

SnCl₂ Catalyzed Direct Synthesis of Pyrroles under Aqueous Conditions

D. TEJESWARARAO^{1,*} and B. SRIKANTH²

¹Department of Chemistry, GMR Institute of Technology, Rajam-532127, India ²Department of Chemistry, Indian Institute of Chemical Technology, Hyderabad-500007, India

*Corresponding author: E-mail: tejeswararao.d@gmrit.edu.in

Received: 16 September 2019; Accepted: 4 November 2019; Published online: 25 February 2020; AJC-19794

Synthetic substituted pyrroles are related with interesting biological activities, yet they remain inadequately explored within drug discovery. Late years have seen a growing interest in synthetic approaches that can provide access to structurally novel pyrroles so that the biological usefulness of this compound class can be more fully investigated. Herein, an efficient and versatile practical protocol for the pyrroles using stannous(II) chloride dihydrate as catalyst is described under aqueous conditions at 55 °C in high yields. Also, this method is applicable for the preparation of diversity and oriented pyrrole derivatives.

Keywords: Stannous(II) chloride, Pyrrole, Diversity synthesis, Hexane-2,5-dione, Aqueous medium.

INTRODUCTION

The pyrrole ring framework is a pervasive auxiliary theme found in countless organically dynamic common items [1-3], strong pharmaceutical mixes [4-6] and different sorts of practical materials [7-12]. They are additionally essential structure obstructs in the amalgamation of cyclic π -conjugated oligopyrrolic frameworks, e.g., porphyrins of heme, the chlorins, bacteriochlorins, chlorophyll and different porphyrinoids. Porphyrins are a gathering of natural mixes of which many happen in nature and they are sweet-smelling. The comparison to other realized porphyrins is heme, the colour in red platelets (RBC) and is a cofactor of the protein hemoglobin. They are heterocyclic macrocycles made out of four adjusted pyrrole subunits interconnected at their α -carbon particles by means of methine spans (=CH). Substituted pyrroles displaying remarkable pharmacological properties such as antibacterial [13,14], antifungal [15], anti-inflammatory [16,17], antitumor [18], antioxidant [19], estrogen receptor β -selective ligands [20] and anti-HIV activities (e.g., NB-2, NB-64) [21]. Consequently, the efficient assembly of this class of molecule is of considerable importance in organic synthesis.

The utmost importance of pyrrole and its analogues in medicinal chemistry motivated total scientific field to develop a number of elegant and useful approaches towards the construction and derivatization of pyrrole ring [22,23]. As of late, conjugate addition responses have been utilized for the combination of polysubstituted pyrroles [24]. These mixes can likewise be set up from change metal intermediates [25], Aza-Wittig responses [26], reductive couplings [27], Hantzsch response [28], which gives pyrroles from response of α -chloromethyl ketones with β -ketoesters and smelling salt. Knorr reaction [29], which gives pyrroles by the response between α -aminoketones got from α -haloketones, alkali, β -ketoesters and other multistep operations [30]. Despite these new advancements, Paal-Knorr response [31], stays one of the most appealing techniques for the blend of pyrroles. Several acid catalysts have been used in the Pall-Knorr reaction including H₂SO₄, P₂O₅, CH₃COOH and many more [32].

EXPERIMENTAL

All chemicals utilized were of analytical grade and used as received from Sigma-Aldrich. All reactions under standard conditions were checked by TLC (thinlayer chromatography) on silica gel F₂₅₄ plates. Column chromatography was performed on silica gel (200-300 meshes) and the eluting petroleum ether's distillation range was 60-90 °C. All solvents were dried under rotary evaporator. Unless otherwise noted, ¹H & ¹³C NMR spectra were recorded in CDCl₃ on Bruker AX500 MHz instruments. The chemical shifts are given in parts per million

This is an open access journal, and articles are distributed under the terms of the Attribution 4.0 International (CC BY 4.0) License. This license lets others distribute, remix, tweak, and build upon your work, even commercially, as long as they credit the author for the original creation. You must give appropriate credit, provide a link to the license, and indicate if changes were made.

(ppm) on the delta (δ) scale. Melting points were measured on a micro melting apparatus and are uncorrected.

Synthesis of compounds 2a-j

1-(2,4-Dichlorophenyl)-1*H*-**pyrrole (2a):** To a mixture of 2,4-dichloro nitrobenzene (1 g, 5.20 mmol) in H₂O (10 mL) was added SnCl₂·2H₂O (3.51 g, 15.62 mmol) at room temperature and heated to 55 °C for 30 min. After completion of the reaction (monitored by TLC), basified the reaction mixture slowly with saturated aqueous NaHCO₃ at 0 °C and compound was extracted with ethyl acetate (2 × 30 mL). The combined organic phase was washed with brine (1 × 15 mL), dried over anhydrous Na₂SO₄, removed solvent *in vacuo* and the crude residue was purified by column chromatography on silica gel (ethylacetate:hexane, 2:8) to afford compound **2a** (0.93 g, 85 % yield) as white crystalline powder. ¹H NMR (300 MHz, CDCl₃): δ 6. 25 (t, 2H, *J* = 2.26 Hz, pyrrole protons), 6.84 (t, 2H, *J* = 2.26 Hz, -pyrrole protons), 7.29-7.39 (m, 3H, Ar-H). MS (ESI): *m/z* 213 (M+H)⁺, 214 (M+2).

1-(2,4-Difluorophenyl)-1*H***-pyrrole (2b):** White solid, m.p.: 50-52 °C; ¹H NMR (300 MHz, CDCl₃): δ 6.27 (t, 2H, J = 2.26 Hz, -pyrrole protons), 6.85-7.01 (m, 4H, Ar-H), 7.28 (m, 1H, Ar-H). MS (EI): m/z (%) = 179 (M⁺, 100 %).

