
Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 521

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2020 Issue: 06 Volume: 86

Published: 30.06.2020 http://T-Science.org

Vadim Andreevich Kozhevnikov

Peter the Great St.Petersburg Polytechnic University

Senior Lecturer

vadim.kozhevnikov@gmail.com

Evgeniya Sergeevna Pankratova

Peter the Great St.Petersburg Polytechnic University

student

jane_koks@mail.ru

THE SUPPORT BOT ARCHITECTURE

Abstract: We will consider the architecture of the developed bot assistant, crate a component diagram and

describe the choice of development tools.

After that, we will give a description of all the services we are developing: their APIs and database schemas.

We will also describe the main development points related to searching in the knowledge base, organizing security,

integrating with the platform for developing user dialog interfaces and the GLPI helpdesk system.

In addition, since we are integrating with one of the messengers, specifically Telegram, we will formulate the

basic requirements for the interface of the bot itself, a list of commands used and tell about the features of registering

a bot in this messenger.

Key words: GLPI, API, database, architecture, service, bot.

Language: English

Citation: Kozhevnikov, V. A., & Pankratova, E. S. (2020). The support bot architecture. ISJ Theoretical &

Applied Science, 06 (86), 521-537.

Soi: http://s-o-i.org/1.1/TAS-06-86-98 Doi: https://dx.doi.org/10.15863/TAS.2020.06.86.98

Scopus ASCC: 1700.

Introduction

The architecture description

The chat bot that we research and develop as part

of this work consists of several main parts (Figure 1).

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:vadim.kozhevnikov@gmail.com
mailto:jane_koks@mail.ru
http://s-o-i.org/1.1/TAS-06-86-98
https://dx.doi.org/10.15863/TAS.2020.06.86.98

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 522

The main element here is the user, more

specifically the employee to whom the chat bot is

trying to provide support. The user can contact the bot

through various channels - it can be instant messengers,

email, a form on the site and any other communication

channel that can provide such interaction between the

user and the bot. Thus, we can say that the channel is a

connecting link between our user and the Support

Service.

Support Service is the main service whose task is

to receive a message from the user, process it, perform

the necessary manipulations with it, and then send any

response to the user back. In turn, the Support Service

interacts with other services. Let's consider them in

more detail.

Normalization Service – a service that is

responsible for processing the input message,

removing punctuation marks, stop words, normalizing

words, that is, bringing the message to the form that the

classification service will work with. Also, at this

stage, keywords are selected for further work with

other services.

Cache Service – a service that is responsible for

the cache. After the user has entered a message, each

time of the processing the message, its classification,

search for an answer on it, starts a new, that is, one

message - one pass along the entire processing cycle.

But there are situations when users encounter the same

problems and the more people use the bot service, the

more the same questions may arise. To reduce the load

on the service, it was decided to implement a cache

service, which stores the history of each call to the

support bot. After all, if the input message has already

been recognized, for example, as a question and an

answer has already been received that was satisfactory,

then there is no need to run the service again to get the

same information. We can just pull the response from

the cache service and send it to the user.

Dialog Service is a service for ensuring dialog

between the bot and the user. To make the bot more

independent, automated, able to respond to user’s

unpretentious messages, you must either constantly

update your hands with a collection of rules of the type

“answer “hello” to the word “hello”” and etc., but such

a collection is difficult to maintain, or use external tools

that already know how to cope with such a task as the

implementation of interactive interfaces. Dialog

Service receives a user message as an input and tries to

find an answer to it by using the Dialogflow platform

that we have chosen.

Classification Service is a service that is

responsible for classifying an input message.

Everything is extremely simple here, the service

receives a normalized message at the input and,

through a pre-trained model, classifies the message

belonging to one of certain classes: application or

question. Also, this service is responsible for training

models, saving training results and their further use.

This means that when we launched the service, it has

one model that is used constantly, and there is a method

that implement additional models to check the quality

of their training on new data. Launching for retraining

is carried out at the moment when a certain number of

new user requests will be added, on which we can

conduct training. Now this process is not automated

and requires human intervention to verify the

classification. Also, using this service allows you to

configure a certain number of models and watch how

they behave when adding new data. After such an

analysis, one can draw various conclusions about how

a particular model architecture works, how data affects

it, etc.

Knowledge Service is a service where articles are

stored and also their highlighted keywords and links to

the corporate Wiki resource, where you can read in

Figure 1. The component schema

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 523

more detail about the fact that is mentioned in the

knowledge base.

Ticket Service is a service responsible for

working with tickets. A ticket is an application that is

formed within the framework of an employee’s

problem and is created in a special helpdesk system.

Helpdesk system is a support service, a special

resource designed to automate the processing of

incoming user requests. Ticket Service is the link

between the bot service and various help desks, that is,

it acts as a single interface that allows you to redirect

applications depending on their subject or other various

conditions.

In general, any Ticket Service client does not

need to know which helpdesk system it interacts with,

it simply sends a request and waits for a response. The

advantage of such a device is that if you make Ticket

Service a universal channel, then you can connect any

of the existing helpdesk systems to it and there will be

no need to remember all the addresses of support

services that are used in the company, just use one

special service. This service also has a schedule

mechanism, which, at a given interval, polls all

helpdesks in use for the status of applications. This will

notify the user of the progress of work on the decision

of his appeal.

Consider the sequence of calls to services. When

a user writes his message through a bot or through any

other communication channel, it arrives at a specific

endpoint of the Support Service. Each channel has its

own API controller.

After the Support Service received a message

from one of the channels, it sends it to the

Normalization Service for preprocessing: deleting

punctuation, stop words, deleting some named entities,

such as the names of organizations, locations, etc.,

word normalization also takes place here. In response,

the service sends the processed text.

