# Synthesis of Selective Bioactive Pyridylpyridones: in silico Studies and Biological Evaluations 

Suresh Ramasamy ${ }^{1,2}$, Singanan Ponnuchamy ${ }^{1, *}$ and Sivakumar Ponnusamy ${ }^{2}$<br>${ }^{1}$ Alivira Animal Health Ltd, R \& D Center, Visakhapatnam-530019, India<br>${ }^{2}$ Department of Chemistry, Arignar Anna Government Arts College, Namakkal-637002, India<br>*Corresponding author: E-mail: ponnuchamy_85@yahoo.co.in

Received: 24 June 2019;
Accepted: 18 August 2019;
Published online: 29 April 2020;
AJC-19824

Twenty three substituted pyridylpyridones were designed and performed for molecular docking studies against $\alpha$-amylase enzyme. The top three hit molecules were synthesized and characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ESI-mass and FT-IR spectroscopic techniques. Experimental biological applications were studied for these compounds. The DFT calculations were executed for the hit compounds. In addition, molecular electrostatic potential mapping was also executed for additional support.

Keywords: Pyridines, Anti-diabetic, Molecular docking, DFT studies, Molecular electrostatic map potential.

## INTRODUCTION

Many heterocyclic compounds are originated by plants which showed numerous biological applications [1,2]. Especially, N -heterocyclic compounds have attracting biological and pharmacological properties [3]. Among various nitrogen containing heterocycles, 2-pyridone has a number of applications which is intermediate to the synthesis of the biologically active pyridine, quinoline, quinolizidine and indolizidine and also simple pyridones itself demonstrated as a bioactive compound [4]. In recent years, pyridones and its derivatives have a significant interest in the field of drug discovery. For example, the pyridone containing compounds showed multiple biological activities such as anti-inflammatory [5], antifungal [6], antibacterial [7] and antioxidant activities [8].

Similarly, pyridone based compounds such as milrinone and amrinone are used as cardiotonic agents [9]. Also, the researchers found that the ring-fused 2-pyridones act as acetylcholinesterase inhibitors [10], PARP-1 inhibitors [11] (PJ34) and anti-HIV agents [12]. Although Xu et al. [13] suggested that pyridone derivatives exhibited anticancer activity against lung cancer cells. Based on the prominence of pyridone, the research is motivated to synthesize pyridyl pyridone derivatives.

Molecular docking has been demonstrated a very efficient tool for novel drug discovery for targeting protein and most
frequently used methods in structure-based drug design [14, 15]. It is generally known that molecular binding of one molecule (ligand) to the pocket of another molecule (receptor) [16]. This is a quicker and inexpensive method to identify drug candidates [17]. The major advantage of molecular docking is used to reduce the number of synthetic compounds in the field of drug discovery.

Structure activity relationship (SAR) is helping to understand the chemical-biological interactions in drug discovery research. SAR is useful to design the library of compound targeted toward particular receptors to increase the therapeutically active drug. Herein, 23 pyridone derivatives were screened for molecular docking studies. Out of 23 molecules, top three molecules are planning to synthesize because they may have good inhibitory activity. In continuation, experimental biological applications are planning to study for these compounds. DFT studies play an important role [18] in the identification of the properties of compounds under investigations, like HOMO, LUMO, band gap, chemical potential, electronegativity, global hardness and softness and electrophilicity index [19]. The comparative experimental and computational results give more information for biological studies [20]. The DFT calculations and molecular electrostatic potential are also focused to evaluate for the synthesized compounds.

[^0]
## EXPERIMENTAL

All the solvents used were analytical grade and purchased from Spectrochem and Sigma-Aldrich. Reactions were monitored by TLC analysis on precoated silica gel $60 \mathrm{~F}_{254}$ in TLC sheets ( 0.2 mm thickness, Merck plate) and 60-120 mesh Merck silica gel used for column chromatography. Petroleum ether and ethyl acetate were used as the eluents. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker 500 MHz and 125 MHz instruments, $\mathrm{CDCl}_{3}$ and DMSO- $d_{6}$ were used as an internal solvent; $\delta$ in ppm relative to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, $J$ in Hz . ESI-MS spectra were recorded in LCQ fleet mass spectrometer. FT-IR spectra were recorded in Thermo Scientific Nicolet iS50 FT-IR Spectrometer. Absorption measurements were carried out using a JASCO-V630 spectrophotometer (for $\alpha$-amylase study).

General procedure for the synthesis of pyridone derivatives: To an ethanolic solution ( 10 mL ) of acetyl pyridine ( 8.26 mmol ), ethyl cyanoacetate ( 8.26 mmol ), corresponding aldehyde ( 8.26 mmol ) and ammonium acetate ( 66.08 mmol ) was added. The reaction mixture was refluxed for 1-6 h . The completion of the reaction was monitored by thin layer chromatography. Then the reaction mixture was poured into crushed ice and filtered. The filtered solid was dried and purified by column chromatography using dichloromethane:methanol as a eluent (Scheme-I).

4-(2-Chlorophenyl)-6-oxo-1,6-dihydro[2,4'-bipyridine]-5-carbonitrile (3c): ${ }^{1} \mathrm{H}$ NMR ( 500 MHz, DMSO- $d_{6}$ ) $\delta 8.64$ (d, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 125 MHz , DMSO- $d_{6}$ ) $\delta 168.89,153.40,152.37$, $148.31,144.13,135.56,130.00,129.75,128.80,128.07,125.57$, $119.74,117.03,104.00,95.57$. ESI-mass: calcd. (found): 307.05 (306.10) (M-1) ${ }^{-}$; IR ( KBr disc, $v_{\max }, \mathrm{cm}^{-1}$ ): 3019, 2821, 2205, 1660, 1538, 824, 762.

6-Oxo-4-phenyl-1,6-dihydro[2,3'-bipyridine]-5-carbonitrile (3f): ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 13.08$ ( $\mathrm{s}, 1 \mathrm{H}$ ), $9.14(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.87-7.80 (m, 2H), 7.70-7.59 (m, 3H), $7.05(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 160.38,158.57,153.96,152.38,143.27$, 137.96, 130.09, 128.79, 120.08, 118.10, 112.57, 105.35, 99.20, 91.43. ESI-mass: calcd. (found): 273.09 (272.18) (M-1) ${ }^{-}$; IR ( KBr disc, $v_{\text {max }}, \mathrm{cm}^{-1}$ ): 3069, 2973, 2211, 1661, 1551, 809, 760.

