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Abstract: The  article  is  devoted  to  modeling  the  regulatory mechanisms of biological systems based on 

functional-differential equations with  delayed argument with discrete experimental data as a initial conditions. 

Approximate method for the initial functions on the basis of discrete values of a biological experimental data is 

considered. Results show that  under certain conditions  during mathematical description of biological processes by 

functional-differential equations with  delayed argument, we can plan in advance the necessary amount of 

experiments. 
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Introduction 

In mathematical modeling of the regulatory 

mechanisms of complex, interconnected systems, 

such as living systems, it is very important to choose 

a class of mathematical equations that have an 

“native” ability to oscillate modes of solutions, as well 

as suitable for modeling biosystems in normal 

conditions, anomalies, and when there is exist sudden 

activity death [1, 2]. Such equations are functional 

differential equations with a delayed argument, 

constructed on the basis of the methods of regulating 

living systems [3, 4]. Functional differential equations 

of regulatory mechanisms of biological systems are 

not integrated and obtaining exact solutions is 

generally impossible [1-9]. Using methods of 

qualitative analysis allows us to identify the general 

properties of solutions, to determine the characteristic 

stationary solutions and the existence of periodic 

solutions. Solutions can be obtained with the required 

accuracy based on the implementation of the model on 

a computer [6-10]. To solve the equations of the 

regulatory mechanisms of biological systems, it is 

necessary to set the initial conditions on a segment of 

length h [11-14]. This is rather difficult for models of 

biological systems due mainly to discreteness of 

experimental data. As a result of this, the question 

arises of approximating the initial functions on the 

basis of discrete values of the variable equations and 

obtaining approximate solutions for their finite 

number. Obtaining solutions of differential equations 

with high accuracy allows us to study the basic laws 

of the behavior of solutions based on methods of 
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qualitative analysis and selective numerical solutions 

on a computer. 

 

STATEMENT OF A PROBLEM   

 

The use of functional differential equations with 

a delayed argument in the modeling of biological 

systems involves an analysis of the general patterns of 

solutions based on the theory of qualitative analysis 

and the most accurate assessment of solutions near 

critical points, where, depending on the values of the 

parameters, qualitative changes in the behavior of the 

model can occur. Let M(m1,...,mn) be the point of 

interest to us in the phase space. Then the equations of 

the regulatory mechanisms of biological systems in an 

infinitely small neighborhood M can be linearized by 

expanding the right-hand side in a power series and 

taking into account only linear deviations from the 

point M. We introduce small zi(t)  

Xi(t) = mi + zi(t),               i = 1,2,...,n 

for which the general equations of the regulatory 

mechanisms of biological systems have the following 

form: 
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If to replace in (2) 
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then we obtain the following equations in an 

infinitesimal neighborhood of the point M of the phase 

space. 
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                          i = 1,2,...,n  

If M is not an equilibrium of the equations of the 

regulatory mechanisms of cell communities, then by 

(3) we have qi  0 (i = ,2,...,n). The considered 

“biological” problem for differential-delay equations 

(3) allows, under the indicated conditions, solutions to 

be obtained from the point values of the desired 

functions. We study some questions of obtaining 

approximate solutions of inhomogeneous, linear 

differential-delay equations with for a limited number 

of specified point values of the desired functions.  

 

THE PROBLEM  DECISION  

 

Let us consider the following equation 
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tqhtuta
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tdui +−= .              (5) 

Let the boundary conditions be given in the 

following form: 

 

U(t0-kh) = Uk.   k = 0,1,2,...                 (6) 

 

here   t0 = Ph    and    P > 1,  where P is positive. 

We introduce the following notation: let u0(t)  be 

a solution (5) satisfying the boundary conditions:  

       u(Ph -kh) = uk,         k = 0,1,2,... . 

 

and let up(t) be a solution (5) satisfying the following 

boundary conditions:  

 

u(kh) = uk,             k = 0,1,2,..P 

u(-kh) = 0.              k = 0,1,2,... 