Methyl 5-methoxy-4-(prop-2-ynloxy)-2-(1*H*-pyrrol-1yl)benzoate (2c): White solid, m.p.: 94-96 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.50 (t, 1H, *J* = 2.26 Hz, 1H), 3.64 (s, 3H, -OCH₃), 3.94 (s, 3H, -CO₂CH₃), 4.78 (d, 2H, *J* = 2.26 Hz, -OCH₂), 6.20 (t, 2H, *J* = 2.26 Hz, pyrrole protons), 6.68 (t, 2H, *J* = 2.26 Hz, pyrrole protons), 6.95 (s, 1H, Ar-H), 7.32 (s, 1H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 52.39, 56.44, 56.87, 75.81, 77.58, 109.21, 112.79, 113.28, 122.48, 134.98, 148.31, 149.58, 171.55. HRMS (ESI) calcd. (found) for C₁₆H₁₅NO₄: 26, 67.36 (67.41); H, 5.30 (5.26); N, 4.91 (4.90); O, 22.43 (22.40).

Methyl 7-methoxy-2-methyl-4-(1*H*-pyrrol-1-yl)benzofuran-5-carboxylate (2d): Pale brown solid, m.p.: 127-129 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.46 (s, 3H, C2-CH₃), 3.65 (s, 3H, -OCH₃), 4.06 (s, 3H, -CO₂CH₃), 6.22 (t, 2H, J = 2.08 Hz, pyrrole protons), 6.29 (s, 1H, -C3-H), 6.71 (t, 2H, J = 2.08 Hz, pyrrole protons), 7.19 (s, 1H, Ar-H); ¹³C NMR (75 MHz, CDCl₃): δ13.99, 52.29, 56.36, 101.78, 104.14, 107.10, 108.82, 122.48, 129.12, 143.60. HRMS (ESI) calcd. (found) for C₁₆H₁₅NO₄ 286.1079 (286.1068) [M+H]⁺. Anal. calcd. (found) % for C₁₆H₁₅NO₄: C, 67.36 (67.40); H, 5.30 (5.28); N, 4.91 (4.90); O, 22.43 (22.42).

5-(1*H***-Pyrrol-1-yl)-2-***p***-anisole[***d***]thiazole (2e): Yellow thick liquid; ¹H NMR (300 MHz, CDCl₃): \delta 3.89 (s, 3H, -OCH₃), 6.32 (t, 2H,** *J* **= 2.07 Hz, pyrrole protons), 6.98 (d, 2H,** *J* **= 8.87 Hz, Ar-H), 7.12 (t, 2H,** *J* **= 2.07 Hz, -pyrrole protons), 7.38-7.43 (dd, 1H,** *J***_(1,2) = 2.26 Hz,** *J***_(1,3) = 8.68 Hz, Ar-H), 7.86 (d, 1H,** *J* **= 8.68 Hz, Ar-H), 7.98-8.05 (m, 3H, Ar-H). MS (ESI):** *m/z* **307 (M+H)⁺.**

5-(1*H***-Pyrrol-1-yl)-2-***p***-tolylbenzo[***d***]thiazole (2f): Pale yellow solid, m.p.: 98-100 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.44 (s, 3H, Ar-CH₃), 6.32 (t, 2H,** *J* **= 2.26 Hz, pyrrole protons), 7.12 (t, 2H,** *J* **= 2.26 Hz, pyrrole protons), 7.24-7.45 (m, 3H, Ar-H), 7.84-8.10 (m, 4H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 29.73, 109.76, 111.36, 110.69, 114.35, 118.34, 119.64, 122.30, 129.08, 129.81, 130.74, 139.70, 141.82, 155.06. HRMS (ESI)**

calcdd. (found) for $C_{18}H_{14}N_2S$ 291.0955 (291.0968) [M+H]⁺. Anal. calcd. (found) for $C_{18}H_{14}N_2S$: C, 74.45 (74.40); H, 4.86 (4.82); N, 9.65 (9.60); S, 11.04 (11.02).

5-(2,5-Dimethyl-1*H***-pyrrol-1-yl)-2-***p***-tolylbenzo[***d***]thiazole (2g): Pale yellow solid, m.p.: 91-93 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.07 (s, 6H, -CH₃), 2.45 (s, 3H, Ar-CH₃), 5.84 (s, 2H, pyrrole protons), 7.18-7.31 (m, 3H, Ar-H), 7.86-8.00 (m, 4H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 21.55, 29.68, 110.67, 114.33, 118.33, 119.61, 122.24, 127.47, 129.77, 141.80. HRMS (ESI) calcd. (found) for C₂₀H₁₈N₂S 319.1268 (319.1283) [M+H]⁺. Anal. calcd. (found) % for C₂₀H₁₈N₂S: C, 75.44 (75.40); H, 5.70 (5.72); N, 8.80 (8.85); S, 10.07 (10.04).**

2-Chloro-5-(1*H***-pyrrol-1-yl)benzoic acid (2h):** White solid, m.p.: 123-125 °C (lit. [31] 125-128 °C); ¹H NMR (300 MHz, CDCl₃): δ 6.27 (t, 2H, *J* = 2.07 Hz, -pyrrole protons), 7.10 (t, 2H, *J* = 2.07 Hz, pyrrole protons), 7.46-7.57 (m, 2H, Ar-H), 7.88 (s, 1H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 110.99, 118.72, 121.70, 123.01, 128.79, 131.97, 131.78, 131.97, 138.59, 166.20. MS (ESI): *m*/*z* 222 (M+H)⁺. Anal. calcd. (found) (%) for C₁₁H₈NO₂Cl: C, 59.61 (59.64); H, 3.64 (3.62); Cl, 16.00 (19.98), N, 6.32 (6.30).

2-Phenyl-7-(1*H***-pyrrol-1-yl)quinoxaline (2i):** Pale brown solid, decomposition point 191 °C; ¹H NMR (300 MHz, CDCl₃): δ 6.38 (t, 2H, *J* = 2.26 Hz, pyrrole protons), 7.25 (t, 2H, *J* = 2.26 Hz, -pyrrole protons), 7.48-7.59 (m, 3H, Ar-H), 7.86-7.92 (dd, 1H, *J*_(1,2) = 2.26 Hz, *J*_(1,3) = 9.05 Hz, Ar-H), 8.03 (d, 1H, *J* = 3.02 Hz, Ar-H), 8.15-8.23 (m, 3H, Ar-H), 9.31 (s, 1H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 96.17, 111.85, 117.73, 119.21, 122.79, 127.59, 129.13, 130.35, 130.64, 139.66, 141.56, 142.54, 143.04. HRMS (ESI) calcd. for C₁₈H₁₃N₃ 272.1187 [M+H]⁺, found 272.1188. Anal. calcd. (%) for C₁₈H₁₃N₃ calcd. (found): C, 79.68 (79.64); H, 4.83 (4.82); N, 15.49 (15.45).