4-(2,5-Difluorophenyl)-6-oxo-1,6-dihydro-[2,3'-bipyridine]-5-carbonitrile (3g): ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , DMSO-$\left.-d_{6}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{bs}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-$ $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $d_{6}$ ) $\delta 171.27,159.94,158.05,157.21,156.78$, $154.76,150.77,150.08,148.92,135.66,135.00,124.84,120.05$, $118.73,118.46,117.88,105.52,95.67$. ESI-mass; calcd. (found): 309.07 (309.85) ( $\mathrm{M}+1)^{+}$; IR (KBr disc, $\mathrm{v}_{\max }, \mathrm{cm}^{-1}$ ): 3169, 2963, 2205, 1657, 1534, 819, 725.

## $\alpha$-Amylase inhibition activity

$\alpha$-Amylase inhibition assay was carried out by the reported literature [21]. In brief, various concentrations of synthesized compounds and acarbose solution were prepared in phosphate buffer ( $\mathrm{pH}=6.9,0.2 \mathrm{M}$ ). To that solution, $0.5 \%$ of $\alpha$-amylase in phosphate buffer was added. The mixture was incubated
for 10 min at $37^{\circ} \mathrm{C}$. Then a $1 \%$ starch solution was added and incubated for 30 min at $37^{\circ} \mathrm{C}$. To that mixture, 3,5 -dinitrosalicylic acid (DNSA) reagent was added to stop the enzymatic reaction and incubated in boiling water bath for 15 min . Then the absorbance measured at 540 nm on a spectrophotometer. From the absorbance results, the \% inhibition was calculated as follows:

$$
\text { Inhibition }(\%)=\frac{\mathrm{A}_{\mathrm{t}}-\mathrm{A}_{\mathrm{c}}}{\mathrm{~A}_{\mathrm{t}}} \times 100
$$

where, $A_{t}=O$.D. of test solution, $A_{c}=O$.D. of control.
Molecular docking study: Molecular docking of compounds was carried out with $\alpha$-amylase enzyme. Autodock 4.2 software was used for docking studies [22]. Three dimensional structure of synthesized compounds (3a-w) were constructed using ChemBio 3D ultra 13.0 software and then they were energetically minimized using MMFF94 (number of interaction is 5000, RMS gradient is set as 0.10) [23]. The crystal structure of the enzyme (PDB ID: 1HNY) was taken from Protein Data bank (www.rcsb.org). The docked complexes were visualized using discovery studio 4.1 client.

Computational calculations: Computational calculations of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) in the checkpoint files were performed with Gaussian 09 W program using DFT methods [24]. The three dimensional structures of the compounds were optimized with B3LYP/6.311 ++ G (d,p) basis set. The Gauss view software package was used to visualize the computed structures including HOMO, LUMO and molecular electrostatic potential (MEP) representations.

## RESULTS AND DISCUSSION

The top three hit compounds ( $\mathbf{3 c}, \mathbf{3 f}$ and $\mathbf{3 g}$ ) from molecular docking results were synthesized. The corresponding aldehydes react with 4-pyridyl acetophenone/3-pyridyl acetophenone and ethyl cyanoacetate in the presence of ammonium acetate under reflux condition yielded the target compounds. The reaction was carried out by one-pot synthetic method. The ethanol is used as a solvent and the reaction time was 1-6 h .

The synthesized compounds were characterized using spectroscopic techniques. In ${ }^{1} \mathrm{H}$ NMR clearly showed the singlet at around 6.7 ppm which is appeared for pyridone C 5 attached proton. It confirms the formation of pyridone unit. The peaks appeared at $8.6,7.9 \mathrm{ppm}$ in compound $\mathbf{3 c}$ and 9.1 to 8.3 ppm in compounds $\mathbf{3 f}$ and $\mathbf{3 g}$ indicates the presence of pyridyl ring. The remaining protons appeared for aryl units. Similarly, the ${ }^{13} \mathrm{C}$ NMR also confirms the product formation. The carbon signal in the region of $90-96 \mathrm{ppm}$ indicates the presence of nitrile group. The carbon signals around $168-172 \mathrm{ppm}$ indicate the presence of pyridone C 4 carbon. The carbon signals around $99-104 \mathrm{ppm}$ appeared due to the presence of C 5 pyridone carbon. The other peaks appeared for remaining carbon units. The mass spectrum also confirms the product formation. The compounds showed a molecular ion peak in either positive or negative mode. The FT-IR spectrum gave some additional information for the compounds. The absorbance around $2200 \mathrm{~cm}^{-1}$ indicates the presence nitrile group which is appeared due to nitrile stretching frequencies. The peak around $1650 \mathrm{~cm}^{-1}$ indicates the presence of

pyridone carbonyl units. The absorbance around 3100-2800 $\mathrm{cm}^{-1}$ appeared for aromatic CH stretching frequencies.

## Molecular docking studies

## Selection and preparation of protein/enzymes structures:

Molecular docking of pyridylpyridones (3a-w) was carried out with $\alpha$-amylase enzyme. The crystal structure of $\alpha$-amylase was downloaded from the Protein Data bank (www.rcsb.org). Water and ligand molecules were excluded from the target and polar hydrogen was added to the target. $\alpha$-Amylase is one of the important enzymes because it plays a key role in the breakdown of starch to glucose. Excess of glucose levels affects diabetic patients. So inhibitors of $\alpha$-amylase can effectively retard the digestion as well as the significant delay of postprandial hyperglycemia [25,26]. Hence, $\alpha$-amylase is considered to be one of the best targets for the development of type II diabetes therapeutic agents.

Molecular docking of $\alpha$-amylase with compounds 3a-w: The docking of designed pyridylpyridones (3a-w) into the active site of $\alpha$-amylase was performed and identified hit compounds exhibited favorable docking scores and interactions. Particularly, compounds $\mathbf{3 c}, \mathbf{3 f}$ and $\mathbf{3 g}$ showed better potent binding energy and inhibition constant together with more hydrogen interactions than other derivatives. The docking results are represented in Table-1 and molecular docking interactions of hit compounds are shown in Fig. 1.

