
Impact Factor: 

ISRA (India)        = 4.971 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 8.997 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  574 

 

 

QR – Issue                    QR – Article 

SOI:  1.1/TAS     DOI: 10.15863/TAS 

International Scientific Journal 

Theoretical & Applied Science 
 

p-ISSN: 2308-4944 (print)       e-ISSN: 2409-0085 (online) 

 

Year: 2020          Issue: 05      Volume: 85 

 

Published:  30.05.2020        http://T-Science.org  
 

 

Vadim Andreevich Kozhevnikov 

Peter the Great St.Petersburg Polytechnic University  

Senior Lecturer  

vadim.kozhevnikov@gmail.com  

 

Evgeniya Sergeevna Pankratova 

Peter the Great St.Petersburg Polytechnic University  

student  

jane_koks@mail.ru  

 

 

RESEARCH OF THE TEXT DATA VECTORIZATION AND 

CLASSIFICATION ALGORITHMS OF MACHINE LEARNING 

 

Abstract: The article includes information about different classification algorithms and vectorization methods. 

We give the advantages and disadvantages of classification methods. Also in this paper we observe not only usual 

classification algorithm, but classification with using neural network, specifically with convolutional neural 

networks. In addition to description of these methods we discuss metrics which can be used to rate the quality of 

trained classification models. 

Key words: text classification, vectorization, neural networks, machine learning. 

Language: English 

Citation: Kozhevnikov, V. A., & Pankratova, E. S. (2020). Research of the text data vectorization and 

classification algorithms of machine learning. ISJ Theoretical & Applied Science, 05 (85), 574-585. 

Soi: http://s-o-i.org/1.1/TAS-05-85-106      Doi:    https://dx.doi.org/10.15863/TAS.2020.05.85.106  

Scopus ASCC: 2800. 

 

Introduction 

Solving problems using machine learning is a very 

popular task in the modern IT community. You can see 

a large number of competitions at Kaggle, courses at 

EdX, Coursera and Stepik. For machine learning, there 

are also a large number of different tools and platforms, 

for example, Scikit-learn, Tensor-flow, Keras and 

others. 

One of the classic and popular tasks is the 

classification of various data (texts or images). The 

basic algorithm for solving such problems: 

–Create a dataset and label it. 

– Split a dataset to train and test datasets 

– Fit vectorizer sand choose classifiers. 

– Fit classifiers with training dataset and calculate 

accuracy with test dataset. 

– Choose the most accurate classifier. 

– Use it. 

 

We talked about how to create and prepare a 

dataset in a previous article [1]. Using the prepared 

dataset, we can train a model that will predict which 

category the input message belongs to. And now let's 

talk in detail first about vectorization, and then about 

classification. 

 

Vectorization 

Machine learning algorithms operate in a space of 

numerical attributes, that is, they expect that a two-

dimensional array will be presented at the input, the 

rows of which are concrete instances, and the columns 

are attributes or features. Thus, in order to perform 

machine learning on the text, it is necessary to convert 

the source documents into vector representations, to 

which numerical machine learning will subsequently be 

applied. This process is called vectorization and it is the 

first step towards analyzing natural language data. 

Converting documents to their numerical form 

makes it possible to analyze them and create instances 

with which the machine learning algorithm we choose 

will work. Documents (or sentences) can have different 

sizes, but the vectors that we define for them will 

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:vadim.kozhevnikov@gmail.com
mailto:jane_koks@mail.ru
http://s-o-i.org/1.1/TAS-05-85-106
https://dx.doi.org/10.15863/TAS.2020.05.85.106


Impact Factor: 

ISRA (India)        = 4.971 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.126  

ESJI (KZ)          = 8.997 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  575 

 

 

always be the same length. Each property in a vector 

representation is a feature. In our case, these will be the 

words that are included in the sentence. Together, all 

these features will describe a multidimensional feature 

space to which machine learning methods can be 

applied. 

