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Introduction surrounded by a porous medium: in a channel, the gas

Currently, research is actively developing non-
classical equations of mathematical physics, in
particular, equations of mixed, composite and mixed-
composite types. One of the main reasons for this
process is the appearance of applied applications of
boundary value problems posed for such equations.

It is known that mixed equations of the second
order of an elliptic-hyperbolic type were originally
studied. Fundamental research on such equations was
started in the 1920s by the Italian mathematician
Tricomi [1] and was developed by Gellerstedt [2],
A.V. Bitsadze [3], K.I. Babenko [4], I.L. Karol [5],
F.1. Frankl [6], M.M.Smirnov [7], M.S. Salakhitdinov
[8], etc.

The main part

Studies of the equations of elliptic-parabolic and
parabolic-hyperbolic types of the second order began
in the 50-60s of the last century. In 1959, .M. Gelfand
[9] pointed out the need for a joint consideration of
equations in one part of the parabolic region and the
other part of the hyperbolic region. He gives an
example related to the motion of a gas in a channel

motion is described by the wave equation, outside it
by the diffusion equation. Then, in the 70-80s of the
twentieth century, research began on the equations of
the third and high orders of the parabolic-hyperbolic
type. Boundary-value problems for such equations
were posed and studied for the first time by
T.D.Dzhuraev [10] and his students [11], [12], [18].

Over the past time, studies on boundary value
problems for equations of the third and higher orders
of parabolic-hyperbolic type have developed in a
broad sense, and are currently expanding in the
directions of complication of equations and their areas
of consideration, as well as generalizations of the
equations problems considered for them (for example,
see [15], [16], [17] and others)

In the present work a boundary-value problem
will be set for a third order parabolic-hyberboloc

equation

(b%Jrcj(Lu):O

)
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in a pentagonal domain G of the plane XQOy, where
bceR,G=G uUG,uUG, U] UJ,,

G, ={(x y)eR*:0<x<1, 0<y<1}.

G, {(x y)eR*:-1<y<0, -1- y<x<y+1}
G, {(x,y)eR2 -1<x<0, O<y<1}
J,={xy)eR*:y=0, 0<x<1},

J, = {(x,y)eRz'y 0, —1<x<1}

Uy —U,, (X Yy)eG,

Lu= .
Uy —Uy, (X,Y)eG (i=23),

We will study the following problem for the
equation (1):

Problem 1. Find a function u(x, y), with
properties: 1) continuous in the closed domain D and
in the domain G\ J; \ J,, has continuous derivatives
which is participating in equation (1), here U, and
u, are continuous in G up to the bound of the
domain G, which is shown in boundary condition; 2)
satisfies equation (1) in the domain G\ J,;\J,; 3)
satisfies the following boundary - value conditions:

u(Ly)=e(y), 0<y<i; )

u(-Ly)=p,(y), 0<y<1; ©)
Ul =wi(x), 0<x<1; ()
Ul =w,(x), -1<x<-1/2; ()

%BG =y, (x), 0<x<1; (6)
ou

%DC:WL‘(X)’ -1<x<0; )

4) satisfies the following glying conditions on
the line of type changing:

u(x,+0)=u(x,—0)=T(x), -1<x<1; (8)
u, (x,+0)=u, (x,—0)=N(x), -1<x<1; (9
u, (x,+0)=u, (x,-0)=M(x), -1<x<1; (10)
u(+0,y)=u(-0,y)=17,(y), 0<y<1l; (11)

Substituting (15) into conditions (6) and (7),
after some computations we get

u, (40, y)=u, (-0, y)=v,(y), 0<y<1l. (12)
where ¢ and 1//1( =12 j _L4) are  given
sufficiently smooth functions,
7., v;(i=12,3), 1, 1, are temporarily unknown
but smoothly functions, N —is internal normal of
x+y=-1 (DC) or x-y=1 (BC),
F (—1/2,—1/2). Together with the introduced
notations (8) - (12) the following notation are used as

well:
7,(x), if 0<x<1,
T (x
(%)= {rz(x), if —1<x<0;

_n(x),ifo<x<1,
v (x), if —1<x<0;

yi(x) if0<x<l,
1, (x),if ~1<x <0,

u(x,y)=u;(xy), (xy)eG,; (j= 1,3), where it
is assumed that 1'1(0)=z'2 O) ( ) v, (0)

Theorem. If ¢, 0,eC*[0,1], ¥, €C°[0,1],

v, e C°[-1-1/2], v, €C?[0],
w, €C?[-1,0], and the agreeing conditions

2(0)=v1(1)s v, (-1) =, (0): v, (0) =y (0) are
fulfilled then the problem 1 will have unique
solution. For this aim based on introduced.

