
National Conference on “Recent Trends in Mathematical, Physical, Chemical, Library, Life Sciences - 2020
IRJSE © 2020| All right reserved |784

Int. Res. J. of Science & Engineering, 2020; Special Issue A7: 784-790 SJIF Impact Factor 6.68
ISSN: 2322-0015

RESEARCH ARTICLE OPEN ACCESS

Message Security in REST Web Services with Intermediary REST

Relay Service.

Jivtode Manish

Department of Computer Science, Janata Mahavidyalaya, Chandrapur, MS, India.

Email: mljivtode@gmail.com

Manuscript Details

ABSTRACT

Available online on http://www.irjse.in
ISSN: 2322-0015

Cite this article as:

Jivtode Manish. Message Security in REST Web

Services with Intermediary REST Relay Service.,

Int. Res. Journal of Science & Engineering, February

2020 | Special Issue A7:784-790.

© The Author(s). 2020 Open Access

This article is distributed under the terms

 of the Creative Commons Attribution

4.0 International License

(http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and

reproduction in any medium, provided you give

appropriate credit to the original author(s) and

the source, provide a link to the Creative

Commons license, and indicate if changes were

made.

Security of web services provides message integrity,

privacy, authentication and confidentiality for message

requests from client to service, and message responses

from service to client. Intermediary relay web services

with transport layer and message level security were

used to test facts about point-to-point security and end-

to-end security in REST web services respectively. In this

paper, use high performance security encryption and

decryption algorithms to measure the performance of

algorithms in the message level security and tests were

conducted on REST web service and client in an

environment with intermediary REST relay web service.

Keywords: REST, Message security, REST relay service,

HTTP, Request, Response, GET, POST, PUT, DELETE

etc.

INTRODUCTION

Text REST web services currently have transport layer

security. The main difference between transport layer

and message level security is that message security

includes any necessary credentials and claims along with

the message itself. Contrast this with transport security,

which uses handshaking or external resources (such as

AD DS) to verify the credentials associated with a

message.

A number of benefits are associated with using message

security.

mailto:mljivtode@gmail.com
http://www.irjse.in/
http://creativecommons.org/licenses/by/4.0/

Jivtode Manish, 2020 785

Int. Res. J. of Science & Engineering, Special Issue A7, February, 2020

The biggest is the message is self-contained because it

allows a number of scenarios that are not possible

using transport security. Transport security secure

messages from point to point only [1]. After the

message has been received at the end of SSL tunnel, it

is unencrypted by the transport channel itself.

Message security provides end-to-end encryption.

Even after a message has been received, it is still

encrypted. Thus, message security keeps sensitive

information encrypted if any intermediary relay web

service is present until it reaches the final destination

or the actual web service [2].

The reason for considering message security over

transport security is the ability to provide multiple

levels of security; different parts of the message are

secured by using different encryption mechanisms [3].

Different sets of credentials are applied to encrypt

different parts of the message. This enables a single

message to have different audiences based on the

credentials, or sending unencrypted information used

by a router to deliver a message to the correct

destination without compromising the security of

other parts of the body.

Figure 1 shows transport level security architecture in

REST web services where A is client, D is REST

service, B and C is the transport channel or pipe.

Sensitive data is protected within the channel or pipe

only. When data passes the transport channel or pipe

at B and C, it is decrypted automatically.

REPRESENTATIONAL STATE

TRANSFER

REST is architecture for developing web services.

REST architecture uses HTTP or similar protocols, by

constraining the interface to a set of well-known

standard operations (i.e., GET, PUT, POST, and

DELETE for HTTP). REST architecture is designed to

show how existing HTTP is enough to build a Web

service and to show its scalability [4].

The main idea behind REST was to use well-

developed HTTP for transferring data between

machines, rather than using a protocol that works on

top of the HTTP layer for message transfers. An

application designed following REST principles

would use HTTP to make calls between the machines,

rather than relying on complex mechanisms like

CORBA (Common Object Request Broker

Architecture), RPC (Remote Procedure Call), or SOAP.

Therefore, REST applications use HTTP request

functions to post data, read data, and delete data, thus

using the full functionality of HTTP Create, Read,

Update, and Delete (CRUD) operations. REST can run

on HTTPS, providing for the secured transmission of

data.

The CRUD operations in conjunction with HTTP

REST functions are shown –

The application of REST principles for web services

requires HTTP protocols find it easy to understand

and apply REST principles.