 

We consider the behavior of the approximate 

solution up(t) of equation (5) under boundary 

conditions (6) at t t0 . Let q(t)  be a continuous 

function in (-,)  and | |q(t)| < M , and the function 

a(t)  has in (-,) all derivatives and  
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n = 0,1,2,.. 

|uk| < L.     k = 0,1,2,... 

Then for   [t0+kh, t0+(k+1)h]    (k= 0,1,2, ...) we 

obtain:  
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Indeed, the function rp(t)  = u0(t) - up(t) satisfies 

the equation  
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and the following boundary conditions 

rp(kh) = 0,             k = 0,1,2,..P. 

rp(-kh) = up+k ,            k = 0,1,2,... 

 

At t  [t0,t0+h]  we have: 
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Consequently:  
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For [t0+h,t0+2h] we have: 
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Thus, after sequential integration, we obtain:                    
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at [t0+kh,t0+(k+1)h]. 

Let us consider approximate solutions for the 

system of equations 
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i = 1,2,...,n 

Let qi(t)  be continuous on (-,)  and |qi(t)| < 

N,   k = 0,1,2 … and the functions aij(t) have 

derivatives of all orders on (-,) and 
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Let’s also we have 

 

ui(t0-kh) = |Uik| < L. 

 k = 0,1,2,...;   i = 1,2,...,n ;   t0 = Ph (p>1). 

Then for  [t0+kh,t0+(k+1)h]   (k = 0,1,2,...)  we 

obtain:  
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where u0i, upi  are exact and approximate solutions (7).  

Since the functions           

rpi(t) = u0i(t) - upi(t),                 i = 1,2,...,n 

 

satisfy the system of equations 
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and the following boundary conditions 

rpi(kh) = 0,          k =0,1,2,..P. 

rpi(-kh) = up+ki,            k = 0,1,2,... 

i = 1,2,...,n 

we obtain: 
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Having carried out similar sequential 

integrations as in the previous case, we have: 
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DISCUSSION 

These studies show that approximate solutions to 

the biological problem for differential-delay equations 

can most effectively be applied in the immediate 

vicinity of the initial point t0. If the permissible error 

of the solution is given in [t0,,t0+h], then, using the 

proved inequalities, we can determine the smallest 

number of boundary conditions necessary for this. 

This allows for the mathematical description of 

biological processes by functional-differential 

equations with  delayed argument, under certain 

conditions, to plan in advance the necessary amount 

of experimental data. 

Indeed, let some biological process be described 

by the system of differential-delay equations (7) and 

experimental data can be obtained at the points t0, t0 - 

h, t0 - 2h,... . It is required to determine the required 

number of experimental points for the mathematical 

description of the process on the time interval [t0,t0+T] 

up to a certain  > 0. 

 The required number of experimental points can 

be determined from the following relation: 

|rpi(t)| <  

t  [mh,(m+1)h],    где  m = [T/h] 

or      
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Thus, the required number of experimental 

points (p) can be determined using the following 

equation: 
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Consider an example. Let the process be 

described by the following equation 
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and it is required to determine the necessary number 

of experimental points that allow one to obtain 

solutions on [t0,t0+10]  with an accuracy of 10-4 . We 

calculate k from (8). Then equation (10) has the form:  
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An analysis of this equation shows that the 

minimum number of experimental points that make it 

possible to obtain a solution on [t0,t0+10h] with an 

accuracy of 10-4, is not more than 48. 

An important task, when we realizing 

differential-delay equations on a computer, is to 

determine the initial functions. In this case, T = h (m 

= 1). Therefore, to estimate the amount of necessary 

data in order to obtain the initial function with the 

required accuracy of 10-q , we have 
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which shows a very rapid increase in the degree of 

accuracy with an increase in the amount of data. 

 

Conclusion 

Thus, the studies results for some aspects during 

applying differential-delay equations for the 

mathematical description of biological processes 

show that in many cases when it is impossible to 

reliably determine continuous experimental curves on 

the initial segment of length h, effective results can be 

obtained with using the biological problem formulated 

above for differential-difference equations with a 

delayed argument, taking into account the specific 

character of biological data. 
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