After a response has been received from the

Normalization Service, the Support Service forms a

request in the Cache Service to find out if such a

request has ever appeared from a user in past requests.

If the answer came from the Cache Service and it is not

empty, then you need to analyze it. If the input call was

already encountered in user requests and was

recognized as a simple question or belongs to the

category “other”, that is, for example, is a greeting or

goodbye - that category, with which we do not work,

we can immediately send the user a response from the

description of the found record. If a similar appeal was

ever recognized as an application, then we can

immediately send a ticket creation request to Ticket

Service and inform the user that we have created a

ticket for him and he can wait for service’s answer.

If the response from the Cache Service came

empty, which means that previously users did not

contact the bot with such a request. Therefore, we can

contact the Dialog Service and find out if it can respond

to a user’s request. Dialog Service is configured so that

it can only answer simple questions and inquiries, like

"How are you?" This was done in order to automate the

bot and to support a conversation with the user, this

facilitates the development and saves us as developers

write scripts of conversations. From Dialog Service we

can also receive either an answer with the wording or

an empty answer, which means that the service cannot

answer this question. If there is an answer, we first save

it in our service, which is responsible for the cache, and

send the response to the user. Now the next time the

user comes and writes the same message that the

previous user sent, we will already know the answer

and we can immediately send it without unnecessary

actions.

If the answer from Dialog Service was empty, this

is a sign that this call must be sent to the Classification

Service, for its classification as a question or request

using a pre-trained model. Depending on the result, the

algorithm of actions is different. If the appeal was

recognized as a question, then we will first try to find

the answer in the Knowledge Service. The API method

searches the database for keywords that were

formulated in the Normalization Service. If there is an

answer, then we can send it to the user and save all the

necessary information in the Cache Service: the text

itself, how the appeal was recognized, what response

was found to it and how it was evaluated by the user. If

the request was recognized as an application, then we

also send a request to Ticket Service to create a new

ticket.

It was also mentioned that the response is user

rated. If the appeal was a question and an answer was

received, we give the user to evaluate this answer to

improve the state of our knowledge base. At the

moment, we suggest the user to select "Yes" or "No",

in the future we plan to introduce a point-based grading

system. If the user evaluates the automatically found

answer negatively, then you need to make a note about

it so that in the future the person responsible for filling

the knowledge base can look at the initial appeal and

the answer found and understand what happened

wrong and why the user did not like the answer.

The development tools

To implement the above listed services following

development tools are selected.

The programming language is C # [1] and the

.NET Core framework [2].

To develop services related to natural language

processing and machine learning, the Python

programming language was chosen [3]. Advantages

that make Python suitable for machine learning and AI-

based projects include simplicity and consistency,

access to great libraries and environments for artificial

intelligence and machine learning algorithms,

flexibility, platform independence, and a large

community of developers and specialists in data

science.

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 524

PostgreSQL DBMS [4] was chosen as the support

for the implementation of the data warehouse, because

it is free and affordable, meets all the requirements that

must be implemented for the development of current

databases.

To implement Back Office’s frontend, the

following languages and tools were selected:

– HTML – HyperText Markup Language [5];

– CSS – Cascading Style Sheets [6];

– JavaScript [7];

– jQurey — a set of JavaScript functions for the

interaction of JavaScript and HTML [8];

– Bootstarp — a set of tools for creating sites

and web applications [9].

To implement the backend, we will also take

advantage of the capabilities of .NET Core.

Support Service API

The service provides the following API methods.

GET method for creating clients. By client we

mean an entity from a specific communication channel

through which a user can contact our service. In

Telegram, such a client is a bot. Several bots can be

added, in which case each bot is considered a separate

client and is registered as an independent entity, all that

combines these bots is the Telegram channel.

Similarly, for other bots can be done, for example, bots

in Facebook Messenger. In addition, you can add a

channel such as e-mail and its customers, individual

mailboxes, or a special form for accessing the site. At

the moment, when registering a client, it is necessary

to transfer the name of his channel, a special access

token, in the case of Telegram - this is the bot token

that is issued when registering the bot through Bot

Father, and the client identifier in Ticket Service.

POST method for updating the client. For

example, delete a client or change some of its

parameters.

A separate controller is developed for each

communication channel, because it is not possible to

receive messages from different sources on one

endpoint, for example, from Telegram and Facebook

Messenger at the same time, because they have

different data contracts. For Telegram, a separate

controller with POST methods was implemented,

which receives an input message of type Update and

converts it into an internal data contract.

It is also important to mention that the Ticket

Service, when it receives information that the ticket has

been resolved, send a corresponding request to the

endpoint that was specified when registering the client

with Ticket Service. Therefore, the Support Service

additionally implements an endpoint to which

messages from Ticket Service come. Such messages

are processed and, depending on the result, the user

receives an appropriate response. This may be a

message that the ticket has not been resolved and the

time period for its stay in the active state has expired,

or it may be a message with a resolution on a specific

ticket.

Support Service Database

 In Figure 2, you can see the database schema of

the described service. Let's consider them in detail.

Accounts - a table containing user information.

Each user is given an identification, it is also necessary

to fill in his first and last name so that he can be

identified in the helpdesk system when creating a

ticket.

Channels - a table containing information about

supported channels. A channel is an interface through

which a user can contact a support chat bot, for

example, a specific messenger, email, or a form on a

site. The channel is added by the person in charge. This

is done for security reasons. That is, if some stranger

decides to connect his channel with our service, then

messages coming from his channel will still not be

processed, since he did not register his channel and did

not add it to the database. Also, in the table there is a

client_id field, which gives the right to create tickets

Figure 2. The Support Service database schema

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 525

through this channel in the ticket system assigned to

this channel.

Tickets - a table containing information about

tickets that are being processed or already resolved.

This table is necessary in order to link the ticket and

the user from a specific channel for which the ticket

was created. When any information about tickets

comes to the service, the user needs to send a response.

