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Introduction 

The mathematical theory of Schrodinger 

operators is used in quantum mechanics, differential 

geometry. Allows for numerous generalizations. It is 

very important for the foundations of quantum 

mechanics, since only self-adjoint operators describe 

quantum mechanical observables. In quantum 

mechanics, the Schrödinger operator is the energy 

operator of a system of n charged particles in a 

coordinate representation. The concept of a wave 

function is a fundamental postulate of quantum 

mechanics; the wave function defines the state of the 

system at each spatial position, and time. Using these 

postulates, Schrödinger's equation can be derived 

from the fact that the time-evolution operator must be 

unitary, and must therefore be generated by the 

exponential of a self-adjoint operator, which is the 

quantum Hamiltonian. This derivation is explained 

below. 

1. Self- adjointness  

Consider an operator H0 defined on D(H0) = 

𝐶0
∞ (R) by the formula  

(1)    H0u = − 𝑢" + V (x)u, 

where  V (x)  є 𝐿𝑙𝑜𝑐
∞ (R)  is  a  real  valued  function.  

Clearly,  H0  is  a  symmetric operator in L2(R). 

Recall that H0 is said to be essentially self-adjoint if 

its closure  𝐻0
∗∗ 

is  a  self-adjoint  operator.  In  this  

case  H0  has  one  and  only  one self-adjoint extension. 

1. Assume that 

(2)     V (x) ≥ −Q(x), 

where Q(x) is a nonnegative continuous even function 

which is nondecreasing for x ≥ 0 and satisfies 

(3)        ∫
𝑑𝑥

√𝑄(2𝑥)

∞

−∞
= ∞ 

Then  H0  is essentially self-adjoint. 

Proof. As we have already seen in previous 

lectures, to prove self-adjointness of 𝐻0
∗∗ it is enough 

to show that 𝐻0
∗∗ 

is a symmetric operator.  Hence, first 

we have to study the domain D(𝐻0
∗) 
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(i)      If 𝑓є D(𝐻)0
∗ , then 𝑓 ʹ(x)  is absolutely 

continuous and 𝑓"є 𝐿𝑙𝑜𝑐
2 (R). 

Indeed, let g = (𝐻)0
∗ 𝑓.  For every φ є 𝐶0

∞ 

(R) we have 

∫ 𝑓(𝑥) ⃡             𝜑"(𝑥)
∞

−∞

= ∫ (𝑉(𝑥) 
∞

−∞

𝑓(𝑥) ⃡            

− 𝑗(𝑥) ⃡        )𝜑(𝑥)𝑑𝑥 

Denote by F(x) the second primitive function 

of V(x). f (x)-ɡ(x) 

Then the previous identity and integration by 

parts imply 

∫ �⃡�   . 𝜑"𝑑𝑥
∞

−∞

= ∫ �⃡�   .  𝜑"𝑑𝑥
∞

−∞

 

Hence, (𝐹 − 𝑓)" = 0 in the sense of distributions, 

i. e.  F- 𝑓  is a linear function of  x.  This implies 

immediately the required claim. 

Now we have to examine the behavior of 𝑓 є 

D(𝐻0
∗) as x → ∞. 

(ii)     If    𝑓 є D(𝐻0
∗),   then 

(4) ∫
|𝑓ʹ(𝑥)|

2

𝑄(2𝑥)

∞

−∞
𝑑𝑥 < ∞ 

To prove the last claim, consider the integral 

𝐽 =  ∫ (1 −
|𝑥|

𝜔

𝜔

−𝜔

) (𝑓"(𝑥)𝑓(𝑥) ⃡          + 𝑓(𝑥)𝑓"(𝑥) ⃡          ) 

=  ∫ (1 −
|𝑥|

𝜔

𝜔

−𝜔

) (𝑓 ʹ ∙ �⃡�  + 𝑓 ∙  𝑓 ʹ ⃡ )
|

𝑑𝑥 − 2 ∫ (1 −
|𝑥|

𝜔

𝜔

−𝜔

)|𝑓 ʹ|2𝑑𝑥. 

