
Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 574

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2020 Issue: 05 Volume: 85

Published: 30.05.2020 http://T-Science.org

Vadim Andreevich Kozhevnikov

Peter the Great St.Petersburg Polytechnic University

Senior Lecturer

vadim.kozhevnikov@gmail.com

Evgeniya Sergeevna Pankratova

Peter the Great St.Petersburg Polytechnic University

student

jane_koks@mail.ru

RESEARCH OF THE TEXT DATA VECTORIZATION AND

CLASSIFICATION ALGORITHMS OF MACHINE LEARNING

Abstract: The article includes information about different classification algorithms and vectorization methods.

We give the advantages and disadvantages of classification methods. Also in this paper we observe not only usual

classification algorithm, but classification with using neural network, specifically with convolutional neural

networks. In addition to description of these methods we discuss metrics which can be used to rate the quality of

trained classification models.

Key words: text classification, vectorization, neural networks, machine learning.

Language: English

Citation: Kozhevnikov, V. A., & Pankratova, E. S. (2020). Research of the text data vectorization and

classification algorithms of machine learning. ISJ Theoretical & Applied Science, 05 (85), 574-585.

Soi: http://s-o-i.org/1.1/TAS-05-85-106 Doi: https://dx.doi.org/10.15863/TAS.2020.05.85.106

Scopus ASCC: 2800.

Introduction

Solving problems using machine learning is a very

popular task in the modern IT community. You can see

a large number of competitions at Kaggle, courses at

EdX, Coursera and Stepik. For machine learning, there

are also a large number of different tools and platforms,

for example, Scikit-learn, Tensor-flow, Keras and

others.

One of the classic and popular tasks is the

classification of various data (texts or images). The

basic algorithm for solving such problems:

–Create a dataset and label it.

– Split a dataset to train and test datasets

– Fit vectorizer sand choose classifiers.

– Fit classifiers with training dataset and calculate

accuracy with test dataset.

– Choose the most accurate classifier.

– Use it.

We talked about how to create and prepare a

dataset in a previous article [1]. Using the prepared

dataset, we can train a model that will predict which

category the input message belongs to. And now let's

talk in detail first about vectorization, and then about

classification.

Vectorization

Machine learning algorithms operate in a space of

numerical attributes, that is, they expect that a two-

dimensional array will be presented at the input, the

rows of which are concrete instances, and the columns

are attributes or features. Thus, in order to perform

machine learning on the text, it is necessary to convert

the source documents into vector representations, to

which numerical machine learning will subsequently be

applied. This process is called vectorization and it is the

first step towards analyzing natural language data.

Converting documents to their numerical form

makes it possible to analyze them and create instances

with which the machine learning algorithm we choose

will work. Documents (or sentences) can have different

sizes, but the vectors that we define for them will

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:vadim.kozhevnikov@gmail.com
mailto:jane_koks@mail.ru
http://s-o-i.org/1.1/TAS-05-85-106
https://dx.doi.org/10.15863/TAS.2020.05.85.106

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 575

always be the same length. Each property in a vector

representation is a feature. In our case, these will be the

words that are included in the sentence. Together, all

these features will describe a multidimensional feature

space to which machine learning methods can be

applied.

Thus, we must move from individual sentences

and words to points in a multidimensional semantic

space. These points can be located far or close to each

other, distributed evenly or vice versa randomly. Based

on this, we can conclude that sentences that are close in

meaning will be located nearby, and different, on the

contrary, far.

Frequency vectorizer

One way to vectorize the source text is to calculate

the frequency of occurrence of each word in each

sentence and associate this value with the entire set of

words of the original data set. You can start by creating

a dictionary of all words in all sentences of your dataset.

A dictionary in this case is a list of words that occur in

texts where each word has its own index. This allows us

to create a vector for any sentence - just take the

sentence that we want to vectorize and count the

occurrence of each word. The length of the resulting

vector will be equal to the size of our dictionary and

contain the value of the number of occurrences of the

word from the dictionary in each specific sentence.

