.574 0.366 -179.07 0.013 -0.083 179.001 -105.936 -179.189 0.560 72.817 178.653 -0.287 -128.178 1.244 179.776 -179.586 -0.590 179.257 -179.886 0.060 -0.038 179.907 -0.053 179.895 179.175 -0.594 179.799 -178.833
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					C14-C8-C2-N3 C14-C8-C2-C1	-129.081 52.648
H31-C171.08582H31-C17-C16120.780H31-C17-C18-F21-0.316C17-C181.39159C17-C16-H30120.754H31-C17-C18-C19179.956C18-F211.33820C17-C16-C15119.488C17-C18-C19-H32179.896C18-C191.39301H30-C16-C15119.757C17-C18-C19-H320.167C19-C71.40038C16-C15-C7121.290F21-C18-C19-C7179.939C7-C151.40300F20-C15-C7120.002C18-C19-C7-C6179.562C15-F201.34087C15-C7-C6118.832C18-C19-C7-C150.576C15-C161.39269C15-C7-C19120.821H32-C19-C7-C5-179.660C16-C171.39394C7-C19-H32121.602H32-C19-C7-C15-0.407C7-C61.48111H32-C19-C18119.582C19-C7-C15-C16-0.407C7-C61.39394C7-C19-C18119.318C7-C15-C16-C17-0.019C5-C221.441907C19-C18-C17119.318C7-C15-C16-C17-0.019C5-C221.441907C19-C18-C17119.376F20-C15-C16-C17-179.776C5-C41.49231C18-C17-C16119.499C15-C16-C17-C180.271C4-O91.21966C18-C17-C16119.499C15-C16-C17-C180.271C4-N31.36793C15-C7-C6119.877H30-C16-C17-C180.052N3-H251.01205C7-C6-C5119.877H30-C16-C17-C18-F21179.632C2-N231.16085C15-C7-C6119.499C15-C16-C17-C18-F21			Compou	nd 3g		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H31-C17	1.08582	H31-C17-C16	120.780	H31-C17-C18-F21	-0.316
C18-121 1.5320 C17-C16-C15 119.486 C17-C18-C1912 119.380 C18-C19 1.39301 H30-C16-C15 119.757 C17-C18-C19-L7 -0.333 C19-H32 1.08630 C16-C15-F20 118.707 F21-C18-C19-C7 -0.333 C19-C7 1.40038 C16-C15-C7 121.290 F21-C18-C19-C7 179.939 C7-C15 1.40300 F20-C15-C7 120.002 C18-C19-C7-C6 179.562 C15-F20 1.34087 C15-C7-C6 118.832 C18-C19-C7-C6 -0.673 C16-H30 1.08604 C7-C19-H32 121.602 H32-C19-C7-C15 -179.660 C16-C17 1.39394 C7-C19-C18 119.582 C19-C7-C15-C16 -0.407 C7-C6 1.48111 H32-C19-C18 118.815 C7-C15-C16-H30 -179.854 C6-C5 1.35821 C19-C18-C17 119.318 C7-C15-C16-H30 -388 C22-N23 1.16085 F21-C18-C17 119.376 F20-C15-C16-C17 -179.776 C4-O9 1.21966 C18-C17-C16 <td>C17-C18 C18 E21</td> <td>1.39159</td> <td>C17-C16-H30</td> <td>120.754</td> <td>H31-C17-C18-C19</td> <td>179.956</td>	C17-C18 C18 E21	1.39159	C17-C16-H30	120.754	H31-C17-C18-C19	179.956
C19-H32 1.08630 C16-C15-E20 118.707 F21-C18-C19-C7 10.67 C19-C7 1.40038 C16-C15-F20 118.707 F21-C18-C19-C7 179.939 C7-C15 1.40300 F20-C15-C7 120.002 C18-C19-C7-C6 179.562 C15-F20 1.34087 C15-C7-C6 118.832 C18-C19-C7-C15 0.576 C15-C16 1.39269 C15-C7-C6 118.832 C19-C7-C15 0.576 C16-C17 1.39394 C7-C19-H32 121.602 H32-C19-C7-C15 -179.660 C16-C17 1.39394 C7-C19-C18 119.582 C19-C7-C15 -179.660 C16-C17 1.39394 C7-C19-C18 119.582 C19-C7-C15 -179.660 C16-C17 1.39394 C7-C19-C18 119.318 C7-C15-C16-H30 -179.854 C6-C5 1.35821 C19-C18-C17 119.318 C7-C15-C16-C17 -0.019 C5-C22 1.41907 C19-C18-C17 119.376 F20-C15-C16-C17 -179.776 C5-C4 1.49231 C18-C17-C16 119.499 C15-C16-C17-C18 0.271 C4-09 1.21966 </td <td>C18-C19</td> <td>1.33820</td> <td>H30-C16-C15</td> <td>119.400</td> <td>C17-C18-C19-C7</td> <td>-0.333</td>	C18-C19	1.33820	H30-C16-C15	119.400	C17-C18-C19-C7	-0.333