This table contains just all the information you need.

Chat - a table containing information about the

chat in which the user interacts with the bot. The most

important field here is context, which stores the

message context of the correspondence at the current

time. This was done for the purpose that if the bot

service is restarted, then all current information will be

saved, and we can continue the dialogue with the user

without interrupting it.

Activity - a historical table that stores information

about all incoming / outcoming messages. Used to

view various statistics and user activity.

Normalization Service API

The service is responsible for normalizing the

input message and highlighting keywords.

Here we highlight the following API method -

this is the POST method to which the client sends a

request with any text and in response receives a

normalized representation, that is, cleared of

punctuation marks, stop words, date values, numbers,

names of organizations and products, etc. Also, along

with this, the output contains separately highlighted

keywords that can be searched later and can also be

used with Cache Service in order to obtain information

about whether such a request was encountered from

other users.

Normalization Service Database

In Figure 3, you can see the normalization service

database schema. It consists of a table Texts.

Texts - a table containing information about all

incoming messages that have been preprocessed. In the

raw_text field we write the text without processing, we

also write the text that was obtained as a result of the

manipulations, such as deleting stop words, removing

punctuation marks, removing extra characters and

notation. In addition, in the keywords field we record

keywords that we were able to isolate from the input

message. They, as well as processed text, will be useful

in next actions.

Cache Service API

Cache Service provides an opportunity to get

information about whether other users have already

asked the corresponding request of the current user.

Here you can select the following API method - the

GET method with the parameters by which the search

is performed - keywords received from the

Normalization Service.

The response to the request is a collection of

relevant articles (the maximum size of the collections

is set as a request parameter), according to which the

Support Bot service determines its further actions

described above: either we send a response to the user,

or we send a request to create a ticket and the user is

notified that a ticket to the support service was created

on his appeal.

Cache Service Database

In Figure 4, you can see the Cache Service

database schema. It consists of a Cache table, which

stores the keywords of each user’s message, a vector

for full-text search, the answer that was sent to the user

for his input phrase, the type of this message (question,

application or other), and the time that this answer is

considered relevant and can be used to respond to other

users.

Figure 3. The Normalization Service database schema

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 526

Dialog Service API

Dialog Service is a service responsible for

integrating with a platform for understanding natural

language and for developing Dialogflow interactive

user interfaces.

In this service, we single out one API method for

receiving an answer to an incoming phrase.

Classification Service API

For the Classification Service, we define the

following API method - the GET method, which

receives already normalized text and sends a class to

which the source text could be correlated in response

to a request.

In addition, there are methods for viewing

statistics on retraining models - these are GET methods

that allow you to see which models were launched for

training, with which classifiers, what results were

obtained during training. Such statistics will help

machine learning specialists analyze the state of

models, look at their quality, decrease or increase with

each new iteration, draw certain conclusions on the

possibilities for improving the quality of models and

new architectures. There are also methods for

uploading data and updating it in the database. As a

result of the classification, the label is assigned to the

input message (the class to which the message

belongs), which is saved along with the classified text.

To retrain, we must be sure that the label matches this

message, which of course may not be the case.

Therefore, in this situation, manual marking is still

required, or rather the correction of those labels that

were incorrectly defined.

Classification Service Database

In Fig. 5, you can see the classification service

database schema. It consists of the following tables.

Texts - a table that contains information about the

texts on which learning will be carried out using

machine learning algorithms, and new texts that will be

classified. There is a tagged_text field in which text

tagged with parts of speech is written, this is necessary

for some word2vec type vectorizers, since pre-trained

models vectorize the input message depending on the

word and its part of speech. Label_id field - responsible

for the class to which the text belongs, and the is_learnt

field tells us whether this record participated in the

training. When a sufficient number of new entries that

did not participate in the training accumulate, it will be

possible to restart the machine learning algorithms and

watch the report. After that, it will be possible to

Figure 5. The Classification Service database schema

Figure 4. The Cache Service database schema

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 527

conclude whether to change the model to a new one or

whether it is worth revising some points in the

implementation.

Labels - a table that contains the categories used

in the classification. So far, only two key entries are in

this table - the application and the question, but in the

future, we plan to carry out classification into narrower

areas.

Models - contains information about trained

models. For each record, the vectorizer that was used

to encode the data, the name of the classifier, the file

name of the saved model, and the creation time are

determined. In addition, here you can see the quality

metrics of each model. Such a table allows you to get a

report on all trained models and compare their quality.

Vectorizers - a table containing information about

the vectorizers with which we can encode data. During

retraining, some vectorizers are also transformed due

to the fact that new data appears - these are the

untrained models that we use, for example,

CountVectorizer from scikit-learn. It is also important

to note that a file with a vector model can be used in

various machine learning algorithms, so a separate

table was created for them.

Knowledge Service API

In the Knowledge Service, the main API method

is the GET method, which implements the search for

articles in the knowledge base for the given keywords.

This method is public and can be used by external

clients such as Support Bot Service. For internal use,

there are various API methods for working with

articles: a method for downloading, updating and

retrieving articles, methods for collecting statistics on

articles.

Knowledge Service Database

 In Figure 6, you can see the database schema of

the Knowledge Service. It consists of the following

tables.

Articles - a table that contains information about

articles available in our knowledge base. The tags field

contains keywords for this article article, which will

search for the final answer to a user's question using the

keywords selected at the stage of contacting the

Normalization Service when processing a user’s

request. This field is filled directly by the employee

who fills the database. Article contains a short

message, an excerpt that the user can read very quickly

and not lose too much time to delve into the content, so

for each article the url field is also filled in, which

contains a link to the article in the company's

information space, where you can read more about

what is said in a short excerpt, if, for example, the user

has something incomprehensible. In addition, an article

may be active or inactive, if it is not active, it means

that most likely it is awaiting revision or any additions

and no search for such an article is carried out.