Consider a concrete example — there is a

collection of a sentence (see Listing 1).

Then we can use the method CountVectorizer

from the scikit-learn [2] library to vectorize our

sentences. The result of the CountVectorizer()

vectorizer you can see below (see Listing 2).

As the output we get a dictionary of all unique

words that are available in all sentences that we passed

as the input to our vectorizer.

We can also take all our sentences and transform

them using CountVectorizer() to get vectors for each

sentence that will display the number of occurrences of

each word from the dictionary in a specific sentence

(see Listing 3).

Listing 1. The sentences for demonstration

Listing 2. Demo of how CountVectorizer() works

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 576

The output shows that, for example, in the fourth

element of array (which means sentence) the word

“лампочка” was encountered twice, so in the

corresponding position for the word “лампочка” the

value is equal to 2.

This approach is called Bag-of-Words and it is a

common way to create vectors from text. Each

document, in our case, a sentence, is presented as a

separate vector.

The disadvantages of this approach are follows.

With the increase in the size of the dictionary, vectors

will grow and become sparser, and will have in their

view a large number of zeros due to the fact that each

document will contain only a small number of words

from the dictionary. Such vectors require more memory

and computational resources, which can have a

significant impact on the performance of models. But

this can be solved by the following techniques:

– You can ignore the case of words, and then the

word “хороший” from the phrases “Хороший день”

and “Он дал мне хороший совет” will appear in our

dictionary exactly once.

– Delete stop words – unnecessary words. Stop

words are words that do not carry any particular

meaning, and their exclusion may not affect learning in

any way, except cases when all words are important.

– Format words to their normal form - the use of

stemming and lemmatization algorithms.

– Correct words that are written with an error.

Also, in addition to applying text preprocessing

methods to reduce the size of the dictionary, you can

use HashingVectorizer() for large cases. It uses memory

more economically and is great for processing large sets

of text data, since it does not completely store the entire

dictionary, and due to this there is an acceleration of

saving and learning.

Also, with this approach, the word order is lost,

that is, after vectorization the sentence vectors, for

example, “Она не поет” and “Не, она поет” will be

identical, but their meaning is completely different. To

solve this problem, you can use N-grams (sequences of

N entities, for example, words, numbers, letters, etc.) at

the tokenization stage.

An example sentence and its bigrams is as follows

(Listing 4):

Direct coding

In addition to counting the number of occurrences

of a particular word in a sentence, there is a simpler

vectorization approach - direct coding. Direct (or

binary) coding is a logical vectorization method that

writes true or 1 to the corresponding vector element if

the given word from the dictionary is present in the

sentence, or false (or 0) if there is no such word. In other

words, each element of the vector with this approach

indicates either the presence or absence of a word in the

described sentence. Thus, we simplify the document to

its constituent components. This method is very

effective for short documents, such as, for example,

tweets that contain a small number of repeating

elements. The direct coding approach is also often used

in neural networks, where activation functions require

input values from the ranges [0, 1] or [-1, 1].

The result of this vectorizer will be the following

(Listing 5). Thus, it can be noted that in the fourth

sentence, the value in the third position of the vector is

no longer 2, but 1, which means that the given word

from the dictionary is present in this sentence.

Listing 3. Vector presentation of example sentences

Listing 4. Bigrams of source sentence

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 577

TF-IDF

The approach of counting the number of words

occurrences in a document has a problem: words that

are more likely to occur have a higher rating. But these

words can have very little useful information, as can

have less frequent words. A more successful approach

is based precisely on a comparison of the relative

frequency or rarity of words in one particular document

with their frequency in other documents. The main idea

of this approach is that the main meaning is hidden in

those words that are less common.

The TF-IDF (Term Frequency – Inverse

Document Frequency) [3] coding method normalizes

the word frequency in the document, taking into

account the contents in the entire case. Thus, it turns out

that if a word is often found in a specific document, but

is rarely found in the rest, then this word is of high

importance for this document itself and such words will

gain more weight compared to other corpus words.