C19102 140038 C16 C15 C7 121.290 F21-C18-C19-C7 179.939 C7-C15 1.40300 F20-C15-C7 120.002 C18-C19-C7-C6 179.562 C15-F20 1.34087 C15-C7-C6 118.832 C18-C19-C7-C6 0.576 C15-C16 1.39269 C15-C7-C19 120.821 H32-C19-C7-C6 -0.673 C16-H30 1.08604 C7-C19-H32 121.602 H32-C19-C7-C15 -179.660 C16-C17 1.39394 C7-C19-C18 119.582 C19-C7-C15-C16 -0.407 C7-C6 1.48111 H32-C19-C18 118.815 C7-C15-C16-C17 -179.854 C6-C5 1.35821 C19-C18-F21 119.318 C7-C15-C16-C17 -0.019 C5-C22 1.41907 C19-C18-C17 121.306 F20-C15-C16-C17 -0.019 C5-C22 1.41907 C19-C18-C17 119.376 F20-C15-C16-C17 -179.776 C5-C4 1.49231 C18-C17-C16 119.499 C15-C16-C17-H31 -179.782 C4-O9 1.21966 C18-C17-C16 <td>C19-H32</td> <td>1.08630</td> <td>C16-C15-F20</td> <td>118 707</td> <td>F21-C18-C19-H32</td> <td>0.167</td>	C19-H32	1.08630	C16-C15-F20	118 707	F21-C18-C19-H32	0.167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C19-C7	1 40038	C16-C15-C7	121 290	F21-C18-C19-C7	179 939
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C15	1.40300	F20-C15-C7	120.002	C18-C19-C7-C6	179.562
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15-F20	1.34087	C15-C7-C6	118.832	C18-C19-C7-C15	0.576
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C15-C16	1.39269	C15-C7-C19	120.821	H32-C19-C7-C6	-0.673
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16-H30	1.08604	C7-C19-H32	121.602	H32-C19-C7-C15	-179.660
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C16-C17	1.39394	C7-C19-C18	119.582	C19-C7-C15-C16	-0.407
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7-C6	1.48111	H32-C19-C18	118.815	C7-C15-C16-H30	-179.854
C5-C221.41907C19-C18-C17121.306F20-C15-C16-H300.388C22-N231.16085F21-C18-C17119.376F20-C15-C16-C17-179.776C5-C41.49231C18-C17-H31119.721C15-C16-C17-H31-179.782C4-O91.21966C18-C17-C16119.499C15-C16-C17-C180.271C4-N31.36793C15-C7-C6120.339H30-C16-C17-H310.052N3-H251.01205C7-C6-C5119.877H30-C16-C17-C18-179.895N3-C21.37711C6-C5-C22125.064C16-C17-C18-F21179.632C2-C11.34888C6-C5-C4116.082C16-C17-C18-C19-0.097C1-H241.0877C5-C22-N23177.199C16-C15-C7-C6-179.398C1-C61.47563C22-C5-C4118.854F20-C15-C7-C60.357C2-C81.47102C5-C4-O9123.731C15-C7-C6-C5-103.169C8-C141.39393C5-C4-N3120.493C7-C6-C5-C22-0.114C14-H291.08626O9-C4-N3115.775C7-C6-C5-C4179.762	C6-C5	1.35821	C19-C18-F21	119.318	C7-C15-C16-C17	-0.019
C22-N23 1.16085 F21-C18-C17 119.376 F20-C15-C16-C17 -179.776 C5-C4 1.49231 C18-C17-H31 119.721 C15-C16-C17-H31 -179.782 C4-O9 1.21966 C18-C17-C16 119.499 C15-C16-C17-C18 0.271 C4-N3 1.36793 C15-C7-C6 120.339 H30-C16-C17-H31 0.052 N3-H25 1.01205 C7-C6-C5 119.877 H30-C16-C17-C18 -179.895 N3-C2 1.37711 C6-C5-C22 125.064 C16-C17-C18-F21 179.632 C2-C1 1.34888 C6-C5-C4 116.082 C16-C17-C18-C19 -0.097 C1-H24 1.0877 C5-C22-N23 177.199 C16-C15-C7-C6 -179.398 C1-C6 1.47563 C22-C5-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	C5-C22	1.41907	C19-C18-C17	121.306	F20-C15-C16-H30	0.388