Molecular docking analysis of compound 3c in 1HNY: The docking pose of compound $\mathbf{3 c}$ in the active site of 1 HNY was given in its three dimensional mode. The docking pose analysis revealed that pyridylpyridone is oriented in $\pi$-alkyl and $\pi$-sigma interactions surrounded by the amino acid side chains of Ala198, Leu162 and Trp59 in the active site of 1HNY. Five hydrogen bond interactions, one being between $\mathrm{C}=\mathrm{O}$ group of compound $\mathbf{3 c}$ and imidazolyl nitrogen present in the residue

TABLE-1
MOLECULAR DOCKING INTERACTION OF THE PYRIDYLPYRIDONES (3a-w) AGAINST $\alpha$-AMYLASE

| Compound No. | Binding energy (Kacal/mol) | Inhibition constant ( $\mu \mathrm{M}$ ) | Number of hydrogen bonding | Interacted amino acid residue ( 1 HNY ) |
| :---: | :---: | :---: | :---: | :---: |
| 3a | -6.14 | 31.75 | 2 | LYS200, GLU233 |
| 3b | -6.54 | 16.16 | 5 | GLU233, ARG195, ASP197, HIS299, TYR62 |
| 3c | -7.72 | 2.2 | 5 | ASP197, GLU233, ARG195, ASP300, HIS299 |
| 3d | -6.14 | 31.75 | 3 | ASP300, ARG195, HIS101 |
| 3e | -6.43 | 19.44 | 5 | ASP300, ARG195, ASP197, TYR62, ALA198 |
| 3 f | -7.64 | 2.52 | 5 | GLU233, ARG195, ASP197, HIS299, TYR62 |
| 3 g | -7.45 | 3.42 | 5 | HIS299, ARG195, GLU233, ASP197, ASP197 |
| 3h | -6.47 | 18.1 | 0 | , |
| 3 i | -6.39 | 20.66 | 0 | - |
| 3j | -6.42 | 19.61 | 4 | ARG195, ARG195, HIS101, TRP59 |
| 3k | -6.23 | 27.03 | 1 | TRP59 |
| 31 | -6.36 | 21.80 | 2 | HIS201, TRP58 |
| 3 m | -6.54 | 16.14 | 1 | HIS201 |
| 3n | -6.86 | 9.32 | 1 | GLU233 |
| 30 | -6.85 | 9.47 | 5 | ARG252, ARG252, ARG252, ARG252, ARG398 |
| 3p | -6.67 | 12.84 | 2 | ARG195, ARG195 |
| 3q | -6.38 | 20.07 | 1 | THR163 |
| 3r | -6.67 | 12.84 | 3 | HIS101, ARG195, ARG195 |
| 3s | -6.39 | 20.85 | 1 | HIS101 |
| 3t | -6.72 | 11.8 | 2 | ARG195, ARG195 |
| 3u | -6.42 | 19.78 | 0 | 0 |
| 3v | -6.97 | 7.76 | 1 | ASP300 |
| 3w | -6.67 | 12.84 | 3 | ARG398, ARG252, ARG252 |



Fig. 1. Molecular docking studies of synthesized compounds ( $\mathbf{3 c}, \mathbf{3 f}$ and $\mathbf{3 g}$ ) against $\alpha$-amylase enzymes
of His299 ( $\mathrm{C}=\mathrm{O} \ldots \ldots \mathrm{N}_{\mathrm{His} 299}=2.77 \AA$ ), a second H-bonding interaction between Cl group of compound $\mathbf{3 c}$ and the acidic side chain of $\alpha$-carboxylic acid residue in Asp197 $\left(\mathrm{OH}_{\text {Asp197 }} \ldots .\right.$. $\ldots . \mathrm{Cl}_{\text {pyridone ring }}=3.14 \AA$ ). Other three hydrogen bonds were observed between the CN group of pyridone ring with amino acid residues Glu233, Arg 195 and Asp300. Their bonding distance is found to be $2.90,2.90$ and $2.55 \AA$. These interactions increase the binding affinity of the molecule as indicated by the docking score of the compound $\mathbf{3 c}$ as $-7.72 \mathrm{Kcal} / \mathrm{mol}$ and inhibitions constant is $2.2 \mu \mathrm{M}$.

Molecular docking analysis of compound 3f in 1HNY: Compound 3f showed five hydrogen bonding interactions, H -bonding interacted amino acid residues were found to be Gly104, Gln63/Gln63 and Trp59/Trp59. And also it showed a very good binding energy ( $-7.64 \mathrm{Kcal} / \mathrm{mol}$ ) and inhibition constant $(2.52 \mu \mathrm{M})$. Pyridine ring of Compound $\mathbf{3 f}$ has hydrogen bonding interaction with Gly104, the bond distance is found to be $3.13 \AA$. A NH group of Gln63 has two hydrogen bonding interactions through pyridone ring with the bond distance of 3.00 and $3.74 \AA$. Trp59 has $\pi$-donor hydrogen bond interaction with the pyridone carbonyl and nitrile. The hydrogen bonding distance is found to be 3.51 and $3.58 \AA$. Further, pyridine ring has $\pi$-alkyl and $\pi$ - $\sigma$ interactions with the amino acid residue of Val107 and Gly104, respectively. Similarly, benzene ring has $\pi-\sigma$ interaction with Leu165. Pyridone ring was surrounded by $\pi-\pi$ stacked with the amino acid of $\operatorname{Trp} 59$.

Molecular docking analysis of compound $3 f$ in 1HNY: Likewise, in case of compound $\mathbf{3 g}$, five hydrogen bond interactions were found with 1 HNY enzymes. Compound $\mathbf{3 g}$ has the least binding energy $(-7.45 \mathrm{Kcal} / \mathrm{mol})$ and exhibited better inhibition constant $(3.42 \mu \mathrm{M})$. The nitrile group formed two hydrogen bonding interactions with Glu 233 and Arg 195, respectively. Similarly, fluoro substitutions showed two hydrogen bonding interactions with Asp197/Asp197. Another hydrogen bonding interaction was observed between the $\mathrm{C}=\mathrm{O}$ group of compound $\mathbf{3 g}$ and imidazole nitrogen of His299. In addition, fluoro benzene ring forms $\pi$-alkyl and $\pi$ - $\sigma$ interactions with Ala198 and Leu162, respectively. On the other hand, the pyridine ring forms $\pi-\sigma$ interaction with Trp59. Furthermore, carbonyl group exhibited $\pi$-donor hydrogen bond interaction with Tyr62.