Thus, we must move from individual sentences 

and words to points in a multidimensional semantic 

space. These points can be located far or close to each 

other, distributed evenly or vice versa randomly. Based 

on this, we can conclude that sentences that are close in 

meaning will be located nearby, and different, on the 

contrary, far. 

 

Frequency vectorizer 

One way to vectorize the source text is to calculate 

the frequency of occurrence of each word in each 

sentence and associate this value with the entire set of 

words of the original data set. You can start by creating 

a dictionary of all words in all sentences of your dataset. 

A dictionary in this case is a list of words that occur in 

texts where each word has its own index. This allows us 

to create a vector for any sentence - just take the 

sentence that we want to vectorize and count the 

occurrence of each word. The length of the resulting 

vector will be equal to the size of our dictionary and 

contain the value of the number of occurrences of the 

word from the dictionary in each specific sentence. 

Consider a concrete example — there is a 

collection of a sentence (see Listing 1). 

 

 

 

 

 
 

Then we can use the method CountVectorizer 

from the scikit-learn [2] library to vectorize our 

sentences. The result of the CountVectorizer() 

vectorizer you can see below (see Listing 2). 

 

 

As the output we get a dictionary of all unique 

words that are available in all sentences that we passed 

as the input to our vectorizer. 

We can also take all our sentences and transform 

them using CountVectorizer() to get vectors for each 

sentence that will display the number of occurrences of 

each word from the dictionary in a specific sentence 

(see Listing 3). 

Listing 1. The sentences for demonstration 

Listing 2. Demo of how CountVectorizer() works 
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The output shows that, for example, in the fourth 

element of array (which means sentence) the word 

“лампочка” was encountered twice, so in the 

corresponding position for the word “лампочка” the 

value is equal to 2. 

This approach is called Bag-of-Words and it is a 

common way to create vectors from text. Each 

document, in our case, a sentence, is presented as a 

separate vector. 

The disadvantages of this approach are follows. 

With the increase in the size of the dictionary, vectors 

will grow and become sparser, and will have in their 

view a large number of zeros due to the fact that each 

document will contain only a small number of words 

from the dictionary. Such vectors require more memory 

and computational resources, which can have a 

significant impact on the performance of models. But 

this can be solved by the following techniques: 

– You can ignore the case of words, and then the 

word “хороший” from the phrases “Хороший день” 

and “Он дал мне хороший совет” will appear in our 

dictionary exactly once. 

– Delete stop words – unnecessary words. Stop 

words are words that do not carry any particular 

meaning, and their exclusion may not affect learning in 

any way, except cases when all words are important. 

– Format words to their normal form - the use of 

stemming and lemmatization algorithms. 

– Correct words that are written with an error. 

 

Also, in addition to applying text preprocessing 

methods to reduce the size of the dictionary, you can 

use HashingVectorizer() for large cases. It uses memory 

more economically and is great for processing large sets 

of text data, since it does not completely store the entire 

dictionary, and due to this there is an acceleration of 

saving and learning. 

Also, with this approach, the word order is lost, 

that is, after vectorization the sentence vectors, for 

example, “Она не поет” and “Не, она поет” will be 

identical, but their meaning is completely different. To 

solve this problem, you can use N-grams (sequences of 

N entities, for example, words, numbers, letters, etc.) at 

the tokenization stage. 

An example sentence and its bigrams is as follows 

(Listing 4): 

 

 

Direct coding 

In addition to counting the number of occurrences 

of a particular word in a sentence, there is a simpler 

vectorization approach - direct coding. Direct (or 

binary) coding is a logical vectorization method that 

writes true or 1 to the corresponding vector element if 

the given word from the dictionary is present in the 

sentence, or false (or 0) if there is no such word. In other 

words, each element of the vector with this approach 

indicates either the presence or absence of a word in the 

described sentence. Thus, we simplify the document to 

its constituent components. This method is very 

effective for short documents, such as, for example, 

tweets that contain a small number of repeating 

elements. The direct coding approach is also often used 

in neural networks, where activation functions require 

input values from the ranges [0, 1] or [-1, 1]. 