Thus, we get the following identity 

∫ (1 −
|𝑥|

𝜔

𝜔

−𝜔

)|𝑓 ʹ(𝑥)|2𝑑𝑥 = −
1

2
∫ (𝑓" ∙ �⃡�  + 𝑓 ∙  𝑓" ⃡  )

𝜔

−𝜔

. (1 −
|𝑥|

𝜔
) 𝑑𝑥 +

1

2𝜔
[|𝑓(𝜔)|2 + |𝑓(−𝜔)|2 − 2|𝑓(0)|]. 

Multiplying the last identity  by 𝜔, integrating  

over 𝜔 є [0, t], and taking into account the identity 

 

∫ (∫ (𝜔 − |𝑥|)ℎ(𝑥)𝑑𝑥)𝑑𝜔
𝜔

−𝜔

𝑇

0

=
1

2
∫ (𝑇 − |𝑥|)2

𝑇

−𝑇

ℎ(𝑥)𝑑𝑥 

 we get 

∫ (𝑇 − |𝑥|)2|𝑓|2
𝑇

−𝑇

𝑑𝑥 =
1

2
∫ (𝑇 − |𝑥|)2 (𝑓" ∙ �⃡�  + 𝑓 ∙  𝑓" ⃡  )

𝑇

−𝑇

𝑑𝑥 + ∫ |𝑓(𝜔)|2
𝑇

0

+|𝑓(−𝜔)|2)𝑑𝜔 − 2|𝑓(0)|2𝑇, 

or, dividing by T 2, 

∫ (1 −
𝑇

−𝑇

|𝑥|

𝑇
)2|𝑓 ʹ|2𝑑𝑥 = −

1

2
∫ (1 −

|𝑥|

𝑇
)2 (𝑓" ∙ �⃡�  + 𝑓 ∙  𝑓" ⃡  )

𝑇

−𝑇

𝑑𝑥 +
1

𝑇2
(∫ |𝑓(𝑥)|2

𝑇

−𝑇

𝑑𝑥 − 2|𝑓(0)|2 ∙ 𝑇). 

Letting g = −𝑓"+ V(x) 𝑓 , we obtain 

∫ (1 −
𝑇

−𝑇

|𝑥|

𝑇
)2|𝑓 ʹ|

2

𝑑𝑥= 

= 
1

2
∫ (1 −

|𝑥|

𝑇
)2(𝑔 ∙ �⃡�  + �⃡�  ∙  𝑓)

𝑇

−𝑇

𝑑𝑥 − ∫ (1 −
𝑇

−𝑇

|𝑥|

𝑇
)2𝑉(𝑥)|𝑓(𝑥)|2𝑑𝑥 +

1

𝑇2
(∫ |𝑓(𝑥)|2

𝑇

−𝑇

𝑑𝑥 − 2|𝑓(0)|2𝑇) 

 

Now remark that f, g  є  L2(R) and 0 ≤ 1 − |x|/T 

≤ 1 for x є (T, −T ).  

Hence, estimating −V (x) by Q(x), we get ∫ (1 −
𝑇

−𝑇

|𝑥|

𝑇
)2|𝑓 ʹ|2𝑑𝑥

≤ ∫ (1 −
𝑇

−𝑇

|𝑥|

𝑇
)2𝑄(𝑥)|𝑓|2𝑑𝑥 + 𝑐, 
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where c is independent of T . The last inequality 

implies clearly 

(5)   
1

4
(∫ |𝑓 ʹ(𝑥)|

2𝑇

−𝑇
𝑑𝑥 ≤ ∫ 𝑄(𝑥)|𝑓|2

𝑇

−𝑇
𝑑𝑥 + 𝑐 

  

Let 

𝜔(𝑇) =
1

4
∫ |𝑓 ʹ|

2
𝑇/2

−𝑇/2

𝑑𝑥 

𝜒(𝑇) = ∫ 𝑄(𝑥)|𝑓|2
𝑇

−𝑇

𝑑𝑥 + 𝑐 

Consider the integral 

∫
𝜔ʹ(𝑥) − 𝜒ʹ(𝑥)

𝑄(𝑥)