1-(2-Fluro-4-methylphenyl)-2,5-dimethyl-1*H*-pyrrole (**2j**): ¹H NMR (300 MHz, CDCl₃): δ 1.99 (s, 6H, -CH₃), 2.43 (s, 3H, Ar-CH₃), 5.81 (s, 2H, -pyrrole protons), 6.97-7.13 (m, 3H, Ar-H). ¹³C NMR (MHz, CDCl₃): 12.41, 21.14, 105.80, 116.86, 117.12, 125.06, 129.11, 130.04, 140.42, 159.71. MS (ESI): *m/z* 204 (M+H)⁺, 226 (M+Na).

2-(2,5-Dimethyl-1*H***-pyrrol-1-yl)benzenamine (3a):** ¹H NMR (300 MHz, CDCl₃): δ 1.96 (s, 6H, -CH₃), 3.37-3.46 (bs, 2H, -NH₂), 5.83 (s, 2H, -pyrrole protons), 6.75 (t, 1H, *J* = 7.70 Hz, Ar-H), 7.02 (d, 1H, *J* = 6.98 Hz, Ar-H), 7.15 (t, 1H, *J* = 7.70 Hz, Ar-H). MS (EI): *m/z* (%) 186 (M⁺, 100 %).

4-(1*H***-Pyrrol-1-yl)benzenamine (3c):** ¹H NMR (300 MHz, CDCl₃): δ 3.40-3.75 (bs, 2H, -NH₂), 6.20 (t, 2H, *J* = 2.07 Hz, -pyrrole protons), 6.65 (d, 2H, *J* = 8.49 Hz, Ar-H), 6.88 (t, 2H, *J* = 2.07 Hz, pyrrole protons), 7.13 (d, 2H, *J* = 8.49 Hz, Ar-H). MS (EI): *m/z* (%) 158 (M⁺, 100 %).

Synthesis of pyrroles from *o*-nitro aniline (4a-d): To a mixture of 2-nitroaniline (1 g, 5.20 mmol and 2,5-hexanedione (1.1g, 5.22 mmol) in H₂O (10 mL) was added $\text{SnCl}_2 \cdot 2\text{H}_2\text{O}$ (3.51 g, 15.62 mmol) at room temperature and heated to 55 °C for 30 min. After completion of the reaction (monitored by TLC), basified the reaction mixture slowly with saturated aqueous NaHCO₃ at 0 °C and compound was extracted with ethyl acetate (2 × 30 mL). The combined organic phase was washed with brine (1 × 15 ml), dried over anhydrous Na₂SO₄, removed solvent *in vacuo* and the crude residue was purified

by column chromatography on silica gel (ethylacetate:petroleum ether, 2:8) to afford compound **4a** (0.93 g, 85% yield) as white crystalline powder.

Methyl 7-methoxy-2-methyl-4-(1*H*-pyrrol-1-yl)benzofuran-5-carboxylate (4a): Pale brown solid, m.p.: 127-129 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.46 (s, 3H, C2-CH₃), 3.65 (s, 3H, -OCH₃), 4.06 (s, 3H, -CO₂CH₃), 6.22 (t, 2H, *J* = 2.08 Hz, -pyrrole protons), 6.29 (s, 1H, -C3-H), 6.71 (t, 2H, *J* = 2.08 Hz, -pyrrole protons), 7.19 (s, 1H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 13.99, 52.29, 56.36, 101.78, 104.14, 107.10, 108.82, 122.48, 129.12, 143.60. HRMS (ESI) calcd. (found) for C₁₆H₁₅NO₄286.1079 (286.1068) [M+H]⁺. Anal. calcd. (found) % for C₁₆H₁₅NO₄: C, 67.36 (67.40); H, 5.30 (5.28); N, 4.91 (4.90); O, 22.43 (22.42).

2-(4-Methoxyphenyl)-5-(1*H***-pyrrol-1-yl)benzo[***d***]thiazole (4b): Yellow thick liquid; ¹H NMR (300 MHz, CDCl₃): \delta 3.89 (s, 3H, -OCH₃), 6.32 (t, 2H,** *J* **= 2.07 Hz, -pyrrole protons), 6.98 (d, 2H,** *J* **= 8.87 Hz, Ar-H), 7.12 (t, 2H,** *J* **= 2.07 Hz, pyrrole protons), 7.38-7.43 (dd, 1H,** *J***_(1,2) = 2.26 Hz,** *J***_(1,3) = 8.68 Hz, Ar-H), 7.86 (d, 1H,** *J* **= 8.68 Hz, Ar-H), 7.98-8.05 (m, 3H, Ar-H). MS (ESI):** *m/z* **307 (M+H)⁺.**

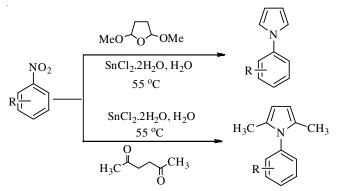
5-(1*H***-Pyrrol-1-yl)-2-***p***-tolylbenzo[***d***]thiazole (4c): Pale yellow solid, m.p.: 98-100 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.44 (s, 3H, Ar-CH₃), 6.32 (t, 2H, J = 2.26 Hz, -pyrrole protons), 7.12 (t, 2H, J = 2.26 Hz, -pyrrole protons), 7.24-7.45 (m, 3H, Ar-H), 7.84-8.10 (m, 4H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 29.73, 109.76, 111.36, 110.69, 114.35, 118.34, 119.64, 122.30, 129.08, 129.81, 130.74, 139.70, 141.82, 155.06. HRMS (ESI) calcd. for C₁₈H₁₄N₂S 291.0955 [M+H]⁺, found 291.0968. Anal. calcd. (found) % for C₁₈H₁₄N₂S: C, 74.45 (74.40); H, 4.86 (4.82); N, 9.65 (9.60); S, 11.04 (11.02).**