The result of this vectorizer will be the following 

(Listing 5). Thus, it can be noted that in the fourth 

sentence, the value in the third position of the vector is 

no longer 2, but 1, which means that the given word 

from the dictionary is present in this sentence. 

Listing 3. Vector presentation of example sentences 

Listing 4. Bigrams of source sentence 
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TF-IDF 

The approach of counting the number of words 

occurrences in a document has a problem: words that 

are more likely to occur have a higher rating. But these 

words can have very little useful information, as can 

have less frequent words. A more successful approach 

is based precisely on a comparison of the relative 

frequency or rarity of words in one particular document 

with their frequency in other documents. The main idea 

of this approach is that the main meaning is hidden in 

those words that are less common. 

The TF-IDF (Term Frequency – Inverse 

Document Frequency) [3] coding method normalizes 

the word frequency in the document, taking into 

account the contents in the entire case. Thus, it turns out 

that if a word is often found in a specific document, but 

is rarely found in the rest, then this word is of high 

importance for this document itself and such words will 

gain more weight compared to other corpus words. 

The TF-IDF is calculated as follows. To begin, 

consider TF - this is the ratio of the number of 

occurrences of a word in one document to the total 

number of words in a document (formula 1): 

                    (1) 

where nt is the number of occurrences of the word t and 

in the denominator is the total number of words in the 

document. 

And IDF is calculated as follows (formula 2): 

                   (2) 

where N is the quantity of documents in corpus 

collection; 

DFt is the quantity of documents from collection 

where t word is occurred. 

 

Thus, we have two components TF and IDF and 

we can calculate the value of TF-IDF (formula 3): 

 

             (3) 

 

Let's look at an example based on our four-

sentence case. As a result of using TfidfVectorizer() 

from scikit-learn, we get the following matrix of the 

form (see Listing 6) where each row is our document, 

the column is words, and the value at the intersection is 

the TF-IDF score. 

 

 

One of the advantages of the TF-IDF approach is 

that it solves the problem of stop words in a natural way, 

which most likely are almost always present in all 

documents of the corpus and for this reason gain a little 

weight compared to other words that will become more 

valuable in this method. 

 

Word2vec 

Listing 5. The result of binary mode of CountVectorizer() 

Listing 6. The TF-IDF presentation of source sentences 
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The methods of frequency and direct coding 

described above, as well as the TF-IDF approach, allow 

you to convert a collection of documents into vector 

space, for example, present an entire sentence as a 

single vector of objects. But it is also useful to code the 

similarity between documents in the context of this very 

vector space. 

The methods described above produce vectors 

only with positive elements, which does not allow you 

to compare documents that do not have common words 

due to the fact that two vectors having a cosine value of 

the angle between them equal to 1 will still be 

considered distant in meaning. 

If the similarity between documents plays an 

important role in the application of machine learning 

algorithms, then the data can be encoded using the 

distributed representation method. With this approach, 

a vector is not just a mapping of the positions of words 

into their numerical value, but a set of features that 

determine the similarity of words. The complexity of 

the feature space (and the length of the vector) is 

determined by the learning features of this 

representation and is not directly related to the 

document itself. 

The word2vec software was developed in 2013 by 

a team of researchers from Google, led by Tomaš 

Mikolov. Tools for creating vector-semantic models 

existed before [4, 5], but word2vec was the first popular 

implementation due to its ease of use, speed of work 

and, most importantly, open source code. 

Tomaš’s approach is based on one important 

hypothesis that he wrote in his work [6] - “words that 

occur in identical environments have similar 

meanings”. Proximity in this context can be understood 

as the fact that only matching words can stand nearby. 

That is, for example, it’s normal for us to hear the 

phrase “злой человек”, but the phrase “злой 

холодильник” is completely unusual. 

