
National Conference on ―Recent Trends in Mathematical, Physical, Chemical, Library, Life Sciences - 2020
IRJSE © 2020| All right reserved |834

Int. Res. J. of Science & Engineering, 2020; Special Issue A7: 834-838 SJIF Impact Factor 6.68
ISSN: 2322-0015

RESEARCH ARTICLE OPEN ACCESS

Convolutional Neural Network for Image Classification.

Ghori Md. Atheeq Sultan

Assistant Professor, Department of Computer Science & Engineering Telangana University, Nizamabad, Telangana State,

India.

Manuscript Details

ABSTRACT

Available online on http://www.irjse.in
ISSN: 2322-0015

Cite this article as:

Ghori Md. Atheeq Sultan .Convolutional Neural

Network for Image Classification., Int. Res. Journal

of Science & Engineering, February, 2020, Special

Issue A7 : 834-838.

© The Author(s). 2020 Open Access

This article is distributed under the terms

 of the Creative Commons Attribution

4.0 International License

(http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and

reproduction in any medium, provided you give

appropriate credit to the original author(s) and

the source, provide a link to the Creative

Commons license, and indicate if changes were

made.

We will be building a convolutional neural network that

will be trained on few thousand images of cats and dogs,

and later be able to predict if the given image is of a cat

or a dog. In this it will be solving an image classification

problem, where our goal will be to tell which class the

input image belongs to. The way we are going to achieve

it is by training an artificial neural network on few

thousand images of cats and dogs and make the NN

(Neural Network) learn to predict which class the image

belongs to, next time it sees an image having a cat or dog

in it.

Keywords: Convolutional Neural Network, Pooling

Flattening.

INTRODUCTION

The key thing to understand while following this article

is that the model we are building now can be trained on

any type of class you want, i am using cat and dog only

as a simple example for making you understand how

convolutional neural networks work. For example, if

there are any doctors reading this, after completing this

article they will be able to build and train neural

networks that can take a brain scan as an input and

predict if the scan contains a tumour or not.

So coming to the coding part, we are going to use deep

learning library in python to build our CNN

(Convolutional Neural Network). Before we jump into

building the model, i need you to download all the

required training and test dataset by going into this drive

by clicking,

http://www.irjse.in/
http://creativecommons.org/licenses/by/4.0/

Ghori Md. Atheeq Sultan, 2020 835

Int. Res. J. of Science & Engineering, Special Issue A7, February, 2020

download both the folders named ―test set‖ and

―training set‖ into your working directory, it may take

a while as there are 10,000 images in both folders,

which is the training data as well as the test dataset.

Make sure to create a new directory and name it

―whatever_you_want‖ and paste the above

downloaded dataset folders into it.

Let‘s see what does the folders you just downloaded

have in them. First, the folder ―training set‖ contains

two sub folders cats and dogs, each holding 8000

images of the respective category. Second, the folder

―test set‖ contains two sub folders cats and dogs, each

holding 2000 images of respective category.

The process of building a Convolutional Neural

Network always involves four major steps.

Step - 1 : Convolution

Step - 2 : Pooling

Step - 3 : Flattening

Step - 4 : Full connection

We will be going through each of the above

operations while coding our neural network. So first

go to your working directory and create a new file and

name it as ―whatever_you_want‖.py , but I am going

to refer to that file as cnn.py, where ‗cnn‘ stands for

Convolutional Neural Network and ‗.py‘ is the

extension for a python file. You will be appending

whatever code I write below to this file.

Let’s Code:

First let us import all the required keras packages

using which we are going to build our CNN, make

sure that every package is installed properly in your

machine, there is two ways os using keras, i.e Using

Tensorflow backend and by Using Theano backend,

but don‘t worry, all the code remains the same in

either cases. I tested the below code using Tensorflow

backend.

Importing the Keras libraries and packages

from keras.models import Sequential

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.layers import Flatten

from keras.layers import Dense

Let us now see what each of the above packages are

imported for :

In line 1, we‘ve imported Sequential from

keras.models, to initialise our neural network model

as a sequential network. There are two basic ways of

initialising a neural network, either by a sequence of

layers or as a graph.

In line 2, we‘ve imported Conv2D from keras.layers,

this is to perform the convolution operation i.e the

first step of a CNN, on the training images. Since we

are working on images here, which a basically 2

Dimensional arrays, we‘re using Convolution 2-D,

you may have to use Convolution 3-D while dealing

with videos, where the third dimension will be time.

In line 3, we‘ve imported MaxPooling2D from

keras.layers, which is used for pooling operation, that

is the step — 2 in the process of building a cnn. For

building this particular neural network, we are using

a Maxpooling function, there exist different types of

pooling operations like Min Pooling, Mean Pooling,

etc. Here in MaxPooling we need the maximum value

pixel from the respective region of interest.