## Biological studies

$\boldsymbol{\alpha}$-Amylase inhibitory activity: The compounds 3c, 3f and $\mathbf{3 g}$ were screened for $\alpha$-amylase inhibitory activity. The $\alpha$-amylase inhibitory study was carried out at different concentrations ( $10-200 \mu \mathrm{M}$ ). Acarbose is used as a standard to compare their inhibitions. In $10 \mu \mathrm{M}$ concentration, standard acarbose showed 16.89 percentage inhibitions while the synthesized compounds displayed 12.45-10.89 percentage inhibition. At $25 \mu \mathrm{M}$ concentration, compounds $\mathbf{3 c}, \mathbf{3 f}$ and $\mathbf{3 g}$ have shown 23.85-21.22 percentage inhibition which is a nearer activity
to standard acarbose ( $26.95 \%$ percentage inhibition). Synthesized compounds ( $\mathbf{3 c}$, $\mathbf{3 f}$ and $\mathbf{3 g}$ ) showed 47.70-45.01 percentage inhibitions at $50 \mu \mathrm{M}$ concentration whereas standard has 54.78 percentage inhibitions. Again, the percentage inhibition was tested at higher concentrations such as 100 and $200 \mu \mathrm{M}$, particularly compound $3 \mathbf{c}$ showed 62.47 and 84.33 percentage inhibition at 100 and $200 \mu \mathrm{M}$ concentrations. At the same concentration, standard showed 65.59 and 89.41 percentage inhibition. Over all from the graphical chart of $\alpha$-amylase inhibitory studies, synthesized compounds showed good inhibitory activity because the percentage inhibitions were nearer to standard drug. Moreover, compound $3 \mathbf{c}$ showed good $\alpha$-amylase inhibitory activity than the other two derivatives. The percentage inhibitions are shown in Fig. 2.


Fig. 2. $\alpha$-Amylase inhibitory activity of synthesized compounds
Frontier molecular orbitals: Frontier molecular orbitals of the molecules will explain the molecule's reactivity. HOMO energy is associated with reactivity to electrophilic attack while LUMO energy is associated with reactivity to nucleophilic attack. The DFT parameters are represented in Table-2. The negative energies of HOMO and LUMO indicating the stability of the compound [27]. The band gap of HOMO and LUMO has been used to predict the molecule reactivity and stability of the molecule. The decrease energy gap explains charge transfer interaction within the molecule. The lower band gap of the molecule is a more reactive molecule which may have more bioactivity [28]. Among these synthesized compounds, compound $\mathbf{3 c}$ possess lower energy gap. This may be due to the introduction of a sterically hindered Cl-group (ortho-substitution) in the benzene ring. The more reactive compound $\mathbf{3 c}$ exposed more enzyme inhibition in vitro studies. The electrophilicity index is the ability to accept the electron from the environment [29]. The increasing order of electrophilicity index value is compound $\mathbf{3 c}$ ( $\omega=$ $10.6607)>\mathbf{3 f}(\omega=4.5596)>\mathbf{3 g}(\omega=4.9044)$. The compound 3c exhibited the highest value of electrophilicity index which

TABLE-2
DFT CALCULATIONS OF SYNTHESIZED COMPOUNDS

| Compound No. | HOMO $(\mathrm{eV})$ | LUMO $(\mathrm{eV})$ | Band gap $(\Delta \mathrm{E})$ | Chemical <br> potential | Global <br> hardness | Global softnessElectrophilicity <br> index |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 c}$ | -6.0973 | -3.8001 | 2.297 | -4.9487 | 1.1486 | 0.4353 |  |
| $\mathbf{3 f}$ | -6.4579 | -2.2757 | 4.182 | -4.3668 | 2.0911 | 0.2391 | 4.6507 |
| $\mathbf{3 g}$ | -6.6146 | -2.4376 | 4.177 | -4.5261 | 2.0885 | 0.2394 |  |



Fig. 3. Frontier molecular orbitals (FMO) of $\mathbf{3 c}, \mathbf{3 f}$ and $\mathbf{3 g}$ compounds

TABLE-3
BOND LENGTHS, BOND ANGLES AND DIHEDRAL ANGLES OF TOP THREE HIT COMPOUNDS ( $\mathbf{3 c}, \mathbf{3 f}$ AND $\mathbf{3 g}$ )