The model that Tomaš proposed is quite simple - 

the probability of a word will be predicted by its 

context. That is, we will train the vectorization model 

so that the probability assigned by the model to a word 

is close to the probability of meeting this word in this 

environment in real text. This approach is called the 

Continuous Bag of Words (CBOW) - it is called 

continuous, because the sets of words from text are fed 

sequentially to the input of, and BoW, because the order 

of words in the context is not important. The input 

element to the neural network is the set of context 

vectors w (t - k), ..., w (t - 1), w (t + 1), ..., w (t + k), and 

the output vector is w (t), where w (t) is the vector of 

the word predicted based on the context. 

Mikolov also proposed a different approach, 

which is the exact opposite of the CBOW approach, 

which he called skip-gram. The architecture of Skip-

gram differs from a continuous bag of words in that it 

predicts a set of words around, based on a given word. 

The input vector is w (t), and the output element is the 

set of vectors M = {w (t - k), … , w (t - 1), w (t + 1), ..., 

w (t + k)}. Each word corresponding to vectors from the 

set M characterizes a word corresponding to an input 

vector. The working scheme of these two approaches 

can be seen in Figure 1.  

 

 

 

Classification 

Classification of text data by specific topics or 

classes is the definition of text data belonging to any 

topic to which the corresponding text is devoted. The 

most common classification tasks are determining the 

emotional coloring of a text, otherwise, analyzing 

tonality and classifying data on predefined topics.  

Such type of classification is used to cut off those 

entries that relate to topics that are not of interest for 

analysis, for example, the classification of input 

messages as spam and not spam. 

There are several methods for classifying texts. 

The first is to analyze the data and determine the class 

to which the input text belongs, manually. This method, 

of course, is absolutely accurate from the point of view 

Figure 1. The workflow of the CBOW and Skip-gram algorithms 
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of classification, but its main drawback is the inability 

to process a large amount of data in a short time. 

The second approach is to write some rules based 

on regular expressions and use them to classify text. In 

this case, manual verification disappears, which 

increases the classification speed and the amount of 

data that can be analyzed in a shorter time. It may also 

take time to create rules for a deeper study by a 

specialist of the text and the identification of certain 

patterns for different classes. In addition, the creation of 

such rules requires efforts to keep them up to date. 

But in the work [7], the authors of Qing Zeng-

Treitler and Duy Duc An Bui describe the process of 

automating the creation and use of regular expressions 

to classify clinical texts. They write about the 

development of their own regular expression detection 

algorithm RED (Regular expression discovery) and the 

implementation of two text classifiers based on it: the 

RED + ALIGN classifier - a regular expression 

detection algorithm in conjunction with an alignment 

algorithm,  and RED + SVM are regular expressions 

combined with the support vector method. Two of their 

classifiers achieved an accuracy of 80.9 - 83.0% for two 

data sets, which is 1.3-3% percent higher than the 

accuracy of the SVM method. More importantly, RED 

+ ALIGN correctly classified many instances that were 

erroneously classified by SVM (8.1-10.3% of the total 

number of instances and 43.8-53.0% of erroneous SVM 

classifications). Therefore, we can say that the approach 

to the classification of text data based on regular 

expressions also has a place to be and shows good 

results. 

Finally, the third approach, to which further 

research will be devoted, is an approach based on 

machine learning. With this approach, the classes to 

which the data belongs are automatically determined, 

but manual marking of the training data is required. 

Classification of the text using machine learning is 

currently the most used and promising approach, since 

it does not require special time expenditures on the part 

of the person and allows you to process a large amount 

of data in a short time. 

Before starting to describe the approaches to the 

classification of text data, we introduce some basic 

concepts. For starters, machine learning systems or 

neural networks accept input and output parameters. 

Input parameters are usually called features. Symptoms 

are some of the characteristics that we can explore. 

When we pass these features to the input of 

machine learning systems, they try to find a match and 

notice some patterns between the input parameters. At 

the output, we get the result of work, which is usually 

called labels (label), since these output parameters have 

some label by which you can get ahead of which 

category the output belongs to. 