History - a table with the history of the issuance

of search articles. After the user was asked to rate the

article, we can make an appropriate note about whether

this article came up to the user's request or not. If it did

not fit, then in the future the person who is responsible

for filling the database will be able to see the keywords

of the user's request, the article that was proposed for

the answer, and decide what to do with this article.

Deactivate it, fix it, send it for revision.

Ticket Service API

The Ticket Service API is quite extensive. To

facilitate the registration of clients, it was decided to

put all the necessary methods into a public API, and so

that anyone who wants to register a client can do it on

their own.

The following methods are available in the API

for working with clients. The POST method for

registering a client, as a result of executing a request

for this endpoint, the user receives a unique identifier,

by which he is subsequently entitled to use the Ticket

Service functionality. There is also a PUT method for

updating client settings and the settings of the helpdesk

that the client uses.

Figure 6. The Knowledge Service database schema

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 528

To work with tickets, there is also a separate API

that provides POST methods for creating an

application from an external client and GET so that the

external client can find out about the status in which

the application is located. Also, since the ticket can be

closed by the user, you must add the appropriate PUT

method to update the ticket status.

Knowledge Service Database

In Figure 7, you can see the Ticket Service

database schema. It consists of the following tables.

Helpdesks is a table containing information about

all helpdesk systems with which the service can offer

integration.

Glpi - a table in which the settings of a particular

service are stored, in this case GLPI. GLPI has a ticket

demarcation system - projects. For each client, we must

create a separate project, which will store tickets that

came only from this client. When the service will

expand and new help desks will be added to it, a new

table will be created for each.

Clients - a table containing information about

customers. Here are all the necessary parameters, such

as the name of the client, the address of the client to

which the service will send information about the ticket

status, the helpdesk selected by the client and other

settings. One of these settings, which we still support,

is the number of days after which the application can

be considered expired.

Tickets - a table about tickets. This table contains

information about the helpdesk in which the ticket was

sent, what is its identifier in this system, display

identifier (formatted identifier), for which client it was

created, its status and date of creation and last change.

Back Office

The back office as a unit is a part of the company

consisting of administrative and support staff that is not

client oriented. The functions of the back office include

settlements, record keeping, accounting, etc., that is,

that which provides the activity. As part of our tasks,

we also need to have such a convenient auxiliary

mechanism with which it will be possible to monitor

the processes.

At this stage, the functionality of the developed

service covers the tasks of working with articles. The

main goal of this functionality is to provide operators

with the ability to quickly and easily add articles, view

them, observe statistics on hits to specific articles and

other metrics.

Consider the features of Back Office.

Figure 7. The Ticket Service database schema

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 529

In the Knowledge Service, we work with articles.

Each article contains a list of keywords defined by the

operator that adds the article, the answer to the user's

question, a short answer to be provided to the user

(preview) and a link to a more advanced version of the

article in the Confluence information space. In Figure

8, you can observe the main page of our "Knowledge

Base", which displays all the articles that we have. It is

possible to edit and delete articles. You can also see the

status of the article - whether it is published or not. If

an article is published, then a search is possible on it,

and it can be returned as a result of an input request. If

the article is not published, then perhaps it is awaiting

editing, as it was previously marked irrelevant (for

various reasons). Each card with the article can be

opened and you can see its contents.

Functionality for editing the article and similar for

its addition is also provided (see Fig. 9).

In addition, as stated earlier, in Back Office, an

operator can view various statistics on articles. At the

moment, we are tracking the following (see Figure 10):

– number of articles uploaded;

– number of articles published;

– number of unpublished articles;

– number of irrelevant articles - articles that

users mark as unsuitable for the original request.

Figure 8. The view of articles available in the knowledge base

Figure 9. The form of editing cards

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 530

The development highlights

The full text search

As previously noted, the Knowledge Service is

responsible for receiving articles on input keywords.

There are various options that could be implemented

for searching and displaying results, but as part of this

work, it was decided to use the built-in capabilities of

the PostgreSQL DBMS that we use and implement

full-text search by keywords [10]. We introduce the

basic concepts:

– tsvector — data type for storing prepared

documents;

– tsquery — data type to represent processed

requests.

To implement a search, you must use functions

that allow you to create a tsvector from keywords in a

stored article and tsquery from an input search query.

In addition, since there may be more than one article

found, and it’s more important for us to show the most

relevant, we will use a function that, in fact, evaluates

the relevance of the article to the search query.

First, let’s consider converting the keywords of a

downloadable article to tsvector. To do this, you need

to use the to_tsvector () function, to the input of this

function we pass the name of the dictionary by which

each word will be processed, and the input string from

keywords. To_tsvector splits a fragment of text into

separate words (tokens) and returns the value tsvector,

the record of which is stored in the following form (see

Fig. 11), where the recognized word is first indicated,

and then its position in the input line.

The resulting vector is stored along with the

article and its other parameters. Its creation occurs at

the time of loading the article.

Now that for each article we have its tsvector with

keywords, consider getting tsquery from an input

query. Postgres provides the functions to_tsquery,

plainto_tsquery, phraseto_tsquery and

websearch_to_tsquery in order to bring the search

query to the form tsquery.

Consider these functions.

To_tsquery accepts the input of the query text,

which should include not only words, but also logical

operators, such as AND (&), OR (|), NOT (!) and

FOLLOWED BY (<->), and possibly brackets for

grouping. As a result of the query, we get tsquery - an

expression for finding documents (see Fig. 12)

Figure 10. The statistic view

Figure 11.The usage of to_tsvector function

Figure 12. The usage of to_tsquery function

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 531

Plainto_tsquery allows you to convert raw text to

tsquery. The input text like to_tsquery, is divided and

normalized, only a single AND operator is inserted

between all words, that is, this function does not

recognize the operators and considers them ordinary

separators (see Fig. 13).