| Bond length ( $\AA$ ) |  | Bond angle ( ${ }^{\circ}$ ) |  | Dihedral angle ( ${ }^{\circ}$ ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Compound 3c |  |  |  |  |  |
| H30-C17 | 1.08784 | H30-C17-C8 | 119.963 | H30-C17-C18-H31 | -0.110 |
| C17-C18 | 1.39365 | C17-C18-H31 | 119.923 | H30-C17-C18-C19 | 179.666 |
| C18-H31 | 1.08773 | C17-C18-C19 | 120.085 | C17-C18-C19-H32 | 179.881 |
| C18-C19 | 1.39668 | H31-C18-C19 | 119.991 | C17-C18-C19-C7 | -0.373 |
| C19-H32 | 1.08825 | C18-C19-H32 | 118.845 | H31-C18-C19-H32 | -0.326 |
| C19-C7 | 1.40402 | C18-C19-C7 | 120.533 | H31-C18-C19-C7 | 179.182 |
| C7-C15 | 1.40596 | H32-C19-C7 | 120.621 | C18-C19-C7-C6 | 179.813 |
| C15-C20 | 1.72872 | C19-C7-C6 | 118.621 | C18-C19-C7-C15 | 0.708 |
| C15-C16 | 1.39798 | C19-C7-C15 | 118.806 | H32-C19-C7-C15 | -179.793 |
| C16-H29 | 1.08658 | C7-C15-C20 | 121.702 | C19-C7-C6-C5 | 85.834 |
| C16-C17 | 1.39468 | C7-C15-C16 | 120.378 | C19-C7-C15-C20 | 179.570 |
| C7-C6 | 1.48452 | C20-C15-C16 | 117.920 | C19-C7-C15-C16 | -0.606 |
| C6-C5 | 1.35808 | C15-C16-H29 | 120.438 | C7-C15-C16-H29 | -179.531 |
| C5-C21 | 1.42008 | C15-C16-C17 | 120.107 | C20-C15-C16-H29 | 0.300 |
| C21-N22 | 1.16075 | H29-C16-C17 | 119.454 | C20-C15-C16-C17 | 18.000 |
| C5-C4 | 1.49129 | C16-C17-H30 | 120.028 | C15-C16-C17-H30 | -179.564 |
| C4-O9 | 1.22039 | C16-C17-C18 | 120.008 | C15-C16-C17-C18 | 0.176 |
| C4-C3 | 1.36853 | C15-C7-C6 | 122.487 | H29-C16-C17-H30 | 0.138 |
| N3-H24 | 1.01184 | C7-C6-C5 | 119.697 | C16-C17-C18-H31 | -179.631 |
| N3-C2 | 1.37630 | C6-C5-C21 | 125.099 | C16-C17-C18-C19 | -0.075 |
| C2-C1 | 1.34923 | C6-C5-C4 | 115.983 | C16-C15-C7-C6 | -179.675 |
| C1-H23 | 1.08713 | C5-C21-N22 | 177.686 | C20-C15-C7-C6 | 0.501 |
| C1-C6 | 1.47429 | C21-C5-C4 | 118.916 | C15-C7-C6-C5 | -95.095 |
| C2-C8 | 1.47409 | C5-C4-09 | 123.781 | C7-C6-C5-C21 | -0.298 |
| C8-C14 | 1.39845 | C5-C4-N3 | 120.553 | C7-C6-C5-C4 | -179.730 |
| C14-H28 | 1.08507 | O9-C4-N3 | 115.664 | C6-C5-C21-N22 | -11.818 |
| C10-H25 | 1.08386 | C4-N3-H24 | 117.736 | C6-C5-C4-O9 | 178.119 |
| C10-C8 | 1.39689 | C4-N3-C2 | 122.389 | C6-C5-C4-N3 | -1.336 |
| C14-C13 | 1.38457 | H24-N3-C2 | 119.700 | N22-C21-C5-C4 | 167.598 |
| C13-H27 | 1.08672 | N3-C2-C1 | 119.164 | C21-C5-C4-O9 | -1.350 |
| C13-N12 | 1.34892 | N3-C2-C8 | 119.941 | C21-C5-C4-N3 | 179.195 |
| N12-C11 | 1.34876 | C2-C1-H23 | 121.587 | C5-C4-N3-H24 | 176.546 |
| C11-H26 | 1.08599 | C2-C1-C6 | 121.115 | C5-C4-N3-C2 | 1.377 |
| C11-C10 | 1.38553 | H23-C1-C6 | 117.280 | O9-C4-N3-H24 | 2.951 |
|  |  | C1-C6-C7 | 119.519 | O9-C4-N3-C2 | -178.121 |
|  |  | C1-C6-C5 | 120.783 | C4-N3-C2-C8 | -179.458 |
|  |  | C1-C2-C8 | 120.882 | C4-N3-C2-C1 | -0.769 |
|  |  | C2-C8-C14 | 120.070 | H24-N3-C2-C8 | 5.464 |