Proof. We will prove the theorem by the method
of construct solution. notations, we will rewrite
equation (1) as

Cc

-y

ulxx _uly =Ct)l(X) b ' (X y) (13)

——y .
Uy —Uy, =@ (X)e 2, (X,y)eG (i=223),(14)
where o (x) (i =1,_3)are unknown and should be
defined functions but we will assume that they are
sufficient smooth functions.

Firstly we will carry on investigation in the

domain G,. A solution of the equation (14)
(forizz), satisfying conditions (8), (9), is
represented in the form

X+y C X+y-n

uz(x'y)%ﬁ(“V)”(X‘y)]*%I

t)dt—= jebdn j w, (£)de (15)
@, (X) = 2y} (x )eb Lo<x<1, ()
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J_ , ,g(m) In case 0 < x <1 equation (18) has the form
o, (X) =2y, (x)e> -, -1<x<0. (17 7(X)+, (X) = & (x), 0< x <1, (22)

Substituting (15) into condition making some
transformations (4), we get

T'(X)+N(x)=e(x), -1<x<1,
x+1j (X’J%)/Z £

where al(x)z,/,lf(T eigna)z(X—ry)dﬂ'

In case —1< X <Qequation (18) has the form
7, (X)+v,(X) = (x), 1< x<0. (19)

Further, substituting (15) in the condition (5),
after some computations, we come

(18)

0

7, (X)=v,(x)=46,(x), -1<x<0, (20)
where
1 —(><+1)2 .
X ey
52(X)—y/§[— — f e w,(x+n)dy-
0

Form (19) and (20) we will find functions 7, (x)

and v, (x)as follows
Tz'(x):%[al(x)Jré'l(x)],
va(0) =2 e () -6, (x)]

Integrating the first equality of (21) from —1 to
X, we obtain

£ (%) :%fl[al(t)mz (t)]dt +v, (1),

(21)

where

k,

o] i

Now, we consider 2° case. In this case equation
(25) has the form

7/(X)+ 27 (X)+ 7, (X) = @, (X) + k;, 0< x<1.

By solving this equation under conditions (26),
we obtain

7,(x)= I(x —t)ea, (t)dt+k, (1-e™ —xe™ )+ (k, +k;x)e™
0

where

bk,

{% (0)-

Now, in the domain G, we rewrite equation (1)
in the form
bu,,,, —bu,, +cu,, —cu, =0.
Passing to the limit in the last and equation (22)
(i=2) for y — 0, we get
bvy'(X)—bgy (X)+c7)(x)—cv, (x) =0, 0< x <1, (23)
(%) =7(x) =@ (x)- (24)
Eliminating functions v, (x) and (x)from

(22), (23) and (24), then integrating from O to Z
receive resulting equation after that changing z by x,
we arrive equation

z’l"(x)+[l—Ejrl'(x)—gq(x):az(X)+k1, 0<x<1 (25)
where g, (x) = al'(x)+%J:[ba)2 (t)cay (t)]dt and

K, is unknown constant.

For solving equation (25) we will consider the
following cases: 1°. C#0, c#-b;2°. c=-Db;
3°.¢=0.

Let’s consider case 1°. (25) under conditions

Tl(o)%i[(sl (t)+, (1)]dt +y, (1)

(0)= 2@ (0)+4,(0)]: 5 ()=n(0).