5-(2,5-Dimethyl-1*H***-pyrrol-1-yl)-2-***p***-tolylbenzo[***d***]thiazole (4d): Pale yellow solid, m.p.: 91-93 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.07 (s, 6H, -CH₃), 2.45 (s, 3H, Ar-CH₃), 5.84 (s, 2H, -pyrrole protons), 7.18-7.31 (m, 3H, Ar-H), 7.86-8.00 (m, 4H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 21.55, 29.68, 110.67, 114.33, 118.33, 119.61, 122.24, 127.47, 129.77, 141.80. HRMS (ESI) calcd. for C₂₀H₁₈N₂S 319.1268 [M+H]⁺, found 319.1283 Anal. calcd. (found) % for C₂₀H₁₈N₂S: C, 75.44 (75.40); H, 5.70 (5.72); N, 8.80 (8.85); S, 10.07 (10.04).**

Synthesis of pyrroles from *o*-nitro aniline: The synthesis began with the esterification of commercially available vanillic acid with CH₃OH in the presence of conc. H₂SO₄ to afford compound 5. Ester 5 was nitrated with a mixture of fuming HNO₃ and SnCl₄ at -20 °C (dry ice/CCl₄) in CH₂Cl₂. The resulted nitro compound 6 was subjected to Claisen rearrangement by treating with propargyl bromide in the presence of K_2CO_3 under microwave irradiation for 7 min in a sealed tube to afford cyclized product 6 in good yield. Resulted benzofuran was treated with 2,5-dimethoxy tetrahydrofuran in the presence of SnCl₂·2H₂O in H₂O at 55 °C for 60 min to afford target compound 5a in 85 % yield. The ¹H NMR of this compound showed three singlets at δ 2.46, 3.65, and 4.06 corresponding to -CH₃, -OCH₃, and -CO₂CH₃, respectively. The protons of pyrrole ring appeared at δ 6.22 and 6.71 as triplets with coupling constant value (J) of 2.08 Hz and the proton of furan ring appeared at δ 6.29 ppm as singlet. In ESI-MS spectra, (M+H) peak appeared at 268.

Methyl 7-methoxy-2-methyl-4-(1*H***-pyrrol-1-yl)benzofuran-5-carboxylate (5b):** Pale brown solid, m.p.: 127-129 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.46 (s, 3H, C2-CH₃), 3.65 (s, 3H, -OCH₃), 4.06 (s, 3H, -CO₂CH₃), 6.22 (t, 2H, *J* = 2.08 Hz, pyrrole protons), 6.29 (s, 1H, -C3-H), 6.71 (t, 2H, *J* = 2.08 Hz, pyrrole protons), 7.19 (s, 1H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 13.99, 52.29, 56.36, 101.78, 104.14, 107.10, 108.82, 122.48, 129.12, 143.60. HRMS (ESI) calcd. (found) for C₁₆H₁₅NO₄ 286.1079 (286.1068) [M+H]⁺. Anal. calcd. (found) % for C₁₆H₁₅NO₄: C, 67.36 (67.40); H, 5.30 (5.28); N, 4.91 (4.90); O, 22.43 (22.42).

2-(4-Methoxyphenyl)-5-(1*H***-pyrrol-1-yl)benzo[***d***]thiazole (5c): Yellow thick liquid; ¹H NMR (300 MHz, CDCl₃): \delta 3.89 (s, 3H, -OCH₃), 6.32 (t, 2H,** *J* **= 2.07 Hz, pyrrole protons), 6.98 (d, 2H,** *J* **= 8.87 Hz, Ar-H), 7.12 (t, 2H,** *J* **= 2.07 Hz, pyrrole protons), 7.38-7.43 (dd, 1H,** *J***_(1,2) = 2.26 Hz,** *J***_(1,3) = 8.68 Hz, Ar-H), 7.86 (d, 1H,** *J* **= 8.68 Hz, Ar-H), 7.98-8.05 (m, 3H, Ar-H). MS (ESI):** *m/z* **307 (M+H)⁺.**

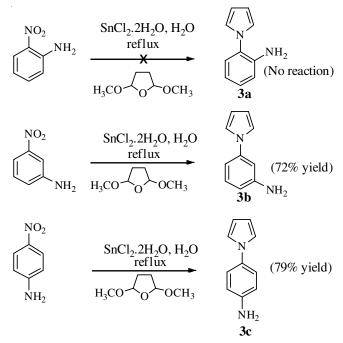

5-(1H-Pyrrol-1-yl)-2-*p***-tolylbenzo[***d***]thiazole (5d):** Pale yellow solid, m.p.: 98-100 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.44 (s, 3H, Ar-CH₃), 6.32 (t, 2H, *J* = 2.26 Hz, pyrrole protons), 7.12 (t, 2H, *J* = 2.26 Hz, pyrrole protons), 7.24-7.45 (m, 3H, Ar-H), 7.84-8.10 (m, 4H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 29.73, 109.76, 111.36, 110.69, 114.35, 118.34, 119.64, 122.30, 129.08, 129.81, 130.74, 139.70, 141.82, 155.06. HRMS (ESI) calcd. (found) for C₁₈H₁₄N₂S: 291.0955 (291.0968) [M+H]⁺. Anal. calcd. (found): for C₁₈H₁₄N₂S: C, 74.45 (74.40); H, 4.86 (4.82); N, 9.65 (9.60); S, 11.04 (11.02).

