
Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 313

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2020 Issue: 04 Volume: 84

Published: 21.04.2020 http://T-Science.org

Vadim Andreevich Kozhevnikov

Peter the Great St. Petersburg Polytechnic University

Senior Lecturer

vadim.kozhevnikov@gmail.com

Evgeniya Sergeevna Pankratova

Peter the Great St. Petersburg Polytechnic University

student

jane_koks@mail.ru

RESEARCH OF TEXT PRE-PROCESSING METHODS FOR PREPARING

DATA IN RUSSIAN FOR MACHINE LEARNING

Abstract: The article includes information about pre-processing methods for preparing text data in Russian

language for machine learning. The article covers such techniques as tokenization, normalization, named entity

recognition, stemming, lemmatization and removing of stop words. Also, this article shows some approaches using

morphological analyzers and libraries for NLP tasks.

Key words: pymorphy2, gensim, mystem, spacy, stemming, lemmatization, ner, deeppavlov

Language: English

Citation: Kozhevnikov, V. A., & Pankratova, E. S. (2020). Research of text pre-processing methods for

preparing data in Russian for machine learning. ISJ Theoretical & Applied Science, 04 (84), 313-320.

Soi: http://s-o-i.org/1.1/TAS-04-84-55 Doi: https://dx.doi.org/10.15863/TAS.2020.04.84.55

Scopus ASCC: 1700.

Introduction

There is still a huge problem that we can see in the

practice of creating and transforming data collections

that are large enough, which forces us to pay attention

to efficiency in developing data applications.

Pre-processing is the most important step in the

data analysis, and if it is not performed, then further

analysis in most cases is impossible due to the fact that

analytical algorithms simply cannot work, or the results

of their work will be incorrect or ineffective. In other

words, the GIGO principle is implemented - garbage in,

garbage out.

This paper is devoted to an overview of the

methods that will be used to pre-process text data in

Russian language in order to prepare them for using of

machine learning algorithms. And we will also describe

the methods that are used in our application “chat bot

assistant for organizing employee support”.

About a corpus

At present moment natural language is one of the

forms of data available today and which are little used

in machine learning algorithm in its initial form. Its

analysis allows us to increase the usefulness of data and

make it more accessible for our lives.

The main task of any machine learning application

is to determine what is considered useful from a large

flow of information and how to distinguish this useful

information from information noise.

The analysis of text data is the splitting of large

text into separate fragments - the selection of sentences,

unique words, common phrases - with the subsequent

application of other processing methods to these

fragments. Data analysis is represented by a large

number of different methods and practices and can be

applied at various levels, and usually all of them are tied

to one key element - a corpus.

A corpus is a collection of documents or texts,

possibly related to one subject, in a natural language.

Size of corpus can be large or small. The corpus can be

annotated, that is, the data in them can be pre-marked

with certain labels, such cases are used for training with

a teacher, or unannotated - such documents are used in

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:vadim.kozhevnikov@gmail.com
mailto:jane_koks@mail.ru
http://s-o-i.org/1.1/TAS-04-84-55
https://dx.doi.org/10.15863/TAS.2020.04.84.55

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 314

clustering algorithms and various modeling tasks, for

example, to predict dollar exchange rates.

As mentioned above, the corpus can consist of

documents and it can be divided into categories of

documents or into individual documents. Documents

can be divided into paragraphs, each of which usually

expresses one idea - semantic units of speech.

Paragraphs are divided into sentences - syntactic units.

A completed sentence is one specific expression.

Sentences, in turn, consist of words and punctuation

marks - lexical units. These units determine the general

meaning of the proposal and can be used not only

individually, but also in combination, so they can be of

greater importance for analysis.

The corpus with which we will work is consisted

of data that were taken from ticket systems operating in

the company and represent a collection of text

messages. First of all, each message is needed to be

marked. For our task - the classification of the input

message as belonging to a particular class, two classes

are selected “question” and “application”. A “question”

class message is any message that you can try to answer

without human’s help.

 An «application» class message is a message for

which additional forces are required. For example, if an

employee wrote “I want to buy a teapot,” then the bot

itself cannot in any way influence the decision of this

application, it can only create a ticket in the ticket

system and in the future find out the status of this ticket,

inform the employee about various changes, and when

ticket is solved send employee an answer.

Processing and transformation of a corpus

Any corpus in its initial form is absolutely

unsuitable for analysis - it is necessary to pre-process it

first.