The TF-IDF is calculated as follows. To begin,

consider TF - this is the ratio of the number of

occurrences of a word in one document to the total

number of words in a document (formula 1):

 (1)

where nt is the number of occurrences of the word t and

in the denominator is the total number of words in the

document.

And IDF is calculated as follows (formula 2):

 (2)

where N is the quantity of documents in corpus

collection;

DFt is the quantity of documents from collection

where t word is occurred.

Thus, we have two components TF and IDF and

we can calculate the value of TF-IDF (formula 3):

 (3)

Let's look at an example based on our four-

sentence case. As a result of using TfidfVectorizer()

from scikit-learn, we get the following matrix of the

form (see Listing 6) where each row is our document,

the column is words, and the value at the intersection is

the TF-IDF score.

One of the advantages of the TF-IDF approach is

that it solves the problem of stop words in a natural way,

which most likely are almost always present in all

documents of the corpus and for this reason gain a little

weight compared to other words that will become more

valuable in this method.

Word2vec

Listing 5. The result of binary mode of CountVectorizer()

Listing 6. The TF-IDF presentation of source sentences

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 578

The methods of frequency and direct coding

described above, as well as the TF-IDF approach, allow

you to convert a collection of documents into vector

space, for example, present an entire sentence as a

single vector of objects. But it is also useful to code the

similarity between documents in the context of this very

vector space.

The methods described above produce vectors

only with positive elements, which does not allow you

to compare documents that do not have common words

due to the fact that two vectors having a cosine value of

the angle between them equal to 1 will still be

considered distant in meaning.

If the similarity between documents plays an

important role in the application of machine learning

algorithms, then the data can be encoded using the

distributed representation method. With this approach,

a vector is not just a mapping of the positions of words

into their numerical value, but a set of features that

determine the similarity of words. The complexity of

the feature space (and the length of the vector) is

determined by the learning features of this

representation and is not directly related to the

document itself.

The word2vec software was developed in 2013 by

a team of researchers from Google, led by Tomaš

Mikolov. Tools for creating vector-semantic models

existed before [4, 5], but word2vec was the first popular

implementation due to its ease of use, speed of work

and, most importantly, open source code.

Tomaš’s approach is based on one important

hypothesis that he wrote in his work [6] - “words that

occur in identical environments have similar

meanings”. Proximity in this context can be understood

as the fact that only matching words can stand nearby.

That is, for example, it’s normal for us to hear the

phrase “злой человек”, but the phrase “злой

холодильник” is completely unusual.

The model that Tomaš proposed is quite simple -

the probability of a word will be predicted by its

context. That is, we will train the vectorization model

so that the probability assigned by the model to a word

is close to the probability of meeting this word in this

environment in real text. This approach is called the

Continuous Bag of Words (CBOW) - it is called

continuous, because the sets of words from text are fed

sequentially to the input of, and BoW, because the order

of words in the context is not important. The input

element to the neural network is the set of context

vectors w (t - k), ..., w (t - 1), w (t + 1), ..., w (t + k), and

the output vector is w (t), where w (t) is the vector of

the word predicted based on the context.

Mikolov also proposed a different approach,

which is the exact opposite of the CBOW approach,

which he called skip-gram. The architecture of Skip-

gram differs from a continuous bag of words in that it

predicts a set of words around, based on a given word.

The input vector is w (t), and the output element is the

set of vectors M = {w (t - k), … , w (t - 1), w (t + 1), ...,

w (t + k)}. Each word corresponding to vectors from the

set M characterizes a word corresponding to an input

vector. The working scheme of these two approaches

can be seen in Figure 1.

Classification

Classification of text data by specific topics or

classes is the definition of text data belonging to any

topic to which the corresponding text is devoted. The

most common classification tasks are determining the

emotional coloring of a text, otherwise, analyzing

tonality and classifying data on predefined topics.

Such type of classification is used to cut off those

entries that relate to topics that are not of interest for

analysis, for example, the classification of input

messages as spam and not spam.

There are several methods for classifying texts.