Phraseto_tsquery behaves in the same way as

plainto_tsquery, but instead of the AND operator

between words, it inserts the FOLLOWED BY

operator. This function is useful in cases where it is

important not only the presence of all tokens, but also

their order.

And the last websearch_to_tsquery function

accepts unformatted text as input. It uses alternative

syntax and allows the use of certain operators:

– text not enclosed in double quotes will be

separated by AND;

– the text enclosed in double quotes will be

converted into words by the FOLLOWED BY

operator;

– the word “or” will be converted to an OR

operator (|);

– ‘-’ will be recognized as a NOT operator and

converted to ‘!’.

For this Knowledge Service, it was decided to use

the to_tsquery function and pre-format the input query

using the OR operator. Why is that. Firstly, we cannot

be responsible for which keywords for the article will

be chosen by the operator responsible for filling our

database. In addition, we cannot be responsible for

those keywords that come to the Knowledge Service

input, they may differ from all keywords specified by

the operator, or they may coincide in one or two.

Therefore, we cannot use the AND (&) operator rigidly

and look for such a match that all search words are in

the keywords of the article. The OR operator provides

more search capabilities. In addition, as part of the

search, we use the ranking function.

The ranking of documents is an attempt to assess

how relevant the documents are to our search string and

to rank the documents found in the order of their

relevance. Postgres provides two ranking functions

ts_rank and ts_rank_cd. The first one ranks the

document by the frequency of the found tokens, the

second one calculates the coverage density similarly to

ts_rank but taking into account the proximity of the

corresponding tokens. Since while we do not care

about the position of the keywords relative to each

other, we will use the ts_rank function. In addition,

since the above-described functions for converting the

input string to the tsquery format return the processed

word and its position in the text, which is not important

to us, we will use the strip function, which will return

the converted words without specifying their position.

Thus, when we conduct a search and ranking of found

articles, we can send this result in response to a search

query.

The security

Each of the services is published in the corporate

space and does not imply calculations for external use,

that is, their use is possible only within the local

network, except for the Support Bot Service, since it

has a connection with Telegram and must be accessible

from the outside. But we want to note that, firstly, the

use of some of the services can still become available

to external customers if we want to promote them as

separate products, and it is also possible to use them by

other company teams. At the same time, we cannot

open access to everyone in a row, so that anyone can

use the API of our services, as this can lead to an

uncontrolled data flow, which may have a negative

impact on the services. In order to solve this issue of

security organization, it is necessary to introduce a

mechanism that can determine who can have access to

services and what resources can use it.

First, let's define the basic concepts related to

security.

Identification is a procedure for recognizing a

subject by its identifier, which uniquely identifies a

subject in some kind of information space. This

identifier can be login, name, number, email address,

etc.

After identification of the subject, its

authentication is carried out. Authentication is an

authentication procedure, that is, confirmation that the

subject is exactly who he claims to be. Such

verification is carried out, for example, using a

password, key, fingerprint, etc.

When we identified a subject by its identifier and

authenticated it, making sure that it is really him, it

should be determined whether we can provide this

Figure 13. The usage of plainto_tsquery function

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 532

subject with access to our resources, that is, conduct an

authorization procedure.

In our case, there are two main clients that use the

API of other services: Support Bot Service, which has

access to all the services described above, and Back

Office, which accesses the Knowledge Service API.

This means that in order to access each of the services

they must have a special access token. In our services

we do not carry out identification and authentication of

the client, we only authorize the client by its token. In

order to pass identification and authentication, the

client needs to contact the special Identity Service

authorization service, which is already implemented in

the company using technologies such as IdentityServer

[11], a framework that implements the OpenID

Connect [12] and OAuth2 [13] protocols, which can be

used to build your own authorization services that will

issue security tokens to customers. A special account is

created for each client in such a service, and when

applying for an access token with certain parameters,

the client is identified and authenticated and checked

to see if it has access to these areas, and if it does, then

a token is issued to it.

In order to better understand this procedure, we

introduce the basic concepts related to OpenID

Connect and OAuth2.

A user is a person who uses a registered client

(application) to access resources.

A client is software or part of it that requests

tokens from IdentityServer, either to authenticate the

user who used the client, or to obtain an access token

to resources. In our case, the Support Bot Service client

must request an access token in order to be able to

access the API of other services with it. And similarly,

for external clients who will use our services.

Resources are what we want to protect with the

use of IdentityServer. For us, these are API resources -

functionality that third-party clients should not have

access to. And a related concept with resources is the

area. Scope is the identifier of the resource that the

client wants to access.

There are two types of tokens: an identity token

and an access token. An authentication token is the

result of a user authentication procedure. It contains the

user ID, information about how and when the user was

authenticated, and other additional data. In turn, the

access token allows you to access the API resource.

Clients request this token and go to other services with

it. Access tokens contain information about the client

(and the user, if one was presented), and the APIs use

this information to provide access.

You can get your access token through a special

Token Endpoint access point. In Fig. 14, you can see

the main parameters for obtaining a token using the

Client Credentials permission type.

Grant type - permission type, determines how the

client can interact with the service issuing tokens.

Permission types are as follows:

– Authorization Code;

– Implicit;

– Password Credentials;

– Client Credentials.

For the Support Bot Service client, the Client

Credentials permission type is used; for Back Office,

Password Credentials are used, since we have the

ability to specify a username and password for each

operator.

Client ID is the client ID.

Client Secret is a client secret that is used to

authenticate it.

Scope is the scope that the client wants to access.

When using the permission type Password

Credentials, you must also specify the username and

password of the user.

Thus, security is maintained in our environment.