In line 4, we‘ve imported Flatten from keras.layers,

which is used for Flattening. Flattening is the process

of converting all the resultant 2 dimensional arrays

into a single long continuous linear vector.

And finally in line 5, we‘ve imported Dense from

keras.layers, which is used to perform the full

connection of the neural network, which is the step 4

in the process of building a CNN.

Now, we will create an object of the sequential class

below: classifier = Sequential()

Let us now code the Convolution step, you will be

surprised to see how easy it is to actually implement

these complex operations in a single line of code in

python, thanks to Keras. classifier.add(Conv2D(32, (3,

3), input_shape = (64, 64, 3), activation = 'relu'))

Let‘s break down the above code function by function.

We took the object which already has an idea of how

our neural network is going to be(Sequential), then we

836 | National Conference on ―Recent Trends in Mathematical, Physical, Chemical, Library, Life Sciences - 2020

ISSN 2322-0015 http://www.irjse.in

added a convolution layer by using the ―Conv2D‖

function. The Conv2D function is taking 4 arguments,

the first is the number of filters i.e 32 here, the second

argument is the shape each filter is going to be i.e 3x3

here, the third is the input shape and the type of

image(RGB or Black and White)of each image i.e the

input image our CNN is going to be taking is of a

64x64 resolution and ―3‖ stands for RGB, which is a

colour img, the fourth argument is the activation

function we want to use, here ‗relu‘ stands for a

rectifier function.

Now, we need to perform pooling operation on the

resultant feature maps we get after the convolution

operation is done on an image. The primary aim of a

pooling operation is to reduce the size of the images as

much as possible. In order to understand what

happens in these steps in more detail you need to read

few external resources. But the key thing to

understand here is that we are trying to reduce the

total number of nodes for the upcoming layers.

classifier.add(MaxPooling2D(pool_size = (2, 2)))

We start by taking our classifier object and add the

pooling layer. We take a 2x2 matrix we‘ll have

minimum pixel loss and get a precise region where

the feature are located. Again, to understand the

actual math behind Pooling, i suggest you to go learn

from an external source, this tutorial concentrates

more on the implementation part. We just reduced the

complexity of the model without reducing it‘s

performance.

It‘s time for us to now convert all the pooled images

into a continuous vector through Flattening.

Flattening is a very important step to understand.

What we are basically doing here is taking the 2-D

array, i.e pooled image pixels and converting them to

a one dimensional single vector.

classifier.add(Flatten())

The above code is pretty self-explanatory. We‘ve used

flatten function to perform flattening, we no need to

add any special parameters, keras will understand

that the ―classifier‖ object is already holding pooled

image pixels and they need to be flattened.

In this step we need to create a fully connected layer,

and to this layer we are going to connect the set of

nodes we got after the flattening step, these nodes will

act as an input layer to these fully-connected layers.

As this layer will be present between the input layer

and output layer, we can refer to it a hidden layer.

classifier.add(Dense(units = 128, activation = 'relu'))

As you can see, Dense is the function to add a fully

connected layer, ‗units‘ is where we define the

number of nodes that should be present in this hidden

layer, these units value will be always between the

number of input nodes and the output nodes but the

art of choosing the most optimal number of nodes can

be achieved only through experimental tries. Though

it‘s a common practice to use a power of 2. And the

activation function will be a rectifier function.

Now it‘s time to initialise our output layer, which

should contain only one node, as it is binary

classification. This single node will give us a binary

output of either a Cat or Dog.

classifier.add(Dense(units = 1, activation = 'sigmoid'))

You can observe that the final layer contains only one

node, and we will be using a sigmoid activation

function for the final layer.

Now that we have completed building our CNN

model, it‘s time to compile it.

classifier.compile(optimizer = 'adam', loss =

'binary_crossentropy', metrics = ['accuracy'])

From above :

 Optimizer parameter is to choose the

stochastic gradient descent algorithm.

 Loss parameter is to choose the loss function.

 Finally, the metrics parameter is to choose the

performance metric.

It‘s time to fit our CNN to the image dataset that

you‘ve downloaded.But before we do that, we are

going to pre-process the images to prevent over-

fitting. Overfitting is when you get a great training

Ghori Md. Atheeq Sultan, 2020 837

Int. Res. J. of Science & Engineering, Special Issue A7, February, 2020

accuracy and very poor test accuracy due to

overfitting of nodes from one layer to another.