C5-C4 1.49231 C18-C17-H31 119.721 C15-C16-C17-H31 -179.782 C4-O9 1.21966 C18-C17-C16 119.499 C15-C16-C17-C18 0.271 C4-N3 1.36793 C15-C7-C6 120.339 H30-C16-C17-H31 0.052 N3-H25 1.01205 C7-C6-C5 119.877 H30-C16-C17-C18 -179.895 N3-C2 1.37711 C6-C5-C22 125.064 C16-C17-C18-F21 179.632 C2-C1 1.34888 C6-C5-C4 116.082 C16-C17-C18-C19 -0.097 C1-H24 1.0877 C5-C22-N23 177.199 C16-C15-C7-C6 -179.398 C1-C6 1.47563 C22-C5-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	C22-N23	1.16085	F21-C18-C17	119.376	F20-C15-C16-C17	-179.776
C4-09 1.21966 C18-C17-C16 119.499 C15-C16-C17-C18 0.271 C4-N3 1.36793 C15-C7-C6 120.339 H30-C16-C17-H31 0.052 N3-H25 1.01205 C7-C6-C5 119.877 H30-C16-C17-C18 -179.895 N3-C2 1.37711 C6-C5-C22 125.064 C16-C17-C18-F21 179.632 C2-C1 1.34888 C6-C5-C4 116.082 C16-C17-C18-C19 -0.097 C1-H24 1.0877 C5-C22-N23 177.199 C16-C15-C7-C6 -179.398 C1-C6 1.47563 C22-C5-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	C5-C4	1.49231	C18-C17-H31	119.721	C15-C16-C17-H31	-179.782
C4-N3 1.36793 C15-C7-C6 120.339 H30-C16-C17-H31 0.052 N3-H25 1.01205 C7-C6-C5 119.877 H30-C16-C17-C18 -179.895 N3-C2 1.37711 C6-C5-C22 125.064 C16-C17-C18-F21 179.632 C2-C1 1.34888 C6-C5-C4 116.082 C16-C17-C18-C19 -0.097 C1-H24 1.0877 C5-C22-N23 177.199 C16-C15-C7-C6 -179.398 C1-C6 1.47563 C22-C5-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	C4-09	1.21966	C18-C17-C16	119.499	C15-C16-C17-C18	0.271
N3-H25 1.01205 C7-C6-C5 119.877 H30-C16-C17-C18 -179.895 N3-C2 1.37711 C6-C5-C22 125.064 C16-C17-C18-F21 179.632 C2-C1 1.34888 C6-C5-C4 116.082 C16-C17-C18-C19 -0.097 C1-H24 1.0877 C5-C22-N23 177.199 C16-C15-C7-C6 -179.398 C1-C6 1.47563 C22-C5-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	C4-N3	1.36793	C15-C7-C6	120.339	H30-C16-C17-H31	0.052
N3-C2 1.37711 C6-C5-C22 125.064 C16-C17-C18-F21 179.632 C2-C1 1.34888 C6-C5-C4 116.082 C16-C17-C18-C19 -0.097 C1-H24 1.0877 C5-C22-N23 177.199 C16-C15-C7-C6 -179.398 C1-C6 1.47563 C22-C5-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	N3-H25	1.01205	C7-C6-C5	119.877	H30-C16-C17-C18	-179.895
C2-C1 1.34888 C6-C5-C4 116.082 C16-C17-C18-C19 -0.097 C1-H24 1.0877 C5-C22-N23 177.199 C16-C15-C7-C6 -179.398 C1-C6 1.47563 C22-C5-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	N3-C2	1.37711	C6-C5-C22	125.064	C16-C17-C18-F21	179.632
C1-H24 1.0877 C3-C22-N25 177.199 C16-C15-C7-C6 -179.398 C1-C6 1.47563 C22-C5-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	C2-C1	1.34888	C6-C5-C4	116.082	C16-C17-C18-C19	-0.097
C1-C0 1.47305 C22-C3-C4 118.854 F20-C15-C7-C6 0.357 C2-C8 1.47102 C5-C4-O9 123.731 C15-C7-C6-C5 -103.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115 775 C7-C6-C5-C4 179 762	C1-H24	1.08//	C3-C22-N23	1/7.199	C10-C15-C7-C6	-1/9.398
C2-C6 1.47102 C3-C4-C9 125.751 C13-C7-C6-C5 -105.169 C8-C14 1.39393 C5-C4-N3 120.493 C7-C6-C5-C22 -0.114 C14-H29 1.08626 O9-C4-N3 115.775 C7-C6-C5-C4 179.762	C1-C0	1.47303	C_{22} - C_{3} - C_{4}	110.004	Γ_{20} - C_{15} - C_{7} - C_{6} - C_{5}	102 160
C14-H29 1.08626 09-C4-N3 115 775 C7-C6-C5-C4 179 762	C2-C8	1.47102	C5-C4-09	123.731	C13-C7-C0-C3	-105.109
	C14-H29	1.08626	09-C4-N3	115.775	C7-C6-C5-C4	179,762