Those who do not have rights to the areas listed in the

request will not get access to them, since the service

simply will not give them a token. External clients will

also be unable to use our APIs until they receive an

access token. Those who try to apply with an access

token received from another authorization service will

still not be able to access the service’s resources, since

before providing this access to the client, the token is

validated by the authorization service and also matches

the token parameters specified in service parameters.

For example, validation of the scope parameter;

checking whether the client has access to exactly this

requested API method, since the client, although it can

Figure 14.The form of receiving token in Postman [14]

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 533

have access to the entire service, cannot delete data

from the database of this service.

Dialogflow

Traditional computer interfaces require structured

and predictable input for proper operation, which

makes the use of such interfaces unnatural and

sometimes difficult. If end users cannot understand this

structured input, it is difficult for them to understand

what to do at all. It was ideally if the interfaces

themselves can determine what users want based on the

natural language that they use.

For example, consider one simple query, for

example, “Hello.” Other users can also send a message

in the form:

– «Good morning»;

– «Hey»;

– «Hi».

Even looking at these simple examples, you can

see that it’s difficult to organize a user’s

communication with the system. Natural language

interpretation and processing requires a reliable text

parser. Dialogflow [15] already processes everything

for us and allows us to provide high-quality

communication with the user. Let’s introduce the basic

concepts.

Dialogflow Agent is a virtual agent that processes

conversations with the user. This is a module for

understanding natural language, which understands the

nuances of the human language. Dialogflow converts

the text or audio of a user during a conversation into

structured data that our services and applications can

understand. We need to design and create an agent in

order to process the necessary conversations for our

system. The Dialogflow agent is like a human agent

from a call center. He also trains to handle expected

conversation scenarios.

Another concept is intent. For each agent, we can

define a somewhat large number of intentions and all

these intentions can handle the full conversation

between the interface and the user. When a user writes

or says something that we can call a custom expression,

Dialogflow matches this expression with the agent’s

best intention. This comparison can also be called a

classification of intentions.

For example, we can create an agent that will

recognize and respond to greetings from our users. To

get started, set an intent for the greeting message. If the

user says “Hello,” then Dialogflow will match this

expression with the intent of the greeting. We can also

set the intention so that some useful information can be

extracted from the expression, for example, the time of

day - such a sentence as “Good afternoon” or “Good

evening”. This retrieved data is important for the

system to correctly respond to a user message.

The underlying intent contains the following:

– Training phrases: these are examples of those

phrases that users can say. When a user’s expression

looks like one of these phrases, Dialogflow matches

this expression with a specific intent.

– Action: it is possible to define a specific action

for each intent. When an intent is found for an input

user phrase, Dialogflow sends an action to our system

and this action can be interpreted as a trigger for other

internal actions of our system.

– Parameters: when an intent is found,

Dialogflow provides extracted values from a user

phrase called parameters. Each parameter has a type,

called an entity type, that determines how the data is

retrieved. Unlike raw user input, parameters are

structured data that can be easily used for further

actions, such as generating responses.

– Answers: we can define textual, verbal or

visual answers for sending them to the user. This

answer may be a simple response to a user expression,

requesting additional information, or ending a

conversation.

The next thing we'll talk about is entities. As

mentioned earlier, each intent parameter has a type

called an entity type. Dialogflow provides predefined

system entities that correspond to many common data

types. For example, there are entities for dates, times,

colors, e-mail addresses, etc. You can also create your

own data types, for example, it can be an entity of the

“vegetables” type, which can match the entered types

of vegetables.

Now let's talk about the integration of our Dialog

Service and Dialogflow. There are two options. First,

Dialogflow can integrate with a large number of

popular platforms, for example, Google Assistant,

Slack, Facebook Messenger, Telegram, etc.

With this integration, by default the agent

responds to the recognized intent with a static response,

but it is possible to provide a more detailed and

dynamic response using an operation such as

fulfillment. When "fulfillment" is activated for an

intent, Dialogflow responds to this intention, while

invoking one of the service methods. For example, if a

user wants to make an appointment with a doctor on a

specific day of the week, then our service can make a

request to the database, check the doctor’s free time on

Friday and reply to the user with a message about his

availability on the selected day.

In Figure 15 you can see a diagram of such an

interaction:

1. User enters or speaks his message.

2. Dialogflow tries to match the input expression

with specific intents and select parameters.

3. In case of coincidence and the "fulfillment"

option for intent is enabled, Dialogflow sends a

webhook request to the service.

4. The service performs the necessary actions for

the recognized intent, for example, requests to an

external API or database.

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 534

5. The service sends a response to Dialogflow

containing the information that should be sent to the

user.

6. Dialogflow sends a message to the user.

7. The user receives a response.

If we do not want to use the Dialogflow features

for integration with external communication channels,

then we need to write the appropriate code to

communicate with the user and send messages for

recognition to Dialogflow, and vice versa. In Figure 16,

you can see the general scheme of such interactions:

1. The user types or speaks the message

(expression).

2. The service sends this message to Dialogflow

in a format for recognizing intent.

3. Dialogflow sends a response back to the

service. This message contains information about the

recognized intent, actions, parameters and response for

this intent.

4. The service performs the specified actions for

the recognized intent.

5. The service sends a response to the user.

6. The user receives a message.

For our tasks, we will use the second approach for

the following reasons. Firstly, although at this stage

integration is planned only with the Telegram

messenger, in the future we would like to expand

communication channels - connect integration with

Facebook Messenger, Slack and add a form on the

company's special website. This means that if we used

the first integration option with Dialogflow, we would

need to configure the integration separately for each

communication channel. In addition, in one

communication channel, for example, in Telegram, not

one bot account can be created, but several, and they

all in fact communicate with a single Support Bot

Service, which combines all communication channels.

For us, this is an extra overhead.