The first is to analyze the data and determine the class

to which the input text belongs, manually. This method,

of course, is absolutely accurate from the point of view

Figure 1. The workflow of the CBOW and Skip-gram algorithms

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 579

of classification, but its main drawback is the inability

to process a large amount of data in a short time.

The second approach is to write some rules based

on regular expressions and use them to classify text. In

this case, manual verification disappears, which

increases the classification speed and the amount of

data that can be analyzed in a shorter time. It may also

take time to create rules for a deeper study by a

specialist of the text and the identification of certain

patterns for different classes. In addition, the creation of

such rules requires efforts to keep them up to date.

But in the work [7], the authors of Qing Zeng-

Treitler and Duy Duc An Bui describe the process of

automating the creation and use of regular expressions

to classify clinical texts. They write about the

development of their own regular expression detection

algorithm RED (Regular expression discovery) and the

implementation of two text classifiers based on it: the

RED + ALIGN classifier - a regular expression

detection algorithm in conjunction with an alignment

algorithm, and RED + SVM are regular expressions

combined with the support vector method. Two of their

classifiers achieved an accuracy of 80.9 - 83.0% for two

data sets, which is 1.3-3% percent higher than the

accuracy of the SVM method. More importantly, RED

+ ALIGN correctly classified many instances that were

erroneously classified by SVM (8.1-10.3% of the total

number of instances and 43.8-53.0% of erroneous SVM

classifications). Therefore, we can say that the approach

to the classification of text data based on regular

expressions also has a place to be and shows good

results.

Finally, the third approach, to which further

research will be devoted, is an approach based on

machine learning. With this approach, the classes to

which the data belongs are automatically determined,

but manual marking of the training data is required.

Classification of the text using machine learning is

currently the most used and promising approach, since

it does not require special time expenditures on the part

of the person and allows you to process a large amount

of data in a short time.

Before starting to describe the approaches to the

classification of text data, we introduce some basic

concepts. For starters, machine learning systems or

neural networks accept input and output parameters.

Input parameters are usually called features. Symptoms

are some of the characteristics that we can explore.

When we pass these features to the input of

machine learning systems, they try to find a match and

notice some patterns between the input parameters. At

the output, we get the result of work, which is usually

called labels (label), since these output parameters have

some label by which you can get ahead of which

category the output belongs to.

For example, if you look at fig. 2, one can imagine

that ferns, mosses and algae are the input parameters to

some machine learning system. In turn, the output

parameter or label will be the value "spore-bearing

plants". Thus, the abstract system defined the class to

which these plants belong.

In the context of machine learning, classification

is a type of learning with a teacher. This means that the

data that we submit to the input is already pre-marked

with certain labels or classes, and this means that the

training system knows which parts of the input data are

important for each class. In addition, the system itself

can check the result of its work, as it knows in advance

to which class each input object should belong.

What is the process of training a classification

model? We provide the input data and their labels, and

the machine learning system we choose must learn how

to output specific patterns for this data. In the process

of testing a trained model, only untagged data is input,

Figure 2. Example of classification

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 580

and the model itself must predict which class our object

belongs to.

In this paper, we consider several basic

classification methods from a wide variety of

algorithms, and also consider the use of neural networks

to solve the classification problem.

The main classifiers that will be considered in this

paper:

– support vector machine;

– naive bayes;

– logistic regrssion;

– decision trees;

– k-nearest neighbors.

Support Vector Machine

Support Vector Machine (SVM) is a

discriminating classifier that is widely used for

classification tasks. Support vector methods were

introduced in the early 1960s, and then improved in the

1990s. However, only now they are becoming

extremely popular due to their ability to achieve

brilliant results.

 The algorithm displays each data element as a

point in N-dimensional space, taking the value of each

feature as the value of a specific coordinate. Then, in

the case of linearly shared data in two dimensions, as

shown in Fig. 3, a typical machine learning algorithm

tries to find a boundary that separates data so that the

classification error is minimal. There may be several

boundaries that correctly separate data points. Two

dashed lines, as well as one solid line, correctly classify

data.