So before we fit our images to the neural network, we

need to perform some image augmentations on them,

which is basically synthesising the training data. We

are going to do this using keras.preprocessing library

for doing the synthesising part as well as to prepare

the training set as well as the test test set of images

that are present in a properly structured directories,

where the directory‘s name is take as the label of all

the images present in it. For example : All the images

inside the ‗cats‘ named folder will be considered as

cats by keras.

train_datagen = ImageDataGenerator(rescale = 1./255,

shear_range= 0.2,

zoom_range = 0.2,

horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set =

train_datagen.flow_from_directory('training_set',

target_size = (64, 64),

batch_size = 32,

class_mode = 'binary')

test_set = test_datagen.flow_from_directory('test_set',

target_size = (64, 64),

batch_size = 32,

class_mode = 'binary')

You can find the explanation of what each of the

above parameters do here, in the keras documentation

page. Butwhat you need to understand as a whole of

whats happening above is that we are creating

synthetic data out of the same images by performing

different type of operations on these images like

flipping, rotating, blurring, etc.

Now lets fit the data to our model !

classifier.fit_generator(training_set,

steps_per_epoch = 8000,

epochs = 25,

validation_data = test_set,

validation_steps = 2000)

In the above code, ‗steps_per_epoch‘ holds the

number of training images, i.e the number of images

the training_set folder contains.

And ‗epochs‘, A single epoch is a single step in

training a neural network; in other words when a

neural network is trained on every training samples

only in one pass we say that one epoch is finished. So

training process should consist more than one

epochs.In this case we have defined 25 epochs.

Making new predictions from our trained model :

import numpy as np

from keras.preprocessing import image

test_image =

image.load_img('dataset/single_prediction/cat_or_do

g_1.jpg', target_size = (64, 64))

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = 0)

result = classifier.predict(test_image)

training_set.class_indices

if result[0][0] == 1:

prediction = 'dog'

else:

prediction = 'cat'

CONCLUSION

The test_image holds the image that needs to be tested

on the CNN. Once we have the test image, we will

prepare the image to be sent into the model by

converting its resolution to 64x64 as the model only

excepts that resolution. Then we are using predict()

method on our classifier object to get the prediction.

As the prediction will be in a binary form, we will be

receiving either a 1 or 0, which will represent a dog or

a cat respectively.

Conflicts of interest: The authors stated that no

conflicts of interest.

REFERENCES

1. Mansingh Gunjan, Reichgelt Han and Kweku-

Muata Osei Bryson. CPEST: An expert system

for the management of pests and diseases in the

Jamaican coffee industry. Expert Systems with

Applications, Vol. 32(1):184–192, January 2007.

2. Mahaman, B.D., Passam, H.C., Sideridis, A.B. and

C.P Yialouris. DIARES-IPM: a diagnostic advisory

838 | National Conference on ―Recent Trends in Mathematical, Physical, Chemical, Library, Life Sciences - 2020

ISSN 2322-0015 http://www.irjse.in

rule-based expert system for integrated pest

management in Solanaceous crop systems.

3. Fink, M. and Scharpf, H.C. N-Expert - a decision

support system for vegetable fertilization in the

field. ISHS Acta Horticulturae, Vol. 339: 67-74,

1993.

4. Gonzalez-Diaz, L., Martínez-Jimenez, P., Bastida,

F and J.L. Gonzalez-Andujar. Expert system for

integrated plant protection in pepper (Capsicum

annuun L.). Expert Systems with Applications,

Vol. 36(5):8975–8979, July 2009.

5. Ghosh, I. and R. K. Samanta. TEAPEST: An expert

system for insect pest management in tea.

American Society of Agricultural and Biological

Engineers, Vol. 19 (5):619–625, 2003.

6. Boulanger, A. G. The Expert System PLANT/CD:

A Case Study in Applying the General Purpose

Inference System ADVISE to Predicting Black

Cutworm Damage in Corn. M. S. Thesis,

Computer Science Dept., Univ. of Illinois at

Champaign-Urbana, 1983.

7. Baker, J. and Lemmon, H. COMAX Expert

Systems for Agriculture, Computers and

Electronics in Agriculture, Vol.1: 31-40, 1985.

8. Durkin, J., Godine, R. and Y. Lu. CROPRO Expert

System for Specialty Crop Management. The

lnternational. Jnt. Conf. on Artificial Intelligence :

312-323, 1989.

9. John Durkin. Application of Expert Systems in the

Sciences. OHIO J. SCI., Vol.90(5): 171-179,1990.

10. Yialouris, C.P., Passam, H.C., Sideridis, A.B. and

C Métin. VEGES—A multilingual expert system

for the diagnosis of pests, diseases and nutritional

disorders of six greenhouse vegetables.

Computers and Electronics in Agriculture,

Vol.19(1):55-67, December 1997.Agricultural

Systems, Vol. 76(3):1119–1135, June 2003.

© 2020| Published by IRJSE