For example, if you look at fig. 2, one can imagine 

that ferns, mosses and algae are the input parameters to 

some machine learning system. In turn, the output 

parameter or label will be the value "spore-bearing 

plants". Thus, the abstract system defined the class to 

which these plants belong. 

 

 

 

  

In the context of machine learning, classification 

is a type of learning with a teacher. This means that the 

data that we submit to the input is already pre-marked 

with certain labels or classes, and this means that the 

training system knows which parts of the input data are 

important for each class. In addition, the system itself 

can check the result of its work, as it knows in advance 

to which class each input object should belong. 

What is the process of training a classification 

model? We provide the input data and their labels, and 

the machine learning system we choose must learn how 

to output specific patterns for this data. In the process 

of testing a trained model, only untagged data is input, 

Figure 2. Example of classification 
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and the model itself must predict which class our object 

belongs to. 

In this paper, we consider several basic 

classification methods from a wide variety of 

algorithms, and also consider the use of neural networks 

to solve the classification problem.  

The main classifiers that will be considered in this 

paper: 

– support vector machine; 

– naive bayes; 

– logistic regrssion; 

– decision trees; 

– k-nearest neighbors. 

 

Support Vector Machine 

Support Vector Machine (SVM) is a 

discriminating classifier that is widely used for 

classification tasks. Support vector methods were 

introduced in the early 1960s, and then improved in the 

1990s. However, only now they are becoming 

extremely popular due to their ability to achieve 

brilliant results. 

 The algorithm displays each data element as a 

point in N-dimensional space, taking the value of each 

feature as the value of a specific coordinate. Then, in 

the case of linearly shared data in two dimensions, as 

shown in Fig. 3, a typical machine learning algorithm 

tries to find a boundary that separates data so that the 

classification error is minimal. There may be several 

boundaries that correctly separate data points. Two 

dashed lines, as well as one solid line, correctly classify 

data. 

SVM differs from other classification algorithms 

in that it selects a solution boundary that maximizes the 

distance from the nearest data points of all classes. 

SVM does not just find the boundary of a solution; it 

finds the most optimal boundary for the solution. 

 

 

The most optimal solution boundary is one that 

has a maximum separation from the nearest points of all 

classes. The nearest points from the boundary of the 

solution that maximize the distance between the 

boundary of the solution and the points are called 

support vectors, as can be seen in Fig. 4. The boundary 

of the solution in the case of the support vector method 

is called the classifier of the maximum margin or the 

hyperplane of the maximum margin. 

 

Figure 3. Linearly shared data in two dimensions 
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The advantages of this approach are: 

– works well with a small dataset; 

– due to maximizing the distance, finds the 

optimal solution and allows to achieve minimum 

classification error; 

– works well with the feature space of large size. 

 

And the disadvantages are: 

– long training time for large datasets; 

– the algorithm is unstable to noise, it means that 

outliers in the data for training strongly affect the 

construction of the separating hyperplane. 

 

Naive Bayes 

When studying probability and statistics, one of 

the first and most important theorems that students 

study is Bayes' theorem (see formula 4). This theorem 

is the basis of deductive thinking, which focuses on 

determining the probability of an event on the basis of 

prior knowledge of the conditions that may be 

associated with this event. 

 

,     (4) 

where Р(А|B) – the probability that event A is true if 

event B is true, 

P(B|A) – the probability that event B is true if 

event A is true, 

P(A) – the probability that event A is true, 

P(B) - the probability that event B is true. 

 

The naive Bayes classifier brings the power of 

this theorem to machine learning, creating a very 

simple but powerful classifier. 

Let's look at a simple example. Suppose we want 

to know if an input message containing the word 

“купить” is an application. Then, according to Bayes' 

theorem, the components of the formula will look as 

follows: 

– P(class=ЗАЯВКА|contains=“купить”) – the 

probability that the input message which is ЗАЯВКА 

contains the word “купить”. 