Methyl 7-methoxy-2-methyl-4-nitrobenzofuran-5carboxylate (7): In a sealed tube, propargyl bromide (2.00 g, 16.83 mmol) was added to a solution of compound 5 (3.47 g, 15.30 mmol) in N,N-diethylaniline (10 mL) followed by K₂CO₃ (5.27 g, 38.26 mmol) and the reaction mixture was irradiated to microwave for 7 min. After completion of the reaction (monitored by TLC), the reaction mixture was directly poured on silica gel column (60-120 mesh) and eluted with ethyl acetate:pet ether (3:7) to afford compound 7 (2.83 g, 70 % yield) as pale yellow powder. m.p.: 120-122 °C; ¹H NMR (300 MHz, CDCl₃): δ 2.56 (s, 3H, C2-CH₃), 3.92 (s, 3H, -OCH₃), 4.11 (s, 3H, -CO₂-CH₃), 6.86 (s, 1H, C3-H), 6.95 (s, 1H, C6-H). ¹³C NMR (75 MHz, CDCl₃): δ 14.07, 53.23, 56.81, 103.39, 105.67, 126.59, 127.00, 143.93, 147.90, 160.62, 167.10. MS (ESI): m/z 288 (M+Na)⁺. Anal. calcd. calcd. (found) % for C₁₂H₁₁NO₆: C, 54.34 (54.32); H, 4.18 (4.16); N, 5.28 (5.26); O, 27.25 (27.23).

RESULTS AND DISCUSSION

As part of our ongoing drug discovery program, which aims to develop new selective and environmentally benign methodologies for the synthesis of heterocycles, herein, we report an efficient one-step procedure for the conversion of nitro compounds to their corresponding *N*-functionalized pyrroles that would be highly amenable to a parallel approach (**Scheme-I**). To the best of our knowledge, however, generality and applicability of SnCl₂ in the synthesis of *N*-functionalized pyrroles in aqueous medium is not known.

Two reagents that have been utilized widely for the reduction of nitro gathering were $Na_2S_2O_4$ and Fe/acid. To begin with, we endeavored the one-pot strategy utilizing 2,4-dichloro-



Scheme-I: Synthesis of pyrrole from nitrobenzene

nitrobenzene, 2,5-dimethoxytetrahydrofuran and Na₂S₂O₄ in refluxing acidic corrosive and got a low yield of the ideal item (25 % and 20 %, 2,5-dimethoxytetrahydrofuran and γ -diketone individually, Table-1). Moreover, it was found that a response under these conditions was fanciful and irreproducible. The utilization of Na₂S₂O₄ and *p*-TsOH in toluene did not yield any of an ideal items (entry 2). Moreover, utilization of Fe and *P*-TsOH in EtOH and toluene separately, did not yield any item (entries 2 and 4). The nitro gathering experienced decrease easily under these response conditions yet neglected to cyclize.

SnCl₂·2H₂O can work as a chemo specific lessening specialist just as mellow Lewis corrosive and was an appealing reagent for doing this reductive cyclization. Utilizing SnCl₂·2H₂O in refluxing H₂O, great yields of an ideal item (82 % normal more than 2 runs) was achieved. The response was likewise analyzed in various solvents, for example, benzene (30 %), THF (60 %), CH₃CN (40 %), EtOH (65 %) and dissolvable free conditions (10 %) for correlation. Low yields of item were framed in natural solvents even after 5 h. The response was additionally advanced by differing the time and the quantity of reciprocals of SnCl₂·2H₂O is required for this change. At last, 3.0 equiv of SnCl₂·2H₂O was found to be optimum amount for ideal yields; extreme measure of reagent did not expand the yield astoundingly. The response was operationally basic and all reagents were blended in H₂O and refluxed until the response finished, preceding fluid workup and confinement by segment chromatography. Having set up the ideal conditions for response, an assortment of substituted nitro benzenes was analyzed to investigate the extension and impediments of the response (Table-1).

In this part of the cases analyzed, a response continued easily in water, commonly bearing a solitary item in quantitative yield (78-88 %). The response obliges a scope of practical information, including electron-giving just as electron-pulling back substituents on the nitrobenzene. Likewise, under these response conditions, stearically upset nitro benzenes (Table-2) gave the comparing items in quantitative yields. Besides, electron-lacking nitro benzenes gave the related *N*-functionalized pyrroles in exceptional returns. Furthermore, the conventional methods could be effectively connected to an enormous scale process. Likewise, the yields obtained with *m*-nitroaniline and *p*-nitroaniline were somewhat lower than those obtained with electron donating substrates when subjected to the established reaction conditions, whereas *o*-nitroaniline found to be unaffected even after longer reaction time, further signify the chemoselectivity of SnCl₂·2H₂O (Scheme-II).

Scheme-II: Preparation of substituted pyrrole-chemoselectivity

In the same way, a reaction of *o*-nitroaniline with 2,5-hexanedione under the identical reaction conditions was observed, interestingly, corresponding pyrrole compound **4a** was isolated in good yield. This might be due to the higher reactivity of 2,5-hexanedione over 2,5-dimethoxytetrahydrofuran. Initially, 2-nitroaniline was reacted with 2,5-hexanedione in the presence of SnCl₂·2H₂O in H₂O under reflux for 30 min, two products (**4a** and **4b**) were isolated. Next, same reaction was continued for 60 min under identical conditions surprisingly, product **4a** formed exclusively as a single product without any formation of **4b** (Scheme-III).

TABLE-1 PREPARATION OF SUBSTITUTED PYRROLES FROM NITRO BENZENE UNDER DIFFERENT REACTION CONDITIONS							
Entry	Acid	Reducing agent	Solvent	Time (h)	Temp. (°C)	Yield (%) ^a	
1	AcOH	$Na_2S_2O_4$	AcOH	2	55	25 ^b , 20 ^c	
2	TsOH	$Na_2S_2O_4$	Toluene	2	55	0	
3	HCl	Fe	EtOH	2	55	0	
4	TsOH	Fe	Toluene	2	55	0	
5	$SnCl_2$	SnCl ₂	EtOH	2	55	65	
6	SnCl ₂	SnCl ₂	MeOH	2	55	70	
7	SnCl ₂	SnCl ₂	H_2O	2	55	85 ^b , 81 ^c	

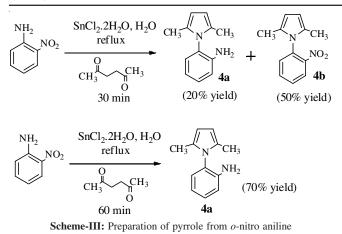
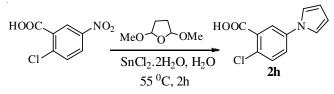

^aIsolated yields. ^b2,5-dimethoxytetrahydrofuran was used. ^cγ-diketone was used.