|  |  | C8-C14-H28 | 121.654 | H24-N3-C2-C1 | -175.846 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C8-C14-C13 | 118.555 | N3-C2-C8-C14 | 50.832 |
|  |  | H28-C14-C13 | 119.785 | N3-C2-C1-H23 | -178.236 |
|  |  | C14-C13-H27 | 121.015 | N3-C2-C1-C6 | 0.153 |
|  |  | C14-C13-N12 | 123.769 | C2-C1-C6-C5 | -0.201 |
|  |  | H27-C13-N12 | 115.216 | H29-C16-C17-C18 | 179.879 |
|  |  | C13-N12-C11 | 116.791 | C2-C1-C6-C7 | -179.722 |
|  |  | N12-C11-H26 | 115.132 | H23-C1-C6-C7 | -1.266 |
|  |  | N12-C11-C10 | 123.807 | H23-C1-C6-C5 | 178.254 |
|  |  | H26-C11-C10 | 121.061 | C1-C6-C7-C15 | 84.431 |
|  |  | C11-C10-H25 | 119.740 | C1-C6-C7-C19 | -94.640 |
|  |  | C11-C10-C8 | 118.515 | C1-C6-C5-C21 | -179.817 |
|  |  | H25-C10-C8 | 121.742 | C1-C6-C5-C4 | 0.751 |
|  |  | C10-C8-C14 | 118.561 | C2-C8-C14-H28 | 1.422 |
|  |  | C10-C8-C2 | 121.360 | C2-C8-C14-C13 | -179.498 |
|  |  |  |  | C8-C14-C13-H27 | -179.702 |
|  |  |  |  | C8-C14-C13-N12 | 0.325 |
|  |  |  |  | H28-C14-C13-H27 | -0.604 |
|  |  |  |  | H28-C14-C13-N12 | 179.424 |
|  |  |  |  | C14-C13-N12-C11 | -0.029 |
|  |  |  |  | H27-C13-N12-C11 | 179.997 |
|  |  |  |  | C13-N12-C11-H26 | 179.769 |
|  |  |  |  | C13-N12-C11-C10 | -0.063 |
|  |  |  |  | N12-C11-C10-H25 | 179.238 |
|  |  |  |  | N12-C11-C10-C8 | -0.584 |
|  |  |  |  | H26-C11-C10-C8 | -179.969 |
|  |  |  |  | C11-C10-C8-C14 | 0.438 |
|  |  |  |  | C11-C10-C8-C2 | 179.401 |
|  |  |  |  | H25-C10-C8-C14 | -178.934 |
|  |  |  |  | H25-C10-C8-C2 | 0.029 |
|  |  |  |  | C10-C8-C14-C13 | -0.521 |
|  |  |  |  | C10-C8-C14-H28 | -179.601 |
|  |  |  |  | C10-C8-C2-N3 | -128.115 |
|  |  |  |  | C10-C8-C2-C1 | 53.218 |
| Compound $\mathbf{3}$ |  |  |  |  |  |
| H30-C17 | 1.08642 | H30-C17-C18 | 119.939 | H30-C17-C18-H31 | -0.003 |
| C17-C18 | 1.39483 | C17-C18-H31 | 119.893 | H30-C17-C18-C19 | 179.814 |
| C18-H31 | 1.08753 | C17-C18-C19 | 120.084 | C17-C18-C19-H32 | 179.862 |
| C18-C19 | 1.39579 | H31-C18-C19 | 120.023 | C17-C18-C19-C7 | -0.529 |
| C19-H32 | 1.08756 | C18-C19-H32 | 118.959 | H31-C18-C19-H32 | -0.322 |
| C19-C7 | 1.40076 | C18-C19-C7 | 120.199 | H31-C18-C19-C7 | 179.288 |
| C7-C15 | 1.40142 | H32-C19-C7 | 120.841 | C18-C19-C7-C6 | 179.482 |
| C15-H28 | 1.08745 | C19-C7-C15 | 120.813 | C18-C19-C7-C15 | 0.725 |
| C15-C16 | 1.39589 | C19-C7-C15 | 119.406 | H32-C19-C7-C6 | -0.916 |
| C16-H29 | 1.08767 | C7-C15-H28 | 120.677 | H32-C19-C7-C15 | -179.673 |
| C16-C17 | 1.39369 | C7-C15-C16 | 120.214 | C19-C7-C15-H28 | 179.763 |
| C7-C6 | 1.48068 | H28-C15-C16 | 119.108 | C19-C7-C15-C16 | -0.477 |
| C6-C5 | 1.35821 | C15-C16-C17 | 120.075 | C7-C15-C16-H29 | -179.740 |
| C5-C20 | 1.42007 | C15-C16-H29 | 120.009 | C7-C15-C16-C17 | 0.032 |
| C20-N21 | 1.16138 | H29-C16-C17 | 119.915 | H28-C15-C16-H29 | 0.024 |
| C5-C4 | 1.49215 | C16-C17-H30 | 120.043 | H28-C15-C16-C17 | 179.796 |
| C4-O9 | 1.22011 | C16-C17-C18 | 120.043 | C15-C16-C17-H30 | -179.565 |
| C4-H23 | 1.01108 | C16-C17-C18 | 120.018 | C15-C16-C17-C18 | 0.169 |
| N3-C2 | 1.37713 | C15-C7-C6 | 119.769 | H29-C16-C17-H30 | 0.207 |
| C2-C1 | 1.34937 | C7-C6-C5 | 120.002 | H29-C16-C17-C18 | 179.942 |
| C1-H22 | 1.08801 | C6-C5-C4 | 115.947 | C16-C17-C18-H31 | -179.738 |
| C1-C6 | 1.47515 | N21-C20-C5 | 178.462 | C16-C17-C18-C19 | 0.079 |
| C2-C8 | 1.47138 | C20-C5-C4 | 118.762 | C16-C15-C7-C6 | -179.247 |
| C8-C10 | 1.39875 | C5-C4-09 | 123.825 | H28-C15-C7-C6 | 0.992 |
| C10-H24 | 1.08697 | C5-C4-N3 | 120.620 | C15-C 7-C6-C5 | -106.275 |
| C10-C11 | 1.39390 | C9-C4-N3 | 115.554 | C7-C6-C5-C20 | -0.111 |
| C11-H25 | 1.08449 | C4-N3-H23 | 119.687 | C7-C6-C5-C4 | 179.638 |
| C11-C12 | 1.38483 | C4-N3-C2 | 119.677 | C6-C5-C20-N21 | -13.142 |
| C12-H26 | 1.08623 | N3-C2-C8 | 119.997 | C6-C5-C4-N3 | -1.583 |
| C12-N13 | 1.34952 | N3-C2-C1 | 119.076 | N21-C20-C5-C4 | 167.115 |
| N13-C14 | 1.35489 | C2-C1-H22 | 121.717 | C20-C5-C4-O90 | -1.955 |
| C14-H27 | 1.08765 | C2-C1-C6 | 121.233 | C20-C5-C4-N3 | 178.184 |