– (P(contains=“купить”|class=ЗАЯВКА) – the 

probability that the input message which contains the 

word “купить” is classified as ЗАЯВКА. 

– P(class=ЗАЯВКА) – the probability that the 

input message is an application (without any 

knowledge of the words that enter it). This is the 

percentage of all messages in our training dataset that 

are marked as ЗАЯВКА. We multiply by this value 

because we are interested in knowing how important 

the information is regarding the letters of ЗАЯВКА 

class. 

– P(contains=“купить”) - the probability that the 

input message contains the word "buy." This is the 

proportion of those messages in our training sample in 

which the word “buy” is present. We divide by this 

meaning, because the more exclusive the word “buy” 

is, the more important is the context in which it 

appears. Thus, if a word is very rare, that is, it is small, 

this can be an excellent indicator that, when it appears, 

it is an important function for analysis. 

 

Thus, the Bayes’ theorem allows us to make 

informed conclusions about events occurring in the 

real world, based on preliminary knowledge about the 

observations that may imply this. 

The main advantages of the naive Bayesian 

classifier are the simplicity of its implementation and, 

relative to other classifiers, low computational costs for 

training and data classification. That is, in those rare 

cases when the signs are really independent (or almost 

independent), the naive Bayesian classifier is quite 

optimal. 

The main disadvantage of algorithm is the 

relatively low quality of classification in most real 

tasks. 

 

Logistic regression 

Figure 4. The hyperplane of the maximum margin 
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The next classification algorithm is logistic 

regression. Logistic regression is a controlled 

classification algorithm. Unlike conventional 

regression, logistic regression does not predict the 

value of a numerical variable based on a sample of the 

initial values. Instead, the value of a function is the 

probability that the original value belongs to a 

particular class. 

The main idea of logistic regression is that the 

space of initial values can be divided by a linear 

boundary into two regions corresponding to the 

classes. In the case of two dimensions, the linear 

boundary is simply a straight line without bends; in 

case of three - a plane, etc. (see fig. 5). This boundary 

is set depending on the available input data and the 

training algorithm. For everything to work, the source 

data points must be divided by a linear border into the 

two above-mentioned areas. If the source data points 

satisfy this requirement, then they can be called 

linearly separable. 

 

 

 

K-nearest neighbors 

The k-nearest neighbor algorithm is a type of 

supervised machine learning algorithm. KNN is 

extremely simple to implement in its most basic form 

but performs quite complex classification tasks. 

This is a “lazy" learning algorithm because it does 

not have a special learning phase. Rather, it uses all the 

data for training in classifying a new instance. KNN is 

a nonparametric learning algorithm that means that it 

does not make any assumptions about the underlying 

data. This is an extremely useful function, since most 

of the data in the real world does not correspond to 

theoretical assumptions, for example, linear 

separability, uniform distribution, etc. 

The KNN algorithm is one of the simplest of all 

machine learning algorithms with a teacher. It simply 

calculates the distance of the new data point to all other 

points from the training dataset. The distance can be of 

any type, for example, Euclidean or Manhattan, etc. 

Then, the K-nearest data point is selected, where K can 

be any integer. Finally, it assigns the data point to the 

class to which most of the K data points belong. 

The advantages of this approach: 

– Easy to implement it. 

– As mentioned earlier, this is a lazy learning 

algorithm and, therefore, does not require training 

before making real-time forecasts. This makes the 

KNN algorithm much faster than other algorithms that 

require training, such as SVM, linear regression, etc. 

– Since the algorithm does not require training 

before making predictions, new data can be added 

without problems. 

– To implement KNN, only two parameters are 

required, that is, the value of K and the distance 

function (for example, Euclidean or Manhattan, etc.) 

 

The disadvantages are: 

– The KNN algorithm does not work well with 

large data, because with a large number of 

measurements, it becomes difficult for the algorithm to 

calculate the distance in each measurement. 