Vol. 32, No. 5 (2020)

Synthesis of Selective Bioactive Pyridylpyridones: in silico Studies and Biological Evaluations 993

C14-C13	1.35441	C4-C3-C25	117.730	C6-C5-C22-N23	-8.628
C12-N13	1.35010	C4-N3-C2	122.425	C6-C5-CC4-O9	178.265
C12-H28	1.08600	H25-N3-C2	119.723	C6-C5-C4-N3	-1.492
N12-C11	1.38477	N3-C2-C1	119.156	N23-C22-C5-C4	171.499
C11-H27	1.08416	N3-C2-C8	119.956	C22-C5-C4-O9	-1.850
C11-C10	1.39412	C2-C1-H24	121.563	C22-C5-C4-N3	178.392
C10-H26	1.08741	C2-C1-C6	121.165	C5-C4-N3-H25	177.292
C10-C8	1.39896	H24-C1-C6	117.247	C5-C4-N3-C2	1.317
		C1-C6-C7	120.663	O9-C4-N3-N25	-2.484
		C1-C6-C5	119.449	O9-C4-N3-C2	-178.458
		C1-C2-C5	120.862	C4-N3-C2-C1	-0.600
		C2-C8-C14	122.214	C4-N3-C2-C8	-178.730
		C8-C14-H29	121.383	H25-N3-C2-C1	-176.496
		C8-C14-N13	124.431	H25-N3-C2-C8	5.373
		C14-N13-C12	116.684	N3-C2-C8-C10	51.135
		H28-C12-N13	115.289	N3-C2-C1-H24	-178.022
		N13-N12-C11	123.664	N3-C2-C1-C6	0.085
		N12-C11-H27	120.643	C2-C1-C6-C5	-0.355
		N12-C11-C10	118.339	C2-C1-C6-C7	-179.119
		H27-C11-C10	121.017	H24-C1-C6-C7	-0.932
		C11-C10-H26	119.270	H24-C1-C6-C5	177.832
		C11-C10-C8	119.928	C1-C6-C5-C4	-1.003
		H26-C10-C8	120.797	C1-C6-C5-C22	-178.873
		C10-C8-C14	116.953	C1-C6-C7-C19	-103.366
		C10-C8-C2	120.830	C1-C6-C7-C15	75.604
		C11-C12-H28	121.047	C1-C2-C8-C10	-126.963
		N13-C14-H29	114.182	C2-C8-C14-H29	0.470
				C2-C8-C14-N13	179.766
				C8-C12-N13-H28	179.961
				C8-C14-N13-C12	-0.147
				C6-C1-C2-C8	178.199
				C2-C8-C10-C11	-179.710
				C2-C8-C10-H28	1.122
				C8-C10-C11-H27	-179.615
				C8-C10-C11-C12	0.044
				H26-C10-C11-H27	-0.434
				H26-C10-C11-C12	179.224
				C10-C11-C12-H28	-179.917
				C10-C11-C12-N13	0.180
				H27-C11-C12-H28	-0.257
				H27-C11-C12-N13	179.840
				C11-C12-N13-C14	-0.131
				C12-N13-C14-H29	179.194
				N13-C14-C8-C10	0.354
				N13-C14-C8-C2	179.766
				H29-C14-C8-C2	0.470
				C14-C8-C2-N3	-128.254
				C14-C8-C2-C1	53.647

