RESEARCH ARTICLE

Photoluminescence in NaCa₂Br₅:Eu²⁺ Novel Phosphor.

Mungmode CD1*, Gahane DH2, Tupte BV3, Moharil SV4

 ¹M. G. College, Armori, 441208, India
² N. H. College, Bramhapuri, 441206, India
³ S.G.M. College, Kurkheda, 441209, India
⁴ R.T.M. Nagpur University, Nagpur, 440010, India Email: mungmode.prashant@gmail.com

Manuscript Details

Available online on <u>http://www.irjse.in</u> ISSN: 2322-0015

Cite this article as:

Mungmode CD, Gahane DH, Tupte BV, Moharil SV. Photoluminescence in NaCa₂Br₅:Eu²⁺ Novel Phosphor, *Int. Res. Journal of Science & Engineering*, February 2020, Special Issue A7: 64-67.

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (<u>http://creativecommons.org/licenses/by/4.0/</u>), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

ABSTRACT

A simple procedure to prepare Eu^{2+} activated bromide phosphor NaCa₂Br₅ is described. Sample was synthesized by simple low temperature wet chemical method. Photoluminescence (PL) results showed that the phosphor can be efficiently excited by UV-visible light from 200 to 430 nm and exhibited bright blue emission around 435 nm when excited by 365 nm near-ultraviolet light. The developed phosphor emits in blue and hence could provide one of the three primary colour components in phosphor converted LED producing white light.

Keywords: Solid State Lighting, wet chemical synthesis, blue phosphor, photoluminescence

INTRODUCTION

Solid state lighting have a very bright future in various lighting applications because of their high energy efficiency and cost effectiveness compared to incandescent bulbs. It has the potential to make much more progress over the coming decade. A very effective way to produce white light from UV/blue LED is by coating on LED suitable phosphors excitable by LED light, so that white light is produced either by mixing of basic colours or complementary colours. Blue is at the short-wavelength (high-energy) end of the visible spectrum, it proved possible to "down convert" blue light into green, yellow and even red light using passive phosphorescent and fluorescent materials [1].

Eu²⁺ activated phosphors find use in many applications. BaMgAl₁₀O₁₇:Eu and Sr₅(PO₄)₃Cl:Eu are efficient tri-colour lamp phosphors [2, 3]. Efficient Eu²⁺ emission has been obtained in many compounds [4, 5-8] many of such phosphors have found applications. UV emitting phosphors are useful in eurythermal and photocopying lamps. Blue color emitting phosphors find applications as lamp phosphors and blue component of CTV phosphor. Several bromides containing alkali and alkaline earth ions are known. Amongst such bromides included Ca₂B₅O₉Br, Ba₄OBr₆, Sr₄OBr₆, Sr₅(PO₄)₃Br, KSr₂Br₅ [9]. Ba₅GeO₄Br₆:Eu²⁺ and Ba₅SiO₄Br₆:Eu²⁺ are being used as storage screens phosphors. Europium-doped strontium borate (SrB₄O₇:Eu²⁺) has been used for Fluorescent Lighting (blacklight, cosmetic, UV-A). CsBr:Eu²⁺ phosphor is used as imaging plates for high resolution X-ray radiography. BaFBr:Eu²⁺ and CsBr:Eu²⁺ are storage phosphors [10].

Recently, some Eu^{2+} activated bromide phosphors are reported [11, 12]. However, there are not many studies on luminescence of Eu^{2+} in bromides. A relatively recent review [9] on luminescence of Eu^{2+} shows that very few bromides have been covered in luminescence studies. This prompted us to undertake investigations of luminescence of Eu^{2+} in some bromides.

METHODOLOGY

NaCa₂Br₅ phosphor is prepared by wet-chemical method. Stoichiometric amounts of NaCO₃, CaCO₃, Eu₂O₃ & HBr were taken as starting materials. The precursors used in this work are of AR grade. Sample is prepared by dissolving desired quantities of metal carbonates and Eu₂O₃ in preheated HBr. Excess acid was then boiled off and the solutions were evaporated to dryness. The resulting powders were dried and annealed for 1 h at 775 K in a reducing atmosphere provided by burning charcoal so as to reduce the activator to divalent state. An alumina crucible containing the compound was placed in another crucible. The annular space was filled with charcoal. A tight fitting lid covered the outer crucible. This treatment was found sufficient to yield bright phosphors exhibiting intense Eu2+ emission. No nitrogen/H2 circulation was needed. Compounds formed are hygroscopic and catch moisture if left in open. They are to be stored in tight-capped bottles. The annealed powders were quickly sandwiched between quartz plates and transferred to photoluminescence (PL) cell. Photoluminescence spectra in the range 220-700nm were recorded on Hitachi F-4000 spectro-fluorimeter with spectral slit width of 1.5 nm. Samples were also found to be stable against UV irradiation that was used for the PL measurements. No changes in spectral positions or intensities were observed during several, successive PL runs.