– The KNN algorithm has a high prediction cost 

for large data sets. This is because in large data sets, 

the cost of calculating the distance between a new point 

and each existing point becomes higher. 

– Finally, the KNN algorithm does not work well 

with categorical signs, since it is difficult to find the 

distance between dimensions with categorical features, 

therefore it is desirable that the signs have a numerical 

value, such as vectors into which we convert our 

sentences. 

 

Decisions tree 

The decision tree is one of the most frequently 

and widely used supervised machine learning 

Figure 5. A plane in the case of three dimensions 
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algorithms, which can perform both regression and 

classification tasks. The decision tree algorithm is 

simple, but also very powerful. 

For each attribute in the data set, the decision tree 

algorithm forms a node where the most important 

attribute is located in the root node. For evaluation, we 

start from the root node and go down the tree, 

following the corresponding node that matches our 

condition or “solution”. This process continues until a 

final node is reached that contains the forecast or result 

of the decision tree. 

At first, this may seem a little complicated, but it 

should be obvious that we have been using decision 

trees to make decisions all our lives, without even 

knowing about it. 

There are several advantages to using the decision 

tree to analyze forecasts: 

– Decision trees can be used to predict both 

continuous and discrete values, i.e. they work well for 

both regression and classification problems. 

– They require relatively less effort to learn the 

algorithm. 

– They can be used to classify nonlinearly 

separable data. 

– They are very fast and efficient compared to 

KNN and other classification algorithms. 

 

Neural networks 

For a long time, the core technologies of NLP 

were dominated by machine learning approaches that 

used linear models, such as support vector methods or 

logistic regression, which are trained using very 

multidimensional, but very rare feature vectors. In 

recent years, deep learning models have achieved 

remarkable results in computer vision and speech 

recognition. 

As part of natural language processing, most of 

the work with deep learning methods included studying 

the representations of word vectors using neural 

language models and performing composition on the 

vectors of the studied words for classification. 

The word vectors in which words are projected 

from 1-to-V sparse encoding (here V is the size of the 

dictionary) into smaller vector space through a hidden 

layer are essentially extracted characters that encode 

the semantic properties of words in their dimensions. 

In such dense representations, semantically close 

words are also close - at Euclidean or cosine distance - 

in the vector space of the lower dimension. 

And some time ago, in the field of machine 

learning, success was seen in the transition from linear 

models to models of nonlinear neural networks. Yoav 

Goldberg, in his textbook on deep learning [16] about 

natural language processing, notes that neural networks 

generally offer better performance than classic linear 

classifiers, especially when used with pre-trained 

words embeddings. 

He also notes that convolutional neural networks 

are effective in classifying documents, namely because 

they are able to distinguish characteristic features (for 

example, tokens or token sequences) in a way that does 

not depend on their position in the input sequences. 

Convolutional neural networks (CNNs) use 

layers with convolutional filters that apply to local 

features. Originally CNN models, invented for 

computer vision, subsequently showed their 

effectiveness for NLP and achieved excellent results in 

the tasks of semantic parsing, search by search query, 

modeling sentences and other traditional NLP tasks. 

The significant reasons why CNN is considered a 

level higher than other classical models are as follows. 

Firstly, the key interest for applying CNN is the idea of 

using the concept of weight distribution, due to which 

the number of parameters requiring training is 

significantly reduced, which leads to improved 

generalization - in essence this means how good our 

model is in studying data and applying the information 

received in other places [8]. Due to its smaller 

parameters, CNN can be trained smoothly and does not 

suffer from overfitting. 

Secondly, the classification stage is combined 

with the stage of feature extraction [9], both use the 

learning process. Thirdly, it is much more difficult to 

implement large networks using common models of 

artificial neural networks (ANNs) than to implement 

them in CNN [10]. CNNs are widely used in various 

fields due to their remarkable characteristics [11], such 

as image classification [12], object detection [13], face 

detection [14], speech recognition [15], and much 

more. 