SVM differs from other classification algorithms

in that it selects a solution boundary that maximizes the

distance from the nearest data points of all classes.

SVM does not just find the boundary of a solution; it

finds the most optimal boundary for the solution.

The most optimal solution boundary is one that

has a maximum separation from the nearest points of all

classes. The nearest points from the boundary of the

solution that maximize the distance between the

boundary of the solution and the points are called

support vectors, as can be seen in Fig. 4. The boundary

of the solution in the case of the support vector method

is called the classifier of the maximum margin or the

hyperplane of the maximum margin.

Figure 3. Linearly shared data in two dimensions

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 581

The advantages of this approach are:

– works well with a small dataset;

– due to maximizing the distance, finds the

optimal solution and allows to achieve minimum

classification error;

– works well with the feature space of large size.

And the disadvantages are:

– long training time for large datasets;

– the algorithm is unstable to noise, it means that

outliers in the data for training strongly affect the

construction of the separating hyperplane.

Naive Bayes

When studying probability and statistics, one of

the first and most important theorems that students

study is Bayes' theorem (see formula 4). This theorem

is the basis of deductive thinking, which focuses on

determining the probability of an event on the basis of

prior knowledge of the conditions that may be

associated with this event.

, (4)

where Р(А|B) – the probability that event A is true if

event B is true,

P(B|A) – the probability that event B is true if

event A is true,

P(A) – the probability that event A is true,

P(B) - the probability that event B is true.

The naive Bayes classifier brings the power of

this theorem to machine learning, creating a very

simple but powerful classifier.

Let's look at a simple example. Suppose we want

to know if an input message containing the word

“купить” is an application. Then, according to Bayes'

theorem, the components of the formula will look as

follows:

– P(class=ЗАЯВКА|contains=“купить”) – the

probability that the input message which is ЗАЯВКА

contains the word “купить”.

– (P(contains=“купить”|class=ЗАЯВКА) – the

probability that the input message which contains the

word “купить” is classified as ЗАЯВКА.

– P(class=ЗАЯВКА) – the probability that the

input message is an application (without any

knowledge of the words that enter it). This is the

percentage of all messages in our training dataset that

are marked as ЗАЯВКА. We multiply by this value

because we are interested in knowing how important

the information is regarding the letters of ЗАЯВКА

class.

– P(contains=“купить”) - the probability that the

input message contains the word "buy." This is the

proportion of those messages in our training sample in

which the word “buy” is present. We divide by this

meaning, because the more exclusive the word “buy”

is, the more important is the context in which it

appears. Thus, if a word is very rare, that is, it is small,

this can be an excellent indicator that, when it appears,

it is an important function for analysis.

Thus, the Bayes’ theorem allows us to make

informed conclusions about events occurring in the

real world, based on preliminary knowledge about the

observations that may imply this.

The main advantages of the naive Bayesian

classifier are the simplicity of its implementation and,

relative to other classifiers, low computational costs for

training and data classification. That is, in those rare

cases when the signs are really independent (or almost

independent), the naive Bayesian classifier is quite

optimal.

The main disadvantage of algorithm is the

relatively low quality of classification in most real

tasks.

Logistic regression

Figure 4. The hyperplane of the maximum margin

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 582

The next classification algorithm is logistic

regression. Logistic regression is a controlled

classification algorithm. Unlike conventional

regression, logistic regression does not predict the

value of a numerical variable based on a sample of the

initial values. Instead, the value of a function is the

probability that the original value belongs to a

particular class.

The main idea of logistic regression is that the

space of initial values can be divided by a linear

boundary into two regions corresponding to the

classes. In the case of two dimensions, the linear

boundary is simply a straight line without bends; in

case of three - a plane, etc. (see fig. 5). This boundary

is set depending on the available input data and the

training algorithm. For everything to work, the source

data points must be divided by a linear border into the

two above-mentioned areas. If the source data points

satisfy this requirement, then they can be called

linearly separable.

K-nearest neighbors

The k-nearest neighbor algorithm is a type of

supervised machine learning algorithm. KNN is

extremely simple to implement in its most basic form

but performs quite complex classification tasks.