𝑇

0

𝑑𝑥 

and apply the following  on mean value: if f (x) is a 

continuous function and K(x) ≥ 0 is a nondecreasing 

continuous function, then there exists ξ є [a, b] such 

that 

∫ 𝑓(𝑥)𝐾(𝑥)
𝑏

𝑎

𝑑𝑥 = 𝐾(𝑎) ∫ 𝑓(𝑥)𝑑𝑥
ξ

𝑎

        

Then, due to (5) we obtain 

 

∫
𝜔ʹ𝜒ʹ

𝑄

𝑇

0

𝑑𝑥 =
1

𝑄(0)
∫ (𝜔ʹ−𝜒ʹ)𝑑𝑥

ξ

0

=
1

𝑄(0)
[𝜔(ξ) − 𝜒(ξ) − 𝜔(0)

− 𝜒(0)] ≤
1

𝑄(0)
[𝜒(0) − 𝜔(0)]

= 𝐶. 

Since 

𝜔ʹ(𝑥) =
1

2
[|𝑓 ʹ (

𝑥

2
) |2 + |𝑓 ʹ (−

𝑥

2
) |2], 

𝜒ʹ(x)= 𝑄(𝑥)[|𝑓(𝑥)|2 + |𝑓(−𝑥)|2], 

we get immediately 

1

8
∫

|𝑓 ʹ (
𝑥

2
) |2 + |𝑓 ʹ (−

𝑥

2
) |2

𝑄(𝑥)

𝑇

0

𝑑𝑥

≤ ∫ (
𝑇

0

|𝑓(𝑥)|2 + |𝑓(−𝑥)|2)𝑑𝑥

+ 𝐶. 

Since f є L2(R), the last inequality implies the 

required claim. 

End of proof of 1.  Let f1, f2 є D(𝐻0
∗) and 

𝑔𝑖 = −𝑓𝑖
" + 𝑉(𝑥)𝑓𝑖,     𝑖 = 1,2. 

We have to show that 

∫ 𝑓𝑖𝑔2 ⃡     𝑑𝑥
∞

−∞

= ∫ 𝑔𝑖𝑓2
 ⃡    𝑑𝑥

∞

−∞

 

First we observe that 

(6)    ∫ (𝑓𝑖𝑔2 ⃡     − 𝑔𝑖𝑓2
 ⃡    )𝑑𝑥 =

𝑡

−𝑡
∫ (𝑓1𝑓2

" ⃡    −
𝑡

−𝑡

𝑓1
"𝑓2

 ⃡    )𝑑𝑥 = |𝑓1𝑓2
ʹ ⃡    − 𝑓1

ʹ 𝑓2
 ⃡    ||−𝑡

𝑡  

Let   

𝑝(𝑡)
1

√𝑄(2𝑡)
,     𝑃(𝑥) = ∫ 𝑝(𝑡)𝑑𝑡

𝑥

0

 

Multiplying (6) by ρ(t) and integrating over 

[0,T ], we obtain 

(7) ∫ 𝑝(𝑡)[
𝑇

0
∫ (𝑓1𝑔2 ⃡     − 𝑔1𝑓2

 ⃡    )𝑑𝑥]𝑑𝑡 =
𝑡

−𝑡
 

= ∫ 𝑝(𝑡)[
𝑇

0

𝑓1 − 𝑓2
ʹ ⃡    − 𝑓1

ʹ 𝑓2
 ⃡    ]|−𝑡

𝑡 𝑑𝑡 

For the left-hand part we have (changing the 

order of integration) 

∫ 𝑝(𝑡)[
𝑇

0

∫ (𝑓1𝑔2 ⃡     − 𝑔1𝑓2
 ⃡    )𝑑𝑥]𝑑𝑡

𝑡

−𝑡

= ∫ [(𝑓1𝑔2 ⃡     
𝑇

−𝑇

− 𝑔1𝑓2
 ⃡    ) ∫ 𝑝(𝑡)

𝑇

|𝑥|

𝑑𝑡]𝑑𝑥

= ∫ (𝑓1𝑔2 ⃡     − 𝑔1𝑓2
 ⃡    )(𝑃(𝑇)