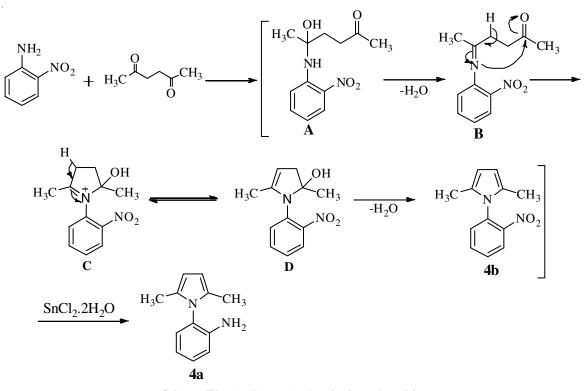
TABLE-2 SYNTHESIS OF N-FUNCTIONALIZED PYRROLES IN AQUEOUS MEDIUM						
Entry	Substrate	Product ^a	Yield (%) ^b			
1		$Cl \rightarrow N$ 2a Cl	85			
2	F-V-NO ₂ F	$F \xrightarrow{H_3C} N$ $2b FH_3C$	83			
3	H ₃ C ₀ NO ₂ H ₃ C ₀ OCH ₃	$\begin{array}{c} & & \\ & & \\ & & \\ H_{3}C_{0} \\ & $	88			
4	H ₃ C ₀ H ₃ C ₀ CH ₃ CH ₃	$H_{3}C_{0}$ H_{3} $H_{3}C_{0}$ $H_{3}C_{$	85			
5	O ₂ N N OCH ₃	$H_{3}CO \xrightarrow{N} S \xrightarrow{N} N$	84			
6	O ₂ N N CH ₃	$\mathbb{A}_{2f}^{S} \mathbb{A}_{N}^{S} \mathbb{A}_{CH_{3}}^{S}$	81			
7	O ₂ N N CH ₃	$\overset{H_{3}C}{\underset{CH_{3}}{\bigvee}} \overset{V}{\underset{N}{\bigvee}} \overset{S}{\underset{N}{\bigvee}} \overset{CH_{3}}{\underset{CH_{3}}{\bigvee}} CH_{3}$	80			
8	HO ₂ C Cl	HO ₂ C N CI 2h	82			
9			78			
10	H ₃ C-V-NO ₂ F	$H_{3}C \xrightarrow{H_{3}C} N$	86			


^aAll products were characterized by IR, ¹H NMR and mass spectrometry. ^bIsolated yield after purification.

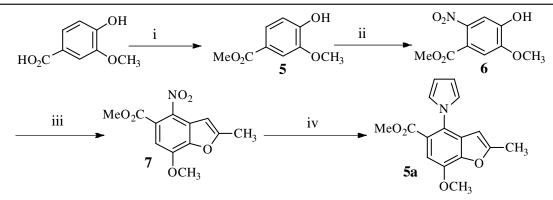
The reason for the formation of single product *i.e.*, **4a** in the second condition is might be due to expected mechanism (**Scheme-IV**). Herein, a first step is the addition of an amine to one of the carbonyl groups yielding hemiaminal A, which can eliminate water to form imine B. Next, ring closure of imine B produces C, which can convert to D immediately. Finally, a loss of water from D resulted in the formation of pyrrole compound **4b**, which was on reduction with $SnCl_2 \cdot 2H_2O$ produced compound **4a**.

Based on the above mechanism, it assumed that a formation of imine bond was a driving force for the formation of compound **4b**, whereas, in the case of 2,5-dimethoxytetrahydrofuran this type of imine bond formation was not possible. This might be the reason for the failure of reaction of *o*-nitroaniline with 2,5dimethoxytetrahydrofuran under identical conditions. Similarly, by adopting this methodology, synthesis of N-substituted pyrrole derivative NB-64 (entry 8, Table-2) as novel human immunodeficiency virus type 1 entry inhibitor in high yields

(82 %) was achieved by treating 2-chloro-5-nitrobenzoic acid with 2,5-dimethoxytetrahydrofuran under identical reaction conditions (**Scheme-V**). ¹H NMR analysis of this compound showed a characteristic pyrrole protons which appeared at δ 6.27 and 7.10 as triplets with coupling constant (*J*) value of 2.07 Hz.

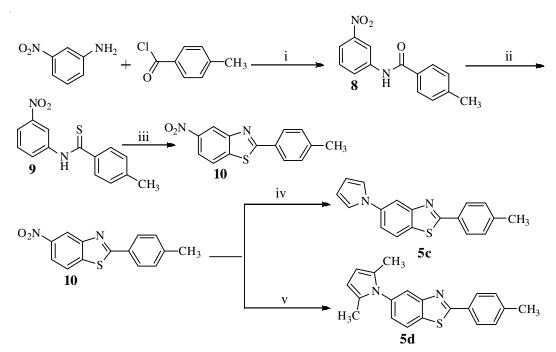


Scheme-V: Synthesis of pyrrole derivative NB-64


Encouraged by these results, this methodology was further extended for the synthesis of novel hybrid molecules (incorporation of two or more pharmacophores in a single moiety). Recently, hybrid drug approach has gained impetus due to its overwhelming success, exemplified by RSNOs (S-nitrosothiols)- β -receptor blocker hybrids, RSNOs-NSAIDs hybrids [33], distamycin-Hoechst 33258 hybrids [34], CBI-PBD conjugates [35], Uramustine-distamycin A hybrids [36], 5-fluorouracil-distamycin A hybrids [37], *etc.* This approach led to the development of more sequence-selective, highly potent and selective-tumor candidates. Another advantage of hybrid molecules is the fact that the intake of one hybrid drug is better for patients' compliance. By adopting this methodology, a series of novel hybrid molecules containing *N*-aryl pyrrole hybrid molecules (entries **5a**, **5b**, **5c** and **5d**) were synthesized.