This is a “lazy" learning algorithm because it does

not have a special learning phase. Rather, it uses all the

data for training in classifying a new instance. KNN is

a nonparametric learning algorithm that means that it

does not make any assumptions about the underlying

data. This is an extremely useful function, since most

of the data in the real world does not correspond to

theoretical assumptions, for example, linear

separability, uniform distribution, etc.

The KNN algorithm is one of the simplest of all

machine learning algorithms with a teacher. It simply

calculates the distance of the new data point to all other

points from the training dataset. The distance can be of

any type, for example, Euclidean or Manhattan, etc.

Then, the K-nearest data point is selected, where K can

be any integer. Finally, it assigns the data point to the

class to which most of the K data points belong.

The advantages of this approach:

– Easy to implement it.

– As mentioned earlier, this is a lazy learning

algorithm and, therefore, does not require training

before making real-time forecasts. This makes the

KNN algorithm much faster than other algorithms that

require training, such as SVM, linear regression, etc.

– Since the algorithm does not require training

before making predictions, new data can be added

without problems.

– To implement KNN, only two parameters are

required, that is, the value of K and the distance

function (for example, Euclidean or Manhattan, etc.)

The disadvantages are:

– The KNN algorithm does not work well with

large data, because with a large number of

measurements, it becomes difficult for the algorithm to

calculate the distance in each measurement.

– The KNN algorithm has a high prediction cost

for large data sets. This is because in large data sets,

the cost of calculating the distance between a new point

and each existing point becomes higher.

– Finally, the KNN algorithm does not work well

with categorical signs, since it is difficult to find the

distance between dimensions with categorical features,

therefore it is desirable that the signs have a numerical

value, such as vectors into which we convert our

sentences.

Decisions tree

The decision tree is one of the most frequently

and widely used supervised machine learning

Figure 5. A plane in the case of three dimensions

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.997

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 583

algorithms, which can perform both regression and

classification tasks. The decision tree algorithm is

simple, but also very powerful.

For each attribute in the data set, the decision tree

algorithm forms a node where the most important

attribute is located in the root node. For evaluation, we

start from the root node and go down the tree,

following the corresponding node that matches our

condition or “solution”. This process continues until a

final node is reached that contains the forecast or result

of the decision tree.

At first, this may seem a little complicated, but it

should be obvious that we have been using decision

trees to make decisions all our lives, without even

knowing about it.

There are several advantages to using the decision

tree to analyze forecasts:

– Decision trees can be used to predict both

continuous and discrete values, i.e. they work well for

both regression and classification problems.

– They require relatively less effort to learn the

algorithm.

– They can be used to classify nonlinearly

separable data.

– They are very fast and efficient compared to

KNN and other classification algorithms.

Neural networks

For a long time, the core technologies of NLP

were dominated by machine learning approaches that

used linear models, such as support vector methods or

logistic regression, which are trained using very

multidimensional, but very rare feature vectors. In

recent years, deep learning models have achieved

remarkable results in computer vision and speech

recognition.

As part of natural language processing, most of

the work with deep learning methods included studying

the representations of word vectors using neural

language models and performing composition on the

vectors of the studied words for classification.

The word vectors in which words are projected

from 1-to-V sparse encoding (here V is the size of the

dictionary) into smaller vector space through a hidden

layer are essentially extracted characters that encode

the semantic properties of words in their dimensions.

In such dense representations, semantically close

words are also close - at Euclidean or cosine distance -

in the vector space of the lower dimension.

And some time ago, in the field of machine

learning, success was seen in the transition from linear

models to models of nonlinear neural networks. Yoav

Goldberg, in his textbook on deep learning [16] about

natural language processing, notes that neural networks

generally offer better performance than classic linear

classifiers, especially when used with pre-trained

words embeddings.

He also notes that convolutional neural networks

are effective in classifying documents, namely because

they are able to distinguish characteristic features (for

example, tokens or token sequences) in a way that does

not depend on their position in the input sequences.