RESULTS AND DISCUSSION

NaCa₂Br₅ crystalizes in orthorhombic (space group Pnma) crystal system [¹3, ¹4]. Figure 2 (curve b) presents the PL excitation spectrum of Eu²⁺ activated NaCa₂Br₅ phosphor. The excitation band consists of unresolved bands due to the 4f⁶5d¹ multiplets of Eu²⁺ excited states. It is characterized by two prominent peaks around 275 nm, 338 nm and a shoulder around 370 nm is also observed attributable by Eu²⁺. Thus possessing appreciable response throughout the entire UV region, consequently the utility of the material in SSL application is confirmed.

Figure 2 (curve a) presents photoluminescence emission spectrum of Eu2+ activated NaCa2Br5 phosphor for 1 nm slit width. An intense blue emission spectra is obtained for NaCa1.98Br5:Eu2+0.02 quenched from 775 K under 365 nm excitation. Emission spectra show strong broad band emission peaking at 439 nm corresponding to 4f65d →8S allowed electric dipole transition. Since the phosphor was hygroscopic and XRD facility was not easily available, XRD characterization was not carried out. No reference is found for photoluminescence of NaCa₂Br₅:Eu²⁺ in the literature for comparison. Therefore, this could be the first report on the Eu²⁺ activated host. The Stoke's shift is small hence the luminescence is highly efficient. Maxima of emission spectra is in blue region; it indicates that this phosphor is a candidate of blue phosphor for application in Solid State Lighting

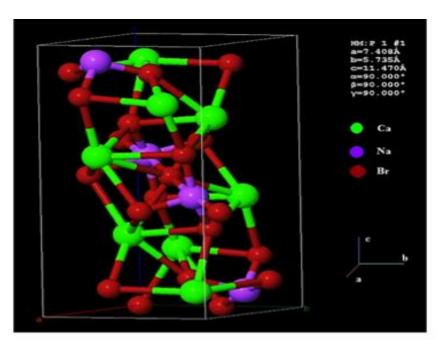
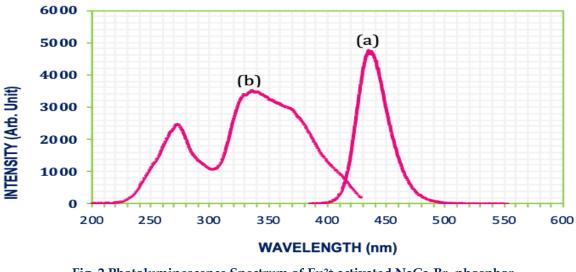




Fig. 1 Unit Cell of NaCa₂Br₅

CONCLUSION

A simple wet chemical method for the synthesis of Eu^{2+} activated NaCa₂Br₅ phosphors is described. Efficient luminescence is observed near 435 nm in blue violet region with excitation in the near UV range. It is suggested that this result will be significant for developing phosphors with near UV excitations needed in applications such as solid state lighting. **Conflicts of interest:** The authors stated that no conflicts of interest.

REFERENCES

1. Shiimizu Y, Sakano K, Noguchi Y, Moriguchi T: Light emitting device with blue light LED and phosphor components. U.S. Patent 6614179 (2003).

- Smets B.M.J.: Phosphors based on rare-earths, a new era in fluorescent lighting. Mater. Chem. Phys. (1987) 16: 283-99.
- Wu Z, Dong Y, Jiang J: Synthesis of BaMgAl₁₀O₁₇:Eu²⁺ particles with small grain size and regular morphology. J. Alloys Compd. (2009) 467: 605-610.
- Blasse G., Wanmaker W.L: Fluorescence of Eu ²⁺activated Silicates. Philip. Res. Rep. (1968) 23: 189.
- Barry T.L: Fluorescence of Eu²⁺-Activated Phases in Binary Alkaline Earth Orthosilicate Systems. J. Electrochem. Soc. (1968) 115: 1181.
- Blasse G., Brill A: Synthesis 0f MAl₂O₄ activated Eu²⁺ Phosphors (M= Ba, Sr, Ca, Mg). Philip. Res. Rep. (1968) 23: 201.
- Blasse G., Brill A., J. de Vries: Fluorescence of Eu²⁺ -Activated Barium Octaborate. J. Electrochem. Soc. (1968) 115: 977.
- Blasse G., Brill A., J. de Vries: Luminescence of alkaline-earth borate-phosphates activated with divalent europium. J. Inorg. Nucl. Chem. (1969) 31: 568-570.
- Dorenbos P: Energy of the first 4f⁷→4f⁶5d transition of Eu²⁺ in inorganic compounds. J. Lumin. (2003) 104: 239-260.
- Leblans P., Vandenbroucke D., Willems P: Storage Phosphors for Medical Imaging. Materials (2011) 4: 1034-1086.
- Gahane D.H., Moharil S.V. et.al: Luminescence of some Eu²⁺ activated bromides. J. Alloys and Compounds (2009) 484: 660-664.
- Mungmode C.D., Gahane D.H., Moharil. S.V.: Optical Properties of Eu²⁺ Activated Li₂MgBr₄ and Li₆MgBr₈ Phosphor. Int. J. Basic and Appl. Res. (2014) 3: 1-3.
- Jain A., Ong S.P. et. al: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials (2013)1: 011002. <u>doi:10.1063/1.4812323</u>
- Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G: Data Mined Ionic Substitutions for the Discovery of New Compounds. Inorg. Chem. (2011) 50: 656-663. doi:10.1021/ic102031h

© 2020 | Published by IRJSE