To begin with, briefly note the components of the

corpus. The corpus consists of documents, each

document consists of paragraphs, paragraphs of

sentences, sentences of words. We will consider

paragraphs as structural units of the document. And

sentences as semantic units containing a complete

thought formulated and expressed by the author of this

proposal. At this stage, we need to implement

segmentation, i.e., the division of the text into

sentences. Then these proposals will be further

subjected to various processing methods, which we will

discuss later. The paragraphs are segmented into

sentences based on punctuation marks: a period (.), a

question mark (?), an exclamation point (!). It is also

necessary to consider compound punctuation marks, for

example “!?”. After segmentation, you can directly start

to process sentences.

Tokenization

The first thing to do is to remove the punctuation

marks and service characters. This can be done

“manually”, that is, write code yourself that checks the

characters and removes those that we don’t need, or use

the tools from NLTK (Natural Language Toolkit). Also,

this process can be combined with the tokenization of

the sentence to words - the allocation of individual

tokens of each sentence. This is what we are doing for

working directly with words. Tokenization of sentences

must be carried out with the peculiarities of the

language with which you work. For example, if we use

the NLTK tools, we can get unexpected results for the

Russian language. Suppose we have the word «Санкт-

Петербург". With tokenization for all punctuation

marks that are possible, we get two separate words

“Санкт” and “Петербург”, which in some cases after

processing simply will not make any sense. So, at this

stage, you must be very careful.

Named entity recognition

When a large number of various tickets created in

ticket systems were viewed, it was noticed that very

often there are human names and surnames, names of

organizations, locations, etc., for example, “Organize a

workplace for Ivan Ivanov.” For training, these data do

not carry any useful information and therefore it was

necessary to get rid of them. To do this, it was decided

to use one of the most popular tasks in NLP - the

recognition of named entities (NER - Named-entity

recognition). In most cases, the NER task can be

formulated as follows: for a given sequence of tokens

(words and possibly punctuation marks), it is necessary

to provide a tag from a predefined set of tags for each

token in the sequence.

For the task of recognizing named entities, there

are several general types of objects used as tags:

• people;

• locations;

• organization;

• expressions related to time;

• quantitative data;

• monetary values.

In addition, many applications use the BIO

tagging scheme to distinguish adjacent objects with the

same tag. Here, “B” indicates the beginning of the

object, “I” means “inside” and is used for all words that

make up the object except the first, and “O” means the

absence of the object.

In order to perform entity recognition, it was

decided to take advantage of the open-source

conversational AI of the deeppavlov framework [1]. In

figure 1 you can see how entity recognition occurs.

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 315

Figure 1. Demo of named entity recognition using deeppavlov

At present moment they have two main types of

models available: standard based on RNN and BERT.

RNN (recurrent neural network) is a class of neural

networks in which the output from the previous step is

supplied as input for the current step. In traditional

neural networks, all inputs and outputs are independent

of each other, but in cases where, for example, it is

necessary to predict the next word of a sentence,

previous words are required and, therefore, it is

necessary to remember them. Thus, a recurrent neural

network appeared, which solved this problem with the

help of a hidden layer. The main and most important

feature of RNN is the latent state, which stores some

sequence information.

BERT (Bidirectional Encoder Representations

from Transformers) is a natural language processing

method based on the use of neural networks of a new

architecture for working with sequences, better known

as “transformers”. This technology helps Google better

define the context of words in search queries [2].

Deeppavlov has various BERT and RNN models,

trained in various languages and able to recognize up to

19 entities. Models for the Russian language are trained

on the Collection 3 dataset [8] and are able to recognize

three entities, such as ORG - organizations, agencies,

institutes, PER - people, including fictional

personalities and LOC - locations, mountain ranges,

rivers, etc. Models for the English language and

multilingual models (104 languages are available in

them) can recognize more entities: events, products,

numerical values, time, language names, percentages,

numerical values, cities, countries and states, etc.

In figure 2 you can see pre-trained models

available at deeppavlov.

Figure 2. Pre-trained NER deeppavlov models

Stop words

 One of the main forms of preprocessing is

filtering out unnecessary data. In natural language

processing, useless words (data) are called stop words.

A stop word is a commonly used word (such as

“и”, “на”, “или”), which the search engine should

ignore both when indexing records to search, and when

retrieving them as the result of a search query, for the

exception of strict search for a specific phrase. In order

to analyze text data and build NLP models, these words

do not add special importance to the document.