Convolutional neural networks (CNNs) use

layers with convolutional filters that apply to local

features. Originally CNN models, invented for

computer vision, subsequently showed their

effectiveness for NLP and achieved excellent results in

the tasks of semantic parsing, search by search query,

modeling sentences and other traditional NLP tasks.

The significant reasons why CNN is considered a

level higher than other classical models are as follows.

Firstly, the key interest for applying CNN is the idea of

using the concept of weight distribution, due to which

the number of parameters requiring training is

significantly reduced, which leads to improved

generalization - in essence this means how good our

model is in studying data and applying the information

received in other places [8]. Due to its smaller

parameters, CNN can be trained smoothly and does not

suffer from overfitting.

Secondly, the classification stage is combined

with the stage of feature extraction [9], both use the

learning process. Thirdly, it is much more difficult to

implement large networks using common models of

artificial neural networks (ANNs) than to implement

them in CNN [10]. CNNs are widely used in various

fields due to their remarkable characteristics [11], such

as image classification [12], object detection [13], face

detection [14], speech recognition [15], and much

more.

Classification metrics

In machine learning tasks, in order to evaluate the

quality of the trained model and to compare various

algorithms, metrics are used. Before proceeding to the

description of the metrics used, we introduce the

concept of a confusion matrix. Suppose we have two

classes and some algorithm that predicts which class

the input object belongs to, then the classification

confusion matrix will look like this (table 1):

Table 1

 class = 1 class = 0

predicted class = 1 True Positive (TP) False Positive (FP)

predicted class = 0 False Negative (FN) True Negative (TN)

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 584

Table cells are filled with the following values

– True Positive – the number of cases that are

recognized correctly and belonging to class 1;

– True Negative – the number of cases that are

recognized correctly and belonging to class 0;

– False Positive – the number of cases that are

recognized incorrectly and must belong to class 0 but

were recognized as objects of class 1;

– False Negative – the number of cases that are

recognized incorrectly and must belong to class 1 but

were recognized as objects of class 0.

In order to analyze and compare the capabilities

of various classifiers, the following metrics were

selected:

– accuracy;

– precision;

– recall;

– F-score;

Let's consider them in more detail.

Accuracy is the proportion of correct answers. It

is considered as follows (see formula 5):

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5)

This metric is intuitive, but in some cases, it can

be useless, for example, in the case of classification on

not-balanced training datasets. For example, let there

be 100 objects in the sample that belong to the class

“заявка”. Our classifier defined 90 of them correctly,

and 10 defined them as a “вопрос” (True Negative =

90, False Positive = 10). And there are 10 objects of

the “вопрос” class, 5 of which the classifier also

determined correctly (True Positive = 5, False

Negative = 5). Thus, the proportion of correct answers

will be calculated as follows:

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
5 + 90

5 + 90 + 10 + 5
= 86,4

But at the same time, if all messages from

employees are recognized by a “вопрос”:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
0 + 100

0 + 100 + 0 + 10
= 90,9

Thus, the algorithm assigns all messages to the

“вопрос” class and at the same time has a large share

of correct answers, which is actually extremely

illogical and does not bear any benefit. Therefore, you

can’t just rely on the proportion of correct answers,

you must use it in conjunction with the following

metrics (see formulas 6 and 7).

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6)

 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (7)

Precision can be interpreted as the proportion of

objects called positive by the classifier and at the same

time really positive, and recall shows what proportion

of objects of a positive class from all objects of a

positive class are recognized correctly (TP) and wrong

(FN) the algorithm has found.

It is understood that the higher the precision and

recall, the better. But in real conditions, the maximum

values of precision and recall are not achievable at the

same time, so you have to look for some balance.

Therefore, we would like to have a metric that

combines information about the two these metrics.

And in this case, it would be much easier to determine

which trained model to use for your tasks. Such a

metric is an F-measure, which is a harmonic mean

between completeness and accuracy (see formula 8):

𝑓 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (8)

Conclusion

In this article we observed different

vectorization algorithm such as vectorization method

based on occurrence of words in corpus, direct coding

(or binary), TF-IDF method and disturbed vector

representation method using Word2vec. In addition,

we reviewed some of these methods with its

implementations in scikit-learn frameworks.