Secondly, as mentioned earlier, in the first

version, a request to the service is sent only if

Dialogflow recognized the input expression and

matched it to the specified intent. For us, on the

contrary, it is important to keep the entire history of

messages with the user for further analytics and

improving the service. Therefore, we must first receive

the user message, process it, and only then send the

request to Dialogflow.

Now let's proceed directly to the Dialogflow

setup for our assistant bot. First, we create an agent,

give him a name, choose a language. We also indicate

the correct time zone, it is important if we want to

configure recognition of such intentions as weather,

time, etc.

After creating the agent, we can already create

intentions and fill them with information. There are

already two default intentions in our project:

– default welcome intent

– default fallback intent - intent, which starts if

none of the created intentions fit.

 In the welcome intent, we want to edit the

answers that will be sent to the user, since we want to

use these phrases to direct the user to start entering a

message with an appeal - a question or request, and also

to push the user to talk to the bot. Figure 17 provides

an incomplete list of new responses to the user's

welcome message.

Since there is a “greeting”, there must be a

“farewell”. Therefore, we add a new intent, which will

be responsible for recognizing the incoming user

phrase as parting with the bot. We add a few training

phrases that the user could enter and add phrases for

the answer, which can also prompt the user to further

calls.

Figure 15. The way to intract with Dialogflow through some service

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 535

We would also like to automate the process of

user identification, that is, the introduction of his first

and last name. Without automatic recognition,

difficulties can arise. Firstly, if we ask the user to enter

his name and surname, he can do it in several ways:

first enter the name and surname or vice versa, enter

them with a capital letter or all with a small one.

Secondly, you can go the other way and explicitly ask

the user to enter the name first, then enter the surname,

and ask again if we wrote down his data correctly. But

we want to make the most simple interaction with the

bot without unnecessary steps. Therefore, we will

create the “name and surname recognition” intent and

also introduce various training phrases with possible

wordings, first names and surnames. In response, we

will send a phrase with possibly recognized first and

last names, if the user confirms that the data is

recognized correctly, then we save them in our

database.

In addition to the usual intents, you can configure

the SmallTalk module, which contains frequently used

phrases and questions, such as “Who are you” or “How

are you”. An agent can learn to maintain small

conversations without additional processing. Using a

special form, we can customize the answers to the most

popular queries: questions about the agent himself,

intentions related to emotional statements, with the

user, etc. In Figure 18 you can see an example of such

a default question and answers to it.

Also a few words about learning. When an agent

is trained, Dialogflow uses our data to build a machine

learning model specifically for our agent. This usually

happens by adding training phrases during the

creation of intent, but it is also possible to use a special

Training Tool to analyze, import and export data of

current conversations and to improve the model.

Helpdesk GLPI

The developed bot assistant has a mechanism for

working with tickets. Tickets are handled by a support

service. It would be easy to send information about the

ticket, for example, by mail to a support service

employee and wait until he reads this letter, but in this

case this letter may be lost in spam or simply not reach

the addressee. Also in such a case it is difficult to track

how the work on the application is going on.

For such cases, helpdesk is included in the work

- a system for automating the processing of user

requests. The introduction of a ticket management

system improves the quality of support services and

eliminates problems associated with a slow response

to requests.

GLPI (Gestionnaire libre de parc informatique -

free IT infrastructure manager) is a system for

handling applications and incidents, as well as for

inventorying computer equipment (computers,

software, printers, etc.). It has advanced features, such

as the notification tracking system and methods for

creating a database with basic information about the

network topology.

GLPI is a free software tool for managing IT

services for free and open use, which helps to easily

plan, manage and easily solve problems when they

Figure 17. Form of a template question and its answer

Figure 16. Examples of answers

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 536

arise for users. In addition, this system makes it easy

to control the company's budget and its costs if

necessary.

Let's introduce the basic concepts for working

with the GLPI API.

User token - used during the login process

instead of username / password. Can be found in the

tab Personalization → Remote access keys → API

token.

Session token - the string used in all requests to

the glpi API describes the session in glpi.

Application token - an optional parameter by

which you can identify access to the API. Can be

found in the tab Setup → General → API → API

client → Application token.

And we give a description of the basic methods

of working with the GLPI API.

The first thing to say is the initiation of the

session. Work with the API occurs within a certain

session and the received token as a result of initiation.

You can create a session by sending a GET request to

the following address - apirest.php / initSession /. In

the input parameters, you must pass:

– App-token - application token, it is issued

upon registration of a client who will use GLPI. The

token is issued specifically to the application, and not

to all individual users.

– User token - the token of the user that is

registered in the GLPI. The user can use different

application tokens.

After the session has been initiated, we can

create tickets. In order to create it, you must first form

the request body with the main fields. After that, you

can send a POST request to apirest.php/Ticket/. It is

also important to specify request headers: session

token and application token.

Due to the peculiarities of GLPI itself, we cannot

create a ticket immediately in some space (project).

There is a separate API method for this. You must

send a POST request to

apirest.php/ProjectTask_Ticket/. In the request body,

we specify the ticket identifier and the identifier of the

project task in which we will add the ticket.

We also want to cancel the application if the user

understands that he can solve his problem himself

without any help. To do this, we send a PUT request

to apirest.php/Ticket/{id}, where id is the ticket

identifier in GLPI. In the request body, it is necessary

to indicate the new status, namely the “close” status,

for which we want to change the current status of the

open ticket. Session token and application token must

also be passed to request headers.

In order to notify the user about the status in

which the application is located, we will use the

method of searching for information about the

application. You can do this by sending a GET request

to apirest.php/search/Ticket/. In the query parameters,

we can specify the search criteria. For example, we are

looking for a ticket with identifier 5 and the status

“resolved”, if we find such a ticket, we can conclude

that the ticket has been resolved and send the user a

resolution; if there is no such ticket, we consider it

unresolved, and we inform the user about this . Or we

can just search for specific tickets and validate them

yourself.