𝑇

−𝑇

− 𝑃(|𝑥|))𝑑𝑥 

Now we estimate the right-hand part of (7) (more 

precisely, its typical term): 

| ∫ 𝑓1(𝑡)𝑓2
ʹ (𝑡) ⃡           𝑝(𝑡)𝑑𝑡|

𝑇

0

≤ [ ∫ |𝑓1(𝑡)|2
𝑇

0

𝑑𝑡 ∫ |𝑓2
ʹ (𝑡)|2𝑝2(𝑡)𝑑𝑡|

1

2 ≤ 𝐶,
𝑇

0

 

 

where, due to claim 2), the constant C is independent 

of T. Therefore, 

| ∫ (𝑃(𝑇) − 𝑃(|𝑥|))[𝑓1.𝑔2 ⃡     − 𝑔1. 𝑓2
 ⃡    ]𝑑𝑥| ≤ 𝐶.

𝑇

−𝑇

 

Dividing by P(T ) and letting T → +∞ (hence, 

P (T ) → +∞), we get 

(8)    lim
𝑡→+∞

| ∫ (1 −
𝑃(|𝑥|)

𝑃(𝑇)
)

𝑇

−𝑇
[𝑓1. 𝑔2 ⃡       − 𝑔1.𝑓2

 ⃡      ]𝑑𝑥| = 0 

Now we have to prove that 

(9)   lim
𝑇→+∞

| ∫ [𝑓1𝑔2 ⃡     − 𝑔1𝑓2
 ⃡    ]𝑑𝑥|

𝑇

−𝑇
= 0 

To end this we fix є > 0. Since fi, gi є L
2(R), 
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∫ (|
|𝑥|≥𝜔

𝑓1||𝑔2| + |𝑔1||𝑓2|)𝑑𝑥 ≤ є 

for all 𝜔 large enough. Then, for each T ≥ 𝜔  we have 

| ∫ (1 −
𝑃(|𝑥|)

𝑃(𝑇)
)

𝜔

−𝜔

[𝑓1𝑔2 ⃡     − 𝑔1𝑓2
 ⃡    ]𝑑𝑥|

≤ | ∫ (1 −
𝑃(|𝑥|)

𝑃(𝑇)
)

𝑇

−𝑇

[𝑓1𝑔2 ⃡     

− 𝑔1𝑓2
 ⃡    ]𝑑𝑥| + є. 

Letting T → +∞ and using (8), we obtain 

| ∫ (𝑓1𝑔2 ⃡     − 𝑔1𝑓2
 ⃡    )𝑑𝑥)| ≤

𝜔

−𝜔

є, 

which implies (9). 

 

2. Discreteness of spectrum 

Consider the operator H0 defined by (1).  

Assume that V (x) є 𝐿𝑙𝑜𝑐
∞ (R) is a real valued function 

and 

(10)     lim
𝑥→∞

𝑉(𝑥) = + ∞ 

Clearly, 1 implies that H0 is essentially self-

adjoint (take as Q(x) and appropriate constant). 

Denote by H the closure of H0. 

Assume (10). Then the spectrum σ(H) of H is 

discrete, i.e. there  exists  an  orthonormal system 

yk(x),k = 0, 1 , . .  ., of  eigenfunctions, with eigenvalues 

λk → +∞ as k → ∞. 

In fact, for discreteness of σ(H) the following 

condition is necessary and sufficient: 

∫ 𝑉(𝑥)𝑑𝑥
𝑟+1

𝑟

→ +∞ 𝑎𝑠 𝑟 → ∞. 

Now we supplement 3 by some additional 

information about eigenvalues and corresponding 

eigenfunctions. 

Under the assumption of 3, all the eigenvalues 

are simple. If λ0 < λ1 < λ2 < . . . are the eigenvalues, 

then any (nontrivial) eigenfunction corresponding to λk 

has exactly k nodes, i.e. takes the value 0 exactly k times. 

All the eigenfunctions  decay  exponentially  fast  at  

infinity. 

For the proof we refer to [1]. 

Except of exponential decay, all the statements 

of 6 have purely 1-dimensional character.  In 

particular, multidimensional Schr¨odinger operators 

may have multiple eigenvalues. 
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