Some of the advantages of RESTful web services

include:

i. Light-weight: RESTful web services directly

utilize HTTP as the invocation protocol which

avoids unnecessary XML markups or extra

encapsulation for APIs and input/output. The

response is the representation of the resource

itself, and does not involve any extra

encapsulation or envelopes [5]. As a result,

RESTful web services are much easier to develop

and consume than WSDL/SOAP web services.

Additionally, they depends less on vendor

software and mechanisms that implements the

additional SOAP layer on top of HTTP. RESTful

web services deliver better performance due to

their light-weight nature.

ii. Easy-accessibility: URIs used for identifying

RESTful web services are shared and passed

around to any dedicated service clients or

common purpose applications for reuse. The URIs

and the representation of resources are self-

descriptive and make RESTful web services easily

accessible. RESTful web services have been widely

used to build Web 2.0 applications and mashups.

iii. Scalability: The scalability of RESTful web

services comes from its ability to naturally

support caching and parallization / partitioning

on URIs. The responses of GET (a side effect free

operation) are cached exactly the same as web

pages are currently cached in the proxies,

786 | National Conference on “Recent Trends in Mathematical, Physical, Chemical, Library, Life Sciences - 2020

ISSN 2322-0015 http://www.irjse.in

gateways and content delivery networks (CDNs).

Additionally, RESTful web services provide a

very simple and effective way to support load

balancing based on URI partitioning. Compared

to ad-hoc partitioning of functionalities behind the

SOAP interfaces, URI-based partitioning is more

generic and flexible, and could be easier to realize

[6].

iv. Declarative: To imperative services from the

perspective of operations, RESTful web services

take a declarative approach and view the

applications from the perspective of resources.

Being declarative means that RESTful web

services focus on the description of the resources

themselves, rather than describing how the

functions are performed. Declarative approach is

considered to be a better choice to build flexible,

scalable and loosely-coupled SOA systems.

The architecture of REST at the server side is as

follows [7]:

 URL: Mandatory field to access web services

running at the server.

 GET: All the methods of getting data from the

server; the formats and interfaces the server

supports for accessing the client details.

 POST: All the methods of adding details to the

server; all the different interfaces and

formats the server supports for adding data to its

database.

 PUT: All the methods for updating the data at the

serve; different types of interfaces and formats the

server supports for adding data to the database.

DELETE: All the methods for deleting the data at the

server. Different types of interfaces and formats the

server supports for deleting data in the database.

MESSAGE SECURITY IN REST SERVICES

In intermediary scenario, the message itself is not

protected once an intermediary reads from the wire

and must be retransmitted to the ultimate receiver in

out-of-band fashion, if necessary. This applies even if

the entire route uses SSL security between individual

hops [8].

Figure 2 shows message level security architecture in

REST web services where A is client, D is REST

service, B and C is the transport channel or pipe.

Sensitive data is protected within and outside the

channel or pipe also. When data passes the channel or

pipe at B and C, it remains encrypted until it reaches

its final destination [9].

INTERMEDIARY ARCHITECTURE

An intermediary is a component that lies between the

client and the actual service. When the message is sent

from the initial sender, it may pass through

intermediate nodes before reaching its intended

receiver. It basically intercepts the request from the

client, routes it to the correct actual final web service.

Similarly, it may intercept the response from the

actual final web service and forward it to the client.

Figure 3 shows an intermediary web service between

the client and actual web service. It intercepts the

client requests and forwards it to the actual web

service.

In the above diagram, it is possible to combine

intermediaries in several ways. In figure 3, a chain of

intermediaries A and B intercepts the request from the

client. Another intermediary C intercepts the response

from the actual web service.

These intermediaries are increasingly getting

recognized as the means to provide value added

services like authentication, quality of service (QoS),

auditing, management, aggregation [10] etc.

WHY INTERMEDIARY RELAY WEB

SERVICE

i. Actual web service is the first directly web

service exposed to the outside world attacks

and to protect the actual web service from

outside attacks.

ii. There may be a group of web services rather

than only one web service.

iii. Intermediary relay web service used as a

message route.

iv. There may be multiple organizations involved

in the financial transactions like e-shopping

Jivtode Manish, 2020 787

Int. Res. J. of Science & Engineering, Special Issue A7, February, 2020

sites etc. This will require at least one web

service per organization and hence a group of

web services.

IMPLEMENTATION AND EVALUATION

Actual REST web service (C), REST client (A) and

REST relay web service (B) are created in the cloud

environment. REST web service (C) and REST clients

(A) are normal HTTP/REST web service and clients

respectively. A REST relay service is placed in the

cloud environment as intermediary to REST service

and client. Binding used is web Http Relay Binding. In

this case, actual REST web service (C) is consumed by

intermediary relay web service (B) and intermediary

relay web service is consumed by REST client (A).