MEP of compound 3cMEP of compound 3fMEP of compound 3gFig. 4. Molecular electrostatic potential (MEP) map of 3c, 3f and 3g compounds

confirms its highest capacity to accept electrons as well as it has the highest binding energy and inhibition constant in molecular docking studies. In compound **3c**, the HOMO and LUMO had leading contributions from a benzene ring. In compounds **3f** and **3g**, the HOMO and LUMO had leading contributions from the pyridyl ring and pyridone ring. In molecular docking studies, the pyridine and pyridone ring have more number of hydrogen bonding interaction, π -alkyl interaction, π - σ interaction. The frontier molecular orbitals of pyridylpyridone are shown in Fig. 3. Bond length, bond angle and a dihedral angle of compounds **3c**, **3f** and **3g** are given in Table-3.

Molecular electrostatic potential: The molecular electrostatic potential (MEP) map is one of the best computational methods which are used to predict the reactivity of the molecule and the biologically active site of the compound. Furthermore, it is an indicator of the reactivity regions of a target molecule. In Fig. 4, the red color indicates the nucleophilic sites and the blue color indicates the electrophilic sites. Particularly, the nucleophilic sites are more important because it is ready to make hydrogen bonding with protein. In synthesized compounds, **3c**, **3f** and **3g**, the negative potential was located in the region of carbonyl, cyano group and pyridine ring. Similarly, the most positive potential was located by the NH group of pyridone ring. These units would participate in non-covalent interactions with amino acid residues of enzymes (α -amylase enzymes) in molecular docking studies.

Conclusion

In summary, newly designed pyridylpyridone analogue was docked into the active site of α -amylase enzyme. To three hit molecules were selected, synthesized and investigated their experimental antidiabetic activity. The biological activities and binding regions were thoroughly identified with the help of DFT calculations. The selected compounds showed excellent results as expected. The present study is a focus to test the further biological studies of selected pyridyl pyridones.

ACKNOWLEDGEMENTS

The authors grateful to Biochemie Innovations Lab, Tindivanam, India for consultancy service during this research work.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- 1. S. Altürk, D. Avci, O. Tamer and Y. Atalay, J. Mol. Struct., 1164, 28 (2018);
- https://doi.org/10.1016/j.molstruc.2018.03.032 2. Y. Ju and R.S. Varma, J. Org. Chem., **71**, 135 (2006);
- <u>https://doi.org/10.1021/jo051878h</u>
- M. Radi, G.P. Vallerini, A. Petrelli, P. Vincetti and G. Costantino, *Tetrahedron Lett.*, 54, 6905 (2013); https://doi.org/10.1016/j.tetlet.2013.10.054
- 4. H. Hongo, R. Fujita, K. Watanabe, W. Ikeura and Y. Ohtake, *Heterocycles*, **53**, 2607 (2000);
- https://doi.org/10.3987/COM-00-9020
- J.L. Greene Jr. and J.A. Montgomery, J. Med. Chem., 7, 17 (1964); https://doi.org/10.1021/jm00331a005
- M.J. Gil, M.A. Manu, C. Arteaga, M. Migliaccio, I. Encio, A. Gonzalez and V. Martínez-Merino, *Bioorg. Med. Chem. Lett.*, 9, 2321 (1999); <u>https://doi.org/10.1016/S0960-894X(99)00373-X</u>