| C14-C8 | 1.39380 | H22-C1-C6 | 117.043 | C5-C4-N3-H23 | 176.092 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| C4-N3 | 1.36874 | C1-C6-C5 | 120.730 | C5-C4-N3-C2 | 2.074 |
|  |  | C1-C6-C7 | 119.262 | O9-C4-N3-H23 | -3.780 |
|  |  | C1-C2-C8 | 120.813 | O9-C4-N3-C2 | -177.798 |
|  |  | C8-C10-C11 | 119.919 | C4-N3-C2-C8 | -179.743 |
|  |  | H24-C10-C11 | 119.260 | C4-N3-C2-C1 | -1.440 |
|  |  | C10-C11-C12 | 118.364 | H23-N3-C2-C8 | 6.354 |
|  |  | H25-C11-C12 | 120.614 | H23-N3-C2-C1 | -175.343 |
|  |  | C11-C12-H26 | 121.068 | N3-C2-C8-C10 | 50.094 |
|  |  | C11-C12-N13 | 123.640 | N3-C2-C1-H22 | -178.574 |
|  |  | H26-C12-N13 | 115.292 | N3-C2-C1-C6 | 0.366 |
|  |  | C12-N13-C14 | 116.708 | C2-C1-C6-C7 | -179.07 |
|  |  | C12-N13-C14 | 116.708 | C2-C1-C6-C5 | 0.013 |
|  |  | N13-C14-H27 | 114.164 | H22-C1-C6-C7 | -0.083 |
|  |  | N13-C14-C8 | 124.402 | H22-C1-C6-C5 | 179.001 |
|  |  | H27-C14-C8 | 121.431 | C1-C6-C7-C19 | -105.936 |
|  |  | C14-C8-C10 | 116.964 | C1-C6-C5-C20 | -179.189 |
|  |  | C14-C8-C2 | 122.225 | C1-C6-C5-C4 | 0.560 |
|  |  |  |  | C1-C6-C7-C15 | 72.817 |
|  |  |  |  | C6-C1-C2-C17 | 178.653 |
|  |  |  |  | H22-C1-C2-C8 | -0.287 |
|  |  |  |  | C1-C2-C8-C10 | -128.178 |
|  |  |  |  | C2-C8-C10-H24 | 1.244 |
|  |  |  |  | C2-C8-C10-C11 | 179.776 |
|  |  |  |  | C8-C10-C11-H25 | -179.586 |
|  |  |  |  | H24-C10-C11-H25 | -0.590 |
|  |  |  |  | H24-C10-C11-C12 | 179.257 |
|  |  |  |  | C10-C11-C12-N13 | -179.886 |
|  |  |  |  | C10-C11-C12-N13 | 0.060 |
|  |  |  |  | H25-C11-C12-H26 | -0.038 |
|  |  |  |  | H25-C11-C12-N13 | 179.907 |
|  |  |  |  | C11-C12-N13-C14 | -0.053 |
|  |  |  |  | H26-C12-N13-C14 | 179.895 |
|  |  |  |  | C12-N13-C14-H27 | 179.175 |
|  |  |  |  | C12-N13-C14-C8 | -0.594 |
|  |  |  |  | N13-C14-C8-C2 | 179.799 |
|  |  |  |  | H27-C14-C8-C2 | -178.833 |
|  |  |  |  | H27-C14-C8-C2 | 0.371 |
|  |  |  |  | C14-C8-C2-N3 | -129.081 |
|  |  |  |  | C14-C8-C2-C1 | 52.648 |
| Compound 3g |  |  |  |  |  |
| H31-C17 | 1.08582 | H31-C17-C16 | 120.780 | H31-C17-C18-F21 | -0.316 |
| C17-C18 | 1.39159 | C17-C16-H30 | 120.754 | H31-C17-C18-C19 | 179.956 |
| C18-F21 | 1.33820 | C17-C16-C15 | 119.488 | C17-C18-C19-H32 | 179.896 |
| C18-C19 | 1.39301 | H30-C16-C15 | 119.757 | C17-C18-C19-C7 | -0.333 |
| C19-H32 | 1.08630 | C16-C15-F20 | 118.707 | F21-C18-C19-H32 | 0.167 |
| C19-C7 | 1.40038 | C16-C15-C7 | 121.290 | F21-C18-C19-C7 | 179.939 |
| C7-C15 | 1.40300 | F20-C15-C7 | 120.002 | C18-C19-C7-C6 | 179.562 |
| C15-F20 | 1.34087 | C15-C7-C6 | 118.832 | C18-C19-C7-C15 | 0.576 |
| C15-C16 | 1.39269 | C15-C7-C19 | 120.821 | H32-C19-C7-C6 | -0.673 |
| C16-H30 | 1.08604 | C7-C19-H32 | 121.602 | H32-C19-C7-C15 | -179.660 |
| C16-C17 | 1.39394 | C7-C19-C18 | 119.582 | C19-C7-C15-C16 | -0.407 |
| C7-C6 | 1.48111 | H32-C19-C18 | 118.815 | C7-C15-C16-H30 | -179.854 |
| C6-C5 | 1.35821 | C19-C18-F21 | 119.318 | C7-C15-C16-C17 | -0.019 |
| C5-C22 | 1.41907 | C19-C18-C17 | 121.306 | F20-C15-C16-H30 | 0.388 |
| C22-N23 | 1.16085 | F21-C18-C17 | 119.376 | F20-C15-C16-C17 | -179.776 |
| C5-C4 | 1.49231 | C18-C17-H31 | 119.721 | C15-C16-C17-H31 | -179.782 |
| C4-O9 | 1.21966 | C18-C17-C16 | 119.499 | C15-C16-C17-C18 | 0.271 |
| C4-N3 | 1.36793 | C15-C7-C6 | 120.339 | H30-C16-C17-H31 | 0.052 |
| N3-H25 | 1.01205 | C7-C6-C5 | 119.877 | H30-C16-C17-C18 | -179.895 |
| N3-C2 | 1.37711 | C6-C5-C22 | 125.064 | C16-C17-C18-F21 | 179.632 |
| C2-C1 | 1.34888 | C6-C5-C4 | 116.082 | C16-C17-C18-C19 | -0.097 |
| C1-H24 | 1.0877 | C5-C22-N23 | 177.199 | C16-C15-C7-C6 | -179.398 |
| C1-C6 | 1.47563 | C22-C5-C4 | 118.854 | F20-C15-C7-C6 | 0.357 |
| C2-C8 | 1.47102 | C5-C4-09 | 123.731 | C15-C7-C6-C5 | -103.169 |
| C8-C14 | 1.39393 | C5-C4-N3 | 120.493 | C7-C6-C5-C22 | -0.114 |
| C14-H29 | 1.08626 | O9-C4-N3 | 115.775 | C7-C6-C5-C4 | 179.762 |




Fig. 4. Molecular electrostatic potential (MEP) map of $\mathbf{3 c}, \mathbf{3 f}$ and $\mathbf{3 g}$ compounds
confirms its highest capacity to accept electrons as well as it has the highest binding energy and inhibition constant in molecular docking studies. In compound $\mathbf{3 c}$, the HOMO and LUMO had leading contributions from a benzene ring. In compounds $\mathbf{3 f}$ and $\mathbf{3 g}$, the HOMO and LUMO had leading contributions from the pyridyl ring and pyridone ring. In molecular docking studies, the pyridine and pyridone ring have more number of hydrogen bonding interaction, $\pi$-alkyl interaction, $\pi$ - $\sigma$ interaction. The frontier molecular orbitals of pyridylpyridone are shown in Fig. 3. Bond length, bond angle and a dihedral angle of compounds $\mathbf{3 c}$, $\mathbf{3 f}$ and $\mathbf{3 g}$ are given in Table-3.

Molecular electrostatic potential: The molecular electrostatic potential (MEP) map is one of the best computational methods which are used to predict the reactivity of the molecule and the biologically active site of the compound. Furthermore, it is an indicator of the reactivity regions of a target molecule. In Fig. 4, the red color indicates the nucleophilic sites and the blue color indicates the electrophilic sites. Particularly, the nucleophilic sites are more important because it is ready to make hydrogen bonding with protein. In synthesized compounds, $\mathbf{3 c}, \mathbf{3 f}$ and $\mathbf{3 g}$, the negative potential was located in the region of carbonyl, cyano group and pyridine ring. Similarly, the most positive potential was located by the NH group of pyridone ring. These units would participate in non-covalent interactions with amino acid residues of enzymes ( $\alpha$-amylase enzymes) in molecular docking studies.

## Conclusion

In summary, newly designed pyridylpyridone analogue was docked into the active site of $\alpha$-amylase enzyme. To three hit molecules were selected, synthesized and investigated their experimental antidiabetic activity. The biological activities and binding regions were thoroughly identified with the help of DFT calculations. The selected compounds showed excellent results as expected. The present study is a focus to test the further biological studies of selected pyridyl pyridones.