The Bot description

The developed bot is designed for employees to

contact and receive technical and informational

support. We formulate the requirements:

– It is necessary to have an employee

identification mechanism, since employees who are

responsible with the support system must understand

who they are talking to.

– Implement a user profile, the ability to

change the first name, last name, date of birth and

other parameters.

– Implement the input of the message, which

will be further classified as an application or as a

regular question. If this is an application, then it must

be created in the support service and notify the user.

– To realize the possibility of canceling the

application by the user.

Commands

In Telegram, in addition to communicating with

the bot using regular messages, you can also connect

teams. The very first command that already exists in

the chatbot is /start. It appears when the bot opens and

the user’s clean communication history with the bot.

When you call this command, a welcome message

usually comes, which contains information about

what the bot can do, its main features.

We also add the /help command, which displays

help information about the bot, its creators, contacts,

how to contact the developers in case there are any

problems when working with the bot, or if there are

suggestions and wishes.

The Bot registration

We use the Telegram platform, which provides

the opportunity to create not only ordinary user

accounts, but also special thematic accounts that can

automatically process and send messages - bots, for

example, [16; 17].

In order to create your own bot, you must use the

internal bot developed by Telegram, BotFather. With

it, we create an account for the bot, assign it a name

and login, and as a result we get a special token, which

we will use in future for communication between the

bot and our Support Bot Service. This connection is

that we must indicate where the bot should redirect the

user's messages and where he will receive them back.

There are two completely opposite ways to

receive messages from the bot:

– manual update check by long polling;

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 537

– registration of a special webhook -

notification mechanism for new events.

The second option is more convenient, so we

will use it. To do this, an SSL certificate must be

installed on the server, where all the program code

will be posted, so that all requests pass through the

secure HTTPS protocol. Thus, after registering

Webhook via Telegram’s API, all bot messages will

come to the URL specified during registration. Also,

for security, it is recommended to include a bot token

in the URL, because apart from interested parties, no

one can know it and therefore we can know exactly

where the messages come from. Also, in the service,

we can implement verification of this token from the

URL of the input message, that is, whether it is in our

database, which will also prevent those cases when

someone registered their bot, knowing the structure of

the URL for registration, and indicated the address our

service.

Conclusion

In this article, we examined the architecture of

the helper bot being developed, compiled a

component diagram that displays all the components

and described the choice of development tools - these

are the C #, Python, JavaScript programming

languages, HTML and CSS style and markup

languages, .NET Core and Bootstrap frameworks,

JavaScipt jQuery language library. To organize data

storage, PostgreSQL was chosen.

In addition, we described the main points related

to the development of services, such as full-text search

using PostgeSQL features; integration with the

platform for the development of user dialog interfaces

Dialogflow; integration with the GLPI ticket system

and organization of security in developing projects

using the capabilities of the .NET Core IdentityServer.

We also formulated the basic requirements for

the bot interface, a list of teams that we want to

support and reviewed the features of registering the

bot in the Telegram messenger.

References:

1. (n.d.) Obzor yazika C#: [online]. Retrieved from

https://docs.microsoft.com/ruru/dotnet/csharp/t

our-of-csharp/ [Accessed at 27 June 2020]

2. (n.d.) .NET Core Documentation: [online].

Retrieved from

https://docs.microsoft.com/ruru/dotnet/core/

[Accessed at 27 June 2020]

3. (n.d.) Python Documentation: [online].

Retrieved from https://www.python.org/

[Accessed at 27 June 2020]

4. (n.d.) PostgreSQL 11.8 Documentation:

[online]. Retrieved from

https://www.postgresql.org/docs/11/index.html

[Accessed at 27 June 2020]

5. (n.d.) HTML: W3C Documentation: [online].

Retrieved from https://www.w3.org/TR/html52/

[Accessed at 27 June 2020]

6. (n.d.) CSS Documentation: [online]. Retrieved

from https://devdocs.io/css/ [Accessed at 27

June 2020]

8. (n.d.) Javascript Documentation: [online].

Retrieved from https://devdocs.io/javascript/

[Accessed at 27 June 2020]

9. (n.d.) jQuery Documentation: [online].

Retrieved from https://jquery.com/ [Accessed at

27 June 2020]

10. (n.d.) Bootstarp Documentation: [online].

Retrieved from https://getbootstrap.com/

[Accessed at 27 June 2020]

11. (n.d.) PostgreSQL: full text search: [online].

Retrieved from

https://postgrespro.ru/docs/postgrespro/11/texts

earch [Accessed at 27 June 2020]

12. (n.d.) Identity Server: [online]. Retrieved from

https://identityserver.io/ [Accessed at 27 June

2020]

13. (n.d.) OpenID Connect: [online]. Retrieved from

https://openid.net/connect/ [Accessed at 27 June

2020]

14. (n.d.) OAuth 2.0: [online]. Retrieved from

https://oauth.net/2/ [Accessed at 27 June 2020]

15. (n.d.) Postman: The Collaboration Platform for

API Development: [online]. Retrieved from

https://www.postman.com/ [Accessed at 27 June

2020]

16. (n.d.) Dialogflow: [online]. Retrieved from

https://dialogflow.com/ [Accessed at 27 June

2020]

17. Kozhevnikov, V. A., & Pankratova, E. S. (2019).

Development of a tool for interpretation of

labaratory analysis results. ISJ Theoretical &

Applied Science, Vol. 12, no. 80, pp. 301-313.

18. Kozhevnikov, V. A., & Pankratova, E. S. (2018).

Development of an intelligent recommender

assistant using Telegram platform. ISJ

Theoretical & Applied Science, Vol. 5, no. 61,

pp. 77-83.