Message level security is configured in A, B and C.

Encryption and decryption algorithm was used in this

experiment. With relay web service as intermediary, it

is easy to examine the arrival and departure of

sensitive data in it using a web debugging tool like

Fiddler, Wire Shark or similar.

Message security protects data from point A to point

C through point B, so arrival of data at intermediary is

observed for encryption status. When encrypted data

arrives at intermediary (B) it should remain

encrypted until it reaches point C.

RESULTS AND DISCUSSION

The experiment result shows intermediary REST relay

web service output where message security has been

applied. It is observed that the sensitive data remains

encrypted even as intermediary is passed or reads the

data from the wire. Thus, sensitive data remains

protected at intermediary.

This clearly indicates that message security provides

end-to-end security and hence must be used in

intermediary web services scenario.

Table 1: HTTP methods and CRUD action

CRUD operation REST keywords (HTTP)

READ-read, retrieve GET

CREATE-create or add new entries POST

UPDATE-update or edit existing data PUT

DELETE-delete existing data DELETE

Figure 1: Transport Level Security in REST web services

788 | National Conference on “Recent Trends in Mathematical, Physical, Chemical, Library, Life Sciences - 2020

ISSN 2322-0015 http://www.irjse.in

Figure 2: Message Layer Security in REST web services

Figure 3: Intermediary between client and service during request

Figure 4: Intermediary between client and service during request and response

Figure 5: Message securities at REST web service with Intermediary

Jivtode Manish, 2020 789

Int. Res. J. of Science & Engineering, Special Issue A7, February, 2020

Figure 6: Message security applied to Intermediary Relay Web Service

Applications of message security may include

enterprise service bus, router or relay web service as

intermediaries where end-to-end security is essential.

Screen shot taken at Intermediary for GET method

The experimental results show the comparison of

selected encryption algorithm for different data sets

like text, image, audio and video and sizes,

encryption/decryption speed, request/response time

of various methods like GET, POST, PUT and

DELETE.

CONCLUSION

It is concluded that, the performance measurement of

encryption/decryption of various data sizes versus

time for each algorithm in REST message security

services for different operation using different

algorithms.

The graph clearly indicate that as the data size

increases from 1KB to 16KB, the encryption and

decryption time also increases. The analysis of

encryption/decryption of HPSEA performs better

compared to others algorithms in terms of the

request/response time. Thus, it indicates that data size

is directly proportional to encryption/decryption

time.

Hence, it can be proved, the transport layer security

could not provide end-to-end security to sensitive

data in intermediary web services environment. The

message security provides end-to-end security in

intermediary relay web service environment.

790 | National Conference on “Recent Trends in Mathematical, Physical, Chemical, Library, Life Sciences - 2020

ISSN 2322-0015 http://www.irjse.in

Conflicts of interest: The authors stated that no

conflicts of interest.

REFERENCES

1. National Bureau of Standards. “Data Encryption

Standard”. FIPS Publication 46, 1977.

2. ANSI3.106. “American National Standard for

Information Systems- Data Encryption

Algorithm-modes of operation”. American

National Standards Institute, 1983.

3. William Stallings. “Network Security Essentials

(Application and Standards)”. Pearson

Education, 2004.

4. J. Daemen, V. Rijmen. “Rijndael: The Advanced

Encryption Standard”. Dr. Dobb’s Journal,

March 2007.

5. S. Contini, R. L. Rivest, M. J. B. Robshaw and Y. L.

Yin. “ The Security of the RC6 Block Cipher”.

Version 1.0, August 20,2008.

6. Syed Zulkarnain Syed Idrus, Syed Alwee Aljunid,

Salina Mohd Asi, Suhizaz Sudin and R.

Badlishash Ahmad. “ Performance Analysis of

 Encryption Algorithms Text Length size on

web browsers”. IJCSNS International Journal

of Computer Science 20 and Network Security,

 Vol 8, No. 1, Page no 22-25,January 2008.

7. http://e-articles.info, Aug. 2008.

8. http://www.w3schools.com, Sep 2008.

9. Steve Resnick, Richard Crane and Chris Bowen.

Essential Windows Communication Foundation

for .NET Frame work 3.5, Addison- wesley,

Microsoft .NET development series, Fe. 2013.

10. Erik Christensen, Francisco Curbera, Greg

Meredith, and Sanjiva Weerawarana.

“WSDL 1.1 Document”. March 7, 2015.

© 2020| Published by IRJSE