We get

{%(egx - ] ~(1-¢ ):l + kze%X +ke™

(26)

c 1 Cc
= _ =(1-t)
k,eb —k,e l}—f[eb

0

—e”}x2 (t)dt}
L0

-3 [l ®+a ]y, 0y

1

%[al (0)+6,(0)]+k,»

= @0k -k -a-vea 0]

0

k

k3
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Finally, we consider the last 3°case. In this case Uy, (x, y) is a solution of the problem
equation (25) after integrating from O to X, has the .
form Uy —Us,, = @, (x)e b’
7 (X)+7,(X) = o5 (X) + kX +k,, 0<x <1, 0, (4,0)=0, u,, (x,0) =0, ~1<x<0, (31)

where @ (x)= J.az (t)dt
0

unknown constant.

and k, is temporarily

Solution of the last equation satisfying
conditions (26) is represented as
rl(x)=Jet’xa3 (t)dt+k, (x—1+e7)+k, (1-e™)+ke™

0
where

1 0
k3 =§j[al(t)+5
-1
1
K, =E[al(o)+51

k, =@, (0)e—k, (e

(t)]dt +y, (-1),

0)]+ks.

1
ko — [[€'ezy (t)dt
0

Now, we consider the domain D, . Passing to the
limit for the equations we find(15) (i = 3)in (15)
(i=2)y—0, weget
o, (X) = w,(x), -1<x<0.

Now, we will consider the following auxiliary
problem:

Sy
b’

Usy, = Uy, = @5 (X)e
Uy (, 0) 2 (%), U ( 0)=v,(x), -1<x<0, (@7
U (-LY)=0,(y), us(0,y) =75 (y), 0<y<1.

We will look for solution of the problem in the
form

Uy (X, ) =Uy (X Y)+ U (X, Y)+Ugs (X, ), (28)
where u31(x,y) isa solution of the problem
Uz, — Uy, =0,
Uy (x,0)=17,(x), Uy, (x,0)=0, —-1<x<0, (29)
Uy (-1 y) =, (y): s (0,y) =7(y), 0<y <L

Uy, (x,y) is asolution of the problem

3xx _u3yy =0,

Uy (%,0)=0, Uy, (x,0)=v,(x), -1<x<0, (30)
U (-1y)=0,u,(0,y)=0, 0<y<ZL

u

U (X, y)=%[T2 (X+y)+T, (X_y)]+% .[

Differentiating (35) with respect to X and
passing to the limit X — O, in the taken equation, we

U (-1y)=0,u;(0,y)=0, 0<y<1.

We will find solution of the problems (29)- (31)
by the method of continuity. They are respectively has
the forms:

Uy (X, Y) (32)

——[T (x+y)+T,(x=y)].

[N, (t)dt

x=y

1

Us, (X’ Y) = E

c X+y-n

Y -
o () =2 e ¥dn | 0u(6)de:

X=y+n
Where
20, (-1-x)—1,(-2-x),
T,(x)=17,(x), -1<x<0,
27, (X) =7, (—x), 0< x <L,

—2<x<-1,

(33)

—v,(-2-x),-2<x<-1,
v,(x), 1< x<0,

—v,(—x), 0<x<1;

(34)

N, (x)

The first two conditions of problem (31) are
fulfilled automatically. By satisfying the third
condition, we get relation

Ieb (y-1- ndn:—feb (n—1-y)dn-

After some S|mpI|f|cat|on and computations, we

get
Q;(-1-y)=-a,(y-1).
Setting in  (34) x—0, after some
transformation, we get
Q,(y)=-a(-y)-
Hence, we found that
—w,(-2-Xx), —2<x<-1,
Q,(x)=1a,(x), —1<x<0,
—w,(—x), 0<x<1.

Substituting (32), (33) and (34) into (28), we
come

X+y-n

(t)dt——fe i [ o

X—y+n

gde- (39)

x-y
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find the relation between unknown functions 7, (y)
and v, (y):
va(y) =z (y)+A(y),
where
yoc
Bi(¥) =73 (=Y) v, (=y)+ [e e, () dn
0

Now, we will investigate to the problem in the
domain D,. Passing to the limit y — 0 in equation

(14), we get

(36)

@ (X) =7/(x) = v (%)
Further, we write solution of equation satisfying
(14), satisfying conditions (2), (8), (11):

U (xy)= jfg (1)G. (%, y;OYn)dn—fcol(n)Gf (%, y;Ln)dn+

y ¢ 1

+[7,(£)6(x ¥;£,0)d¢ - [e *'dn[ @ (£)6(x, ;&) dé-
0 0 0

Differentiating this solution with respect to X

and tending X to zero, we get a relation between

unknown functionsz, (y) and v, (y). Eliminating

function v, (y) from taken relation and (36), we
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