Synthesis of compound 5a: The synthesis began with the esterification of commercially available vanillic acid with CH_3OH in the presence of conc. H_2SO_4 to afford compound 5. Ester 5 was nitrated with a mixture of fuming HNO₃ and SnCl₄ at -20 °C (dry ice/CCl₄) in CH₂Cl₂. The resulted nitro compound 6 was subjected to Claisen rearrangement by treating with propargyl bromide in the presence of K₂CO₃ under microwave irradiation for 7 min in a sealed tube to afford cyclized product 7 in good yield. Resulted benzofuran compound 7 was treated with 2,5-dimethoxytetrahydrofuran in the presence of SnCl₂·2H₂O in H₂O at 55 °C for 60 min to afford target compound 5a in 85 % yield (Scheme-VI). ¹H NMR analysis of this compound showed three singlets at δ 2.46, 3.65 and 4.06 corresponding to -CH₃, -OCH₃ and -CO₂CH₃, respectively. The protons of pyrrole ring appeared at δ 6.22 and 6.71 as triplets with coupling constant value (J) of 2.08 Hz and the proton of furan ring appeared at δ 6.29 as singlet. In the ESI-MS spectra the (M+H) peak appeared at 268.

Synthesis of compounds 5c and 5d: Coupling of 4-methylbenzoyl chloride with 2-nitroaniline afforded corresponding amide 8, which was converted to thioamide 9 by treating with Lawesson's reagent (Scheme-VII). Thioamide 9 was cyclized



Scheme-IV: Plausible mechanism for formation of 4a

Reagents and conditions: (i) Conc. H_2SO_4 , CH_3OH , reflux, 10 h (ii) $SnCl_4$, fuming HNO_3 , CH_2Cl_2 , -20 ⁰C, 10 min (iii) K_2CO_3 , propargyl bromide, N,N-diethylaniline, MW, 7 min (iv) 2,5-dimethoxytetrahydrofuran, $SnCl_2.2H_2O$, H_2O , reflux, 1 h

Scheme-VI: Synthesis of benzoxazole-pyrrole hybrid molecule 5a

Reagents and Conditions: (i) Et_3N , CH_2Cl_2 , r.t., 8 h (ii) Lawesson's reagent, dry toluene, reflux, 3 h (iii) DDQ, CH_3OH , r.t. 20 min (iv) 2,5-dimethoxytetrahydrofuran, $SnCl_2.2H_2O$, H_2O , reflux, 1 h (v) 2,5-hexanedione, $SnCl_2.2H_2O$, H_2O , reflux, 1 h

Scheme-VII: Synthesis of benzothiazole-pyrrole hybrid molecules 5c and 5d

with DDQ in CH₃OH at room temperature to yield compound **10**. Compound **10** on reaction with 2,5-dimethoxytetrahydrofuran and 2,5-hexanedione in the presence of $SnCl_2 \cdot 2H_2O$ to afford compounds **4c** and **4d**, respectively in good yield (81 and 80 %, respectively). Compound **4b** was also synthesized by adopting the same synthetic scheme and the structure of these compounds satisfactorily ascertained by ¹H NMR, ¹³C NMR and ESI-MS.

Conclusion

We have built up a basic method for the union of *N*-functionalized pyrroles from nitro benzenes in great yield utilizing a cheap, monetarily accessible synthon. The proficient convention portrayed here speaks to the briefest course accessible to get to an assortment of substituted pyrroles is operationally straight-forward and gives a noteworthy improvement over existing techniques for the arrangement of this class.

ACKNOWLEDGEMENTS

The authors thank the financial support of this research from GMR Institute of Technology, Rajam, India.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this article.

REFERENCES

- C.T. Walsh, S. Garneau Tsodikova and A.R. Howard Jones, *Nat. Prod. Rep.*, 23, 517 (2006); <u>https://doi.org/10.1039/b605245m</u>
- D. Tzankova, S. Vladimirova, L. Peikova and M. Georgieva, J. Chem. Technol. Metall., 53, 451 (2018).
- H. Hoffmann and T. Lindel, *Synthesis*, 1753 (2003); https://doi.org/10.1055/s-2003-41005
- 4. J.W. Huffman, Curr. Med. Chem., 6, 705 (1999).
- A. Hall, S. Atkinson, S.H. Brown, I.P. Chessell, A. Chowdhury, G.M.P. Giblin, P. Goldsmith, M.P. Healy, K.S. Jandu, M.R. Johnson, A.D. Michel, A. Naylor and J.A. Sweeting, *Bioorg. Med. Chem. Lett.*, 17, 1200 (2007);
- https://doi.org/10.1016/j.bmc1.2006.12.021
- 6. R.B. Thompson, *FASEB J.*, **15**, 1671 (2001); <u>https://doi.org/10.1096/fj.01-0024lsf</u>
- D. Tejeswararao, J. Chil. Chem. Soc., 61, 2843 (2016); https://doi.org/10.4067/S0717-97072016000100018
- P. Plitt, D.E. Gross, M.V. Lynch and J.L. Sessler, *Chem. Eur. J.*, 13, 1374 (2007);
- https://doi.org/10.1002/chem.200601514 9. K. Kumar, S.S. More, S. Goyal, M. Gangar, G.L. Khatik, R.K. Rawal
- and V.A. Nair, *Tetrahedron Lett.*, **57**, 2315 (2016); https://doi.org/10.1016/j.tetlet.2016.04.056
- K. Ogawa and R.C. Rasmussen, J. Org. Chem., 68, 2921 (2003); https://doi.org/10.1021/jo034078k
- D.W. Yoon, H. Hwang and C.H. Lee, Angew. Chem. Int. Ed., 41, 1757 (2002);
- https://doi.org/10.1002/1521-3773(20020517)41:10<1757::AID-ANIE1757>3.0.CO:2-0
- C.F. Lee, L.M. Yang, T.Y. Hwu, A.S. Feng, J.C. Tseng and T.Y. Luh, J. Am. Chem. Soc., 122, 4992 (2000); https://doi.org/10.1021/ja0004736
- R.W. Burli, D. McMinn, J.A. Kaizerman, W. Hu, Y. Ge, Q. Pack, V. Jiang, M. Gross, M. Garcia, R. Tanaka and H.E. Moser, *Bioorg. Med. Chem. Lett.*, 14, 1253 (2004); https://doi.org/10.1016/j.bmcl.2003.12.042
- R.W. Burli, P. Jones, D. McMinn, Q. Le, J.X. Duan, J.A. Kaizerman, S. Difuntorum and H.E. Moser, *Bioorg. Med. Chem. Lett.*, 14, 1259 (2004); <u>https://doi.org/10.1016/j.bmcl.2003.12.043</u>
- M. Del Poeta, W.A. Schell, C.C. Dykstra, S. Jones, R.R. Tidwell, A. Czarny, M. Bajic, M. Bajic, A. Kumar, D. Boykin and J.R. Perfect, *Antimicrob. Agents Chemother.*, 42, 2495 (1998); <u>https://doi.org/10.1128/AAC.42.10.2495</u>
- E. Toja, D. Selva and P. Schiatti, J. Med. Chem., 27, 610 (1984); <u>https://doi.org/10.1021/jm00371a010</u>
- V.J. Demopoulos and E. Rekka, J. Pharm. Sci., 84, 79 (1995); https://doi.org/10.1002/jps.2600840119
- A.S. Girgis, J. Stawinski, N.S. Ismail and H. Farag, *Eur. J. Med. Chem.*, 47, 312 (2012);
 - https://doi.org/10.1016/j.ejmech.2011.10.058
- J. Lehuede, B. Fauconneau, L. Barrier, M. Ourakow, A. Piriou and J.M. Vierfond, *Eur. J. Med. Chem.*, **34**, 991 (1999); <u>https://doi.org/10.1016/S0223-5234(99)00111-7</u>