- A.P. Krapcho, S.N. Haydar, S. Truong-Chiott, M.P. Hacker, E. Menta and G. Beggiolin, *Bioorg. Med. Chem. Lett.*, **10**, 305 (2000); https://doi.org/10.1016/S0960-894X(99)00689-7
- G. Semple, B. Andersson, V. Chhajlani, J. Georgsson, M.J. Johansson, Å. Rosenquist and L. Swanson, *Bioorg. Med. Chem. Lett.*, 13, 1141 (2003); https://doi.org/10.1016/S0960-894X(03)00033-7
- Y. Hamada, K. Kawachi, T. Yamamoto, T. Nakata, Y. Kashu, Y. Watanabe and M. Sato, J. Cardiovasc. Surg., 42, 159 (2001).
- A.P. Kozikowski and W. Tückmantel, Acc. Chem. Res., 32, 641 (1999); https://doi.org/10.1021/ar9800892
- P. Jagtap, F.G. Soriano, L. Virag, L. Liaudet, J. Mabley, E. Szabo, G. Hasko, A. Marton, C.B. Lorigados, F. Gallyas Jr., B. Sumegi, D.G. Hoyt, E. Baloglu, J. VanDuzer, A.L. Salzman, G.J. Southan and C. Szabo, *Crit. Care Med.*, **30**, 1071 (2002); https://doi.org/10.1097/00003246-200205000-00019
- D. Jochmans, J. Deval, B. Kesteleyn, H. Van Marck, E. Bettens, I. De Baere, P. Dehertogh, T. Ivens, M. Van Ginderen, B. Van Schoubroeck, M. Ehteshami, P. Wigerinck, M. Gotte and K. Hertogs, *J. Virol.*, 80, 12283 (2006); https://doi.org/10.1128/JVI.00889-06
- 13. Q. Xu, X. Jiang, W. Zhu, C. Chen, G. Hu and Q. Li, *Arab. J. Chem.*, 9, 721 (2016);
- https://doi.org/10.1016/j.arabjc.2015.08.001 14. D.I. Kuntz, *Science*, **257**, 1078 (1992);

7.

- https://doi.org/10.1126/science.257.5073.1078 15. J. Drews, *Science*, **287**, 1960 (2000);
- https://doi.org/10.1126/science.287.5460.1960 16. G. Banuppriya, R. Sribalan, V. Padmini and V. Shanmugaiah, *Bioorg.*
- Med. Chem. Lett., 26, 1655 (2016); https://doi.org/10.1016/j.bmc1.2016.02.066
- 17. R. Thomsen and M.H. Christensen, *J. Med. Chem.*, **49**, 3315 (2006); https://doi.org/10.1021/jm051197e
- F. Jensen, Introduction to Computational Chemistry, Wiley: Chichester, U.K. (1999).
- Y.D. Scherson, S.J. Aboud, J. Wilcox and B.J. Cantwell, *J. Phys. Chem.*, 115, 11036 (2011).
- G. Banuppriya, R. Sribalan and V. Padmini, J. Mol. Struct., 1155, 90 (2018); https://doi.org/10.1016/j.molstruc.2017.10.097
- 21. S. Al-Zuhair, A. Dowaidar and H. Kamal, J. Biochem. Technol., 2, 158 (2010).
- S. Kathiresan, T. Anand, S. Mugesh and J. Annaraj, J. Photochem. Photobiol. B, 148, 290 (2015); <u>https://doi.org/10.1016/j.jphotobiol.2015.04.016</u>
- Y.-Y. Xu, Y. Cao, H. Ma, H.-Q. Li and G.-Z. Ao, *Bioorg. Med. Chem.*, 21, 388 (2013);
- https://doi.org/10.1016/j.bmc.2012.11.031
- 24. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford and J. Cioslowski, S.B. Tefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT (2004).
- P.M. Sales, P.M. Souza, L.A. Simeoni, P.O. Magalhães and D. Silveira, *J. Pharm. Pharm. Sci.*, **15**, 141 (2012); <u>https://doi.org/10.18433/J35S3K</u>
- M.A. Jayasri, P.S. Unnikrishnan and K. Suthindhiran, *Pharmacogn. Mag.*, **11**, S511 (2015);
 - https://doi.org/10.4103/0973-1296.172954
- M.H. Helal, S.A. El-Awdan, M.A. Salem, T.A. Abd-elaziz, Y.A. Moahamed, A.A. El-Sherif and G.A.M. Mohamed, *Spectrochim. Acta A Mol. Biomol. Spectrosc.*, **135**, 764 (2015); https://doi.org/10.1016/j.saa.2014.06.145
- S. Murugavel, N. Manikandan, D. Lakshmanan, K. Naveen and P.T. Perumal, J. Chil. Chem. Soc., 60, 3015 (2015); https://doi.org/10.4067/S0717-97072015000300008
- R. Parthasarathi, V. Subramanian, D.R. Roy and P.K. Chattaraj, *Bioorg. Med. Chem.*, **12**, 5533 (2004); https://doi.org/10.1016/j.bmc.2004.08.013