When to delete such words and when not? In

situations where it is necessary to classify the text, for

example, filtering spam or generating titles (scripts) to

the image or tags, it is possible to use techniques to

remove stop words. On the contrary, in such tasks as

machine translation, language modeling, a short

summary of the text, it is recommended to leave stop

words, because they have great importance.

In our work of development chat bot for

organizing employee support, we are more interested in

the classification of the input message — the definition

of which class it belongs to — an application or a

question, and therefore we can use the method of

removing stop words because we would not like these

words to occupy a place in our database or occupy extra

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 316

time for processing and interfered with the

classification.

There are several different methods.

The first is the removal of stop words using NLTK

(Natural Language Toolkit, a natural language toolkit)

[3] - a large package of libraries and programs for

processing natural language written in the programming

language Python. As for stop words, NLTK has lists for

16 different languages. You can see the list of words for

the Russian language as follows (listing 1):

Consider a usage example, you can see the

messages after tokenization:

After applying the algorithm to delete words from

the stop words list, we will receive the following

message. It may be noted that some words still

remained, for example, “будьте,” which is the form of

the word “быть” while the word “была” was deleted

(listing 3). The list of stop words in the NLTK package

is not complete and can be expanded depending on your

needs.

The second method is to remove stop words using

spaCy. SpaCy is one of the most versatile and widely

used libraries in NLP [4]. In the following way, you can

get a list of stop words for one of 48 languages (listing

4). We would also like to note that spaCy has almost

two times more words in the list of stop words for the

Russian language than in NLTK.

And the third, but not the last - the use of Gensim.

Gensim is a pretty handy library for working on NLP

tasks [5]. During preprocessing, gensim also provides

methods for removing stop words. Using the method

from this library is noteworthy in that it can be used

immediately throughout the text.

Listing 1. Collection of stop words using NLTK

Listing 2. Input text after tokenization

Listing 3. Input text after removing stop words

Listing 4. Collection of stop words using spaCy

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 317

And also there is no need to apply tokenization before

that (listing 5).

In addition to such well-known packages and

libraries, there are a large number of open-source

projects in which stop-word lists can have different

types, and also, as was noted earlier, you can expand

any of these lists to your own needs.

Words normalization

In any natural language, words can be written in

more than one form, depending on the situation. For

example:

- “Я был в Америке трижды”.

- “Я буду в Америке 25 мая”.

- “Мы бываем в Америке каждое первое число

апреля”.

In all these sentences, we see that the word “быть”

is used in several different forms. For us people, it’s

really easy to understand that “быть” is some activity.

And it does not matter in what form we see this word -

“был”, “бываем”, etc. We know for sure that they mean

the same thing.

But this is not the same as with machines. They

believe that all these words are different. Therefore, we

need to normalize them to the root word, in our example

it is "быть" Therefore, normalization is the process of

converting a word into a single canonical form. This can

be done in two ways, which are called stemming and

lemmatization.

Stemming is a method of normalizing a word,

which truncates its end or beginning, according to the

list of common prefixes or suffixes that can be found in

this word. Lemmatization, on the other hand, is an

organized and step-by-step procedure for obtaining the

root form of a word. It uses vocabulary (vocabulary

meaning of words) and morphological analysis (word

structure and grammatical relationships).

Why do stemming or lemmatization? Consider the

following sentences:

1) “Я буду в этом ресторане в 12 часов”.

2) “Я побываю в этом ресторане в 12 часов”.

We easily understand that both of these sentences

mean the same action, that someone will be at the

restaurant at 12 noon in the future. But the machine will

handle these sentences in different ways. Thus, in order

to make the text understandable for the machine, we

need to perform stemming or lemmatization. Another

advantage of text normalization is that it reduces the

number of unique words in text data. This helps reduce

time for execution of machine learning algorithm.

To sum up, the stemming algorithm works by

cutting out a suffix or prefix from a word.

Lemmatization is a more powerful operation, since it

takes into account the morphological analysis of the

word. Lemmatization returns a lemma, which is the root

word of all its various variations.

We can say that stemming is a quick and “dirty”

method of trimming words to their root form, while, on

the other hand, lemmatization is an intellectual

operation that uses dictionaries created by deep

linguistic knowledge. Therefore, lemmatization helps

in the formation of the best features.

What are the options for applying the algorithms

of stemming and lemmatization.