- R. Chesworth, M.D. Wessel, L. Heyden, F.M. Mangano, M. Zawistoski, L. Gegnas, D. Galluzzo, B. Lefker, K.O. Cameron, J. Tickner, B. Lu, T.A. Castleberry, D.N. Petersen, A. Brault, P. Perry, O. Ng, T.A. Owen, L. Pan, H.Z. Ke, T.A. Brown, D.D. Thompson and P. DaSilva Jardine, *Bioorg. Med. Chem. Lett.*, **15**, 5562 (2005); <u>https://doi.org/10.1016/j.bmcl.2005.08.010</u>
- K. Liu, H. Lu, L. Hou, Z. Qi, C. Teixeira, F. Barbault, B.-T. Fan, S. Liu, S. Jiang and L. Xie, *J. Med. Chem.*, **51**, 7843 (2008); <u>https://doi.org/10.1021/jm800869t</u>
- V.F. Ferreira, M.C.B.V. de Souza, A.C. Cunha, L.O.R. Pereira and M.L.G. Ferreira, Org. Prep. Proced. Int., 33, 411 (2001); https://doi.org/10.1080/00304940109356613
- 23. T.L.J. Gilchrist, Chem. Soc. Perkin Trans. I, 615 (1998); https://doi.org/10.1039/a704493c
- 24. R.K. Dieter and H. Yu, *Org. Lett.*, **2**, 2283 (2000); https://doi.org/10.1021/o1006050q
- 25. N. Iwasawa, K. Maeyama and M. Saitou, *J. Am. Chem. Soc.*, **119**, 1486 (1997);
 - https://doi.org/10.1021/ja962173n
- A. Katritzky, L. Jiang and P.J. Steel, J. Org. Chem., 59, 4551 (1994); https://doi.org/10.1021/jo00095a034
- 27. A. Fuerstner, H. Weintritt and A. Hupperts, J. Org. Chem., 60, 6637 (1995); https://doi.org/10.1021/jo00125a068
- V.F. Ferreira, M.C.B.V. De Souza, A.C. Cunha, L.O.R. Pereira and M.L.G. Ferreira, *Org. Prep. Proced. Int.*, **33**, 411 (2001); <u>https://doi.org/10.1080/00304940109356613</u>
- I. Elghamry, Synth. Commun., 32, 897 (2002); https://doi.org/10.1081/SCC-120002701
- P.K. Chiu and M.P. Sammes, *Tetrahedron*, 46, 3439 (1990); https://doi.org/10.1016/S0040-4020(01)81514-3
- K. Aghapoor, F. Mohsenzadeh, H.R. Darabi, H. Sayahi and Y. Balavar, *Res. Chem. Intermed.*, 42, 407 (2016); <u>https://doi.org/10.1007/s11164-015-2026-1</u>
- H. Huang, L. Tang, J. Cai and G.-J. Deng, *RSC Adv.*, 6, 7011 (2016); https://doi.org/10.1039/C5RA24006A
- N.K. Jain, C.S. Patil, R.E. Kartasasmita, M. Decker, J. Lehmann and S.K. Kulkarni, *Drgu Dev. Res.*, 61, 66 (2004); https://doi.org/10.1002/ddr.10337
- P. Helissey, C. Bailly, J.N. Vishwakarma, C. Auclair, M.J. Waring and S. Giorgi Renault, *Anticancer Drug Des.*, **11**, 527 (1996).
- M. Tercel, S.M. Stribbling, H. Sheppard, B.G. Siim, K. Wu, S.M. Pullen, K.J. Botting, W.R. Wilson and W.A. Denny, *J. Med. Chem.*, 46, 2132 (2003);
 - https://doi.org/10.1021/jm020526p
- P.G. Baraldi, G. Balboni, B. Cacciari, A. Guiotto, S. Manfredini, R. Romagnoli, G. Spalluto, D.E. Thurston, P.W. Howard, N. Bianchi, C. Rutigliano, C. Mischiati and R. Gambari, *J. Med. Chem.*, 42, 5131 (1999); <u>https://doi.org/10.1021/jm991033w</u>
- P.G. Baraldi, G. Balboni, M.G. Pavani, G. Spalluto, M.A. Tabrizi, E.D. Clercq, J. Balzarini, T. Bando, H. Sugiyama and R. Romagnoli, *J. Med. Chem.*, 44, 2536 (2001); https://doi.org/10.1021/jm0108404