Also, in this article we talked about classification

algorithm: support vector machine, naive bayes,

logistic regression, decision trees; k-nearest neighbors

and neural networks. We observed convolutional

neural network as one of the best tools for text

classification.

The information in this research will be used in

our next paper which will be devoted to experiments

with different classification algorithms and

vectorization methods to get the model which will

show the best classification result according to metrics

and which we are going to use in our tasks.

References:

1. Kozhevnikov, V.A., & Pankratova, E.S. (2020).

Research of text pre-processing methods for

preparing data in Russian for machine learning.

ISJ Theoretical & Applied Science, 04 (84), 313-

320. DOI: 10.15863/TAS.2020.04.84.55

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 585

2. (n.d.) Scikit-learn, Machine learning in python:

[online]. [Accessed at 23 May 2020]. Retrieved

from https://scikit-learn.org/stable/

3. (n.d.) TF-IDF s primerami koda: prosto i

ponyatno: [online]. [Accessed at 23 May 2020].

Retrieved from http://nlpx.net/archives/57

4. Mikolov, T., Yih, W.-T., & Zweig, G.

(2013). Linguistic Regularities in Continuous

Space Word Representations. In Proceedings of

NAACL HLT.

5. Bengio, Y., Ducharme, R., & Vincent, P.

(2003). A neural probabilistic language model.

In Journal of Machine Learning Research.

6. Mikolov, T., Sutskever, I., Chen, K., Corrado,

G.S., & Dean, J. (2013). Distributed

representations of words and phrases and their

compositionality. Advances in Neural

Information Processing Systems, pp. 1–9.

7. Bui, D. A., & Zeng-Treitler, Q. (2014).

‘‘Learning regular expressions for clinical text

classification,’’ J. Amer. Med. Inform. Assoc.,

vol. 21, no. 5, pp.850–857.

8. (n.d.) Generalization in Neural Network:

[online]. [Accessed at 23 May 2020]. Retrieved

from https://medium.com/deep-learning-

demystified/generalization-in-neural-networks-

7765ee42ac23

9. LeCun, Y., Bottou, L., Bengio, Y., and Haffner,

P. (1998) “Gradient-based learning applied to

document recognition.” Proceedings of the IEEE

86 (11): 2278-2324.

10. Tivive, F. H. C., & Bouzerdoum, A. (2005)

“Efficient training algorithms for a class of

shunting inhibitory convolutional neural

networks.” IEEE Transactions on Neural

Networks 16 (3): 541-556.

11. Wang, J., Lin, J., & Wang, Z. (2016) “Efficient

convolution architectures for convolutional

neural network.” In Wireless Communications

and Signal Processing (WCSP), 2016 8th

International Conference on (pp. 1-5).

12. Krizhevsky, A., Sutskever, I., & Hinton, G. E.

(2012). “Imagenet classification with deep

convolutional neural networks.” In Advances in

neural information processing systems (pp.

1097-1105).

13. Szegedy, C., Toshev, A., and Erhan, D. (2013)

“Deep neural networks for object detection.” In

Advances in neural information processing

systems (pp. 2553-2561).

14. Timoshenko, D., & Grishkin, V. (2013)

“Composite face detection method for automatic

moderation of user avatars.” Computer Science

and Information Technologies (CSIT'13).

15. Sainath, T. N., et al. (2013) “Improvements to

deep convolutional neural networks for

LVCSR.” In Automatic Speech Recognition and

Understanding (ASRU), 2013 IEEE Workshop

on Automatic Speech Recognition and

Understanding (ASRU), pp. 315- 320.

16. Goldberg, Y. (n.d.) A Primer on Neural Network

Models for Natural Language Processing:

[online]. [Accessed at 23 May 2020] Retrieved

from https://arxiv.org/pdf/1510.00726.pdf

https://arxiv.org/pdf/1510.00726.pdf