 

Classification metrics 

In machine learning tasks, in order to evaluate the 

quality of the trained model and to compare various 

algorithms, metrics are used. Before proceeding to the 

description of the metrics used, we introduce the 

concept of a confusion matrix. Suppose we have two 

classes and some algorithm that predicts which class 

the input object belongs to, then the classification 

confusion matrix will look like this (table 1): 

  

Table 1 

 

 class = 1 class = 0 

predicted class = 1 True Positive (TP) False Positive (FP) 

predicted class = 0 False Negative (FN) True Negative (TN) 
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Table cells are filled with the following values 

– True Positive – the number of cases that are 

recognized correctly and belonging to class 1; 

– True Negative – the number of cases that are 

recognized correctly and belonging to class 0; 

– False Positive – the number of cases that are 

recognized incorrectly and must belong to class 0 but 

were recognized as objects of class 1; 

– False Negative – the number of cases that are 

recognized incorrectly and must belong to class 1 but 

were recognized as objects of class 0. 

In order to analyze and compare the capabilities 

of various classifiers, the following metrics were 

selected: 

– accuracy; 

– precision; 

– recall; 

– F-score;  

 

Let's consider them in more detail. 

Accuracy is the proportion of correct answers. It 

is considered as follows (see formula 5): 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
             (5) 

 

This metric is intuitive, but in some cases, it can 

be useless, for example, in the case of classification on 

not-balanced training datasets. For example, let there 

be 100 objects in the sample that belong to the class 

“заявка”. Our classifier defined 90 of them correctly, 

and 10 defined them as a “вопрос” (True Negative = 

90, False Positive = 10). And there are 10 objects of 

the “вопрос” class, 5 of which the classifier also 

determined correctly (True Positive = 5, False 

Negative = 5). Thus, the proportion of correct answers 

will be calculated as follows: 

 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
5 + 90

5 + 90 + 10 + 5
= 86,4             

 

But at the same time, if all messages from 

employees are recognized by a “вопрос”: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
0 + 100

0 + 100 + 0 + 10
= 90,9            

 

Thus, the algorithm assigns all messages to the 

“вопрос” class and at the same time has a large share 

of correct answers, which is actually extremely 

illogical and does not bear any benefit. Therefore, you 

can’t just rely on the proportion of correct answers, 

you must use it in conjunction with the following 

metrics (see formulas 6 and 7). 

         𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                  (6) 

 

            𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                    (7) 

 

Precision can be interpreted as the proportion of 

objects called positive by the classifier and at the same 

time really positive, and recall shows what proportion 

of objects of a positive class from all objects of a 

positive class are recognized correctly (TP) and wrong 

(FN) the algorithm has found. 

It is understood that the higher the precision and 

recall, the better. But in real conditions, the maximum 

values of precision and recall are not achievable at the 

same time, so you have to look for some balance. 

Therefore, we would like to have a metric that 

combines information about the two these metrics. 

And in this case, it would be much easier to determine 

which trained model to use for your tasks. Such a 

metric is an F-measure, which is a harmonic mean 

between completeness and accuracy (see formula 8): 

𝑓 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∙  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
    (8) 

 

Conclusion 

In this article we observed different 

vectorization algorithm such as vectorization method 

based on occurrence of words in corpus, direct coding 

(or binary), TF-IDF method and disturbed vector 

representation method using Word2vec. In addition, 

we reviewed some of these methods with its 

implementations in scikit-learn frameworks. 

Also, in this article we talked about classification 

algorithm: support vector machine, naive bayes, 

logistic regression, decision trees; k-nearest neighbors 

and neural networks. We observed convolutional 

neural network as one of the best tools for text 

classification. 

The information in this research will be used in 

our next paper which will be devoted to experiments 

with different classification algorithms and 

vectorization methods to get the model which will 

show the best classification result according to metrics 

and which we are going to use in our tasks. 
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