## ACKNOWLEDGEMENTS

The authors grateful to Biochemie Innovations Lab, Tindivanam, India for consultancy service during this research work.

## CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

## REFERENCES

1. S. Altürk, D. Avci, O. Tamer and Y. Atalay, J. Mol. Struct., 1164, 28 (2018);
https://doi.org/10.1016/j.molstruc.2018.03.032
2. Y. Ju and R.S. Varma, J. Org. Chem., 71, 135 (2006); https://doi.org/10.1021/jo051878h
3. M. Radi, G.P. Vallerini, A. Petrelli, P. Vincetti and G. Costantino, Tetrahedron Lett., 54, 6905 (2013); https://doi.org/10.1016/j.tetlet.2013.10.054
4. H. Hongo, R. Fujita, K. Watanabe, W. Ikeura and Y. Ohtake, Heterocycles, 53, 2607 (2000);
https://doi.org/10.3987/COM-00-9020
5. J.L. Greene Jr. and J.A. Montgomery, J. Med. Chem., 7, 17 (1964); https://doi.org/10.1021/jm00331a005
6. M.J. Gil, M.A. Manu, C. Arteaga, M. Migliaccio, I. Encio, A. Gonzalez and V. Martínez-Merino, Bioorg. Med. Chem. Lett., 9, 2321 (1999); https://doi.org/10.1016/S0960-894X(99)00373-X
7. A.P. Krapcho, S.N. Haydar, S. Truong-Chiott, M.P. Hacker, E. Menta and G. Beggiolin, Bioorg. Med. Chem. Lett., 10, 305 (2000); https://doi.org/10.1016/S0960-894X(99)00689-7
8. G. Semple, B. Andersson, V. Chhajlani, J. Georgsson, M.J. Johansson, Å. Rosenquist and L. Swanson, Bioorg. Med. Chem. Lett., 13, 1141 (2003); https://doi.org/10.1016/S0960-894X(03)00033-7
9. Y. Hamada, K. Kawachi, T. Yamamoto, T. Nakata, Y. Kashu, Y. Watanabe and M. Sato, J. Cardiovasc. Surg., 42, 159 (2001).
10. A.P. Kozikowski and W. Tückmantel, Acc. Chem. Res., 32, 641 (1999); https://doi.org/10.1021/ar9800892
11. P. Jagtap, F.G. Soriano, L. Virag, L. Liaudet, J. Mabley, E. Szabo, G. Hasko, A. Marton, C.B. Lorigados, F. Gallyas Jr., B. Sumegi, D.G. Hoyt, E. Baloglu, J. VanDuzer, A.L. Salzman, G.J. Southan and C. Szabo, Crit. Care Med., 30, 1071 (2002); https://doi.org/10.1097/00003246-200205000-00019
12. D. Jochmans, J. Deval, B. Kesteleyn, H. Van Marck, E. Bettens, I. De Baere, P. Dehertogh, T. Ivens, M. Van Ginderen, B. Van Schoubroeck, M. Ehteshami, P. Wigerinck, M. Gotte and K. Hertogs, J. Virol., 80, 12283 (2006);
https://doi.org/10.1128/JVI.00889-06
13. Q. Xu, X. Jiang, W. Zhu, C. Chen, G. Hu and Q. Li, Arab. J. Chem., 9, 721 (2016); https://doi.org/10.1016/j.arabjc.2015.08.001
14. D.I. Kuntz, Science, 257, 1078 (1992); https://doi.org/10.1126/science.257.5073.1078
15. J. Drews, Science, 287, 1960 (2000); https://doi.org/10.1126/science.287.5460.1960
16. G. Banuppriya, R. Sribalan, V. Padmini and V. Shanmugaiah, Bioorg. Med. Chem. Lett., 26, 1655 (2016); https://doi.org/10.1016/j.bmcl.2016.02.066
17. R. Thomsen and M.H. Christensen, J. Med. Chem., 49, 3315 (2006); https://doi.org/10.1021/jm051197e
18. F. Jensen, Introduction to Computational Chemistry, Wiley: Chichester, U.K. (1999).
19. Y.D. Scherson, S.J. Aboud, J. Wilcox and B.J. Cantwell, J. Phys. Chem., 115, 11036 (2011).
20. G. Banuppriya, R. Sribalan and V. Padmini, J. Mol. Struct., 1155, 90 (2018); https://doi.org/10.1016/j.molstruc.2017.10.097
21. S.Al-Zuhair, A. Dowaidar and H. Kamal, J. Biochem. Technol., 2, 158 (2010).
22. S. Kathiresan, T. Anand, S. Mugesh and J. Annaraj, J. Photochem. Photobiol. B, 148, 290 (2015); https://doi.org/10.1016/j.jphotobiol.2015.04.016
23. Y.-Y. Xu, Y. Cao, H. Ma, H.-Q. Li and G.-Z. Ao, Bioorg. Med. Chem., 21, 388 (2013);
https://doi.org/10.1016/j.bmc.2012.11.031
24. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford and J. Cioslowski, S.B. Tefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. AlLaham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez and J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT (2004).
25. P.M. Sales, P.M. Souza, L.A. Simeoni, P.O. Magalhães and D. Silveira, J. Pharm. Pharm. Sci., 15, 141 (2012); https://doi.org/10.18433/J35S3K
26. M.A. Jayasri, P.S. Unnikrishnan and K. Suthindhiran, Pharmacogn. Mag., 11, S511 (2015); https://doi.org/10.4103/0973-1296.172954
27. M.H. Helal, S.A. El-Awdan, M.A. Salem, T.A. Abd-elaziz, Y.A. Moahamed, A.A. El-Sherif and G.A.M. Mohamed, Spectrochim. Acta A Mol. Biomol. Spectrosc., 135, 764 (2015);
https://doi.org/10.1016/j.saa.2014.06.145
28. S. Murugavel, N. Manikandan, D. Lakshmanan, K. Naveen and P.T. Perumal, J. Chil. Chem. Soc., 60, 3015 (2015); https://doi.org/10.4067/S0717-97072015000300008
29. R. Parthasarathi, V. Subramanian, D.R. Roy and P.K. Chattaraj, Bioorg. Med. Chem., 12, 5533 (2004);
https://doi.org/10.1016/j.bmc.2004.08.013

[^0]:    This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