First, let’s consider the features of NLTK. In

stock, NLTK has a number of great methods for

performing this step - normalization. To stamp English

words, you can choose between Porter and Lancaster.

The Porter Algorithm is the oldest stemming algorithm

supported by NLTK and was published in 1979. The

Lancaster algorithm is newer and was published in 1990

and may be slightly more aggressive than the Porter

Stemmer. The WordNet Lemmatizer uses the WordNet

database to search for lemmas.

For non-English words, you can use the Snowball

stemmer. Actually, Snowball is a language for creating

stemmers and was added to NLTK version 2.0b9 as a

separate SnowballStemmer class. This stemmer

supports the following languages: Danish, English,

Finnish, German, Spanish, Swedish, most importantly

for us Russian and some other languages.

Since NLTK has few features for the Russian

language, we’ll only consider stemming with

SnowballStemmer. Consider the source text and the text

obtained after stemming. As we see, after performing

word processing using stemming, most of the words

were trimmed (listing 6).

Listing 5. Removing stop words using gensim

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 318

When two options are available, lemmatization

will always be a better option than stemming. Stamming

algorithms are an optimized way to identify related

words using a relatively short algorithm and without the

need for vocabulary data for each language. The

disadvantage is that it is not always accurate: sometimes

it connects by kinship relations words that do not come

from the same word, but on the other hand, does not

identify the related forms of a particular word.

In turn, lemmatization will always give a better

result, because lemmatizers rely on the correct language

data (dictionaries) to identify the word with its lemma.

In addition, the result will always be another element of

the dictionary (infinitives, singular forms, etc.), and not

a “basis”, which can sometimes be difficult to

determine (especially when working with typologically

different languages).

For our tasks, we also decided to choose

lemmatization, because we believe that this will help to

give a better result in the classification. And besides, we

need to highlight keywords that will help us search for

answers for questions in the future. And this would not

be possible if we normalized using stemming

algorithms, because the knowledge base will be filled in

by a person (in the future, an algorithm) who will also

select keywords for articles, and it will be difficult for

them to select them with stemming.

Consider lemmatization using the pymorphy2

morphological analyzer (listing 7) [6].

The normal form of the word can be obtained

through the attributes Parse.normal_form and

Parse.normalized. To get the Parse object, you must

first parse the word and select the correct parsing option

from the ones proposed. pymorphy2 now uses the

algorithm for finding the normal form, which works

most quickly (the first form in the token is taken) -

therefore, for example, all participles are now

normalized to infinitives. This can be considered an

implementation detail. At the same time, pymorphy2

returns all valid parsing options, but in practice you

usually only need one option, and therefore if you want

to normalize words differently, you can use the

Parse.inflect() method, into which you can pass

parameters for selection, such as part of speech, case,

number, genus.

But in some cases, this analyzer may not work

correctly. If we consider the text taken as an example,

then there were two words “воду” and “вода”. In the

first case, pymorphy2 recognizes everything correctly

and produces a normal “вода” form.

But in the second case, the word "воду" was

recognized with the following set of tags: noun,

masculine, genitive. And, accordingly, the normal form

of such a word is “вод”. Although we understand that

the word “вода” is already in itself a normal form.

As a result, which we obtained when executing the

parse method, we can see that there are two options for

Listing 6. Stemming using SnowballStemmer from NLTK

Listing 7. Lemmatization using PyMorphy2

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 319

word “вода”, and the second variant in the parsed result

(listing 8) is more suitable for us. But to understand this

will be quite difficult.

Let’s consider another popular morphological

analyzer along with PyMorphy2 MyStem - a

morphological analyzer of the Russian language with

support for the removal of morphological ambiguity,

developed by Ilya Segalovich at Yandex [7]. The

program works on the basis of a dictionary and is able

to form morphological hypotheses about unfamiliar

words.

The first version was developed in the 90s [11],

but it was not very popular and could not be found in

the public domain. Now there is already a version of

MyStem 3.1, which fully provides all the functions of

morphological analysis. The MyStem morphoanalyzer

is based on the NKRL (National Corpus of the Russian

Language) dictionary [9], which contains more than

200 thousand lemmas. MyStem source codes are not

accessible to ordinary users, so the characteristics of the

data structure used are not known.

Like PyMorphy2, MyStem can parse non-

dictionary forms and also provides the ability to resolve

morphological homonymy. To solve this problem,

depending on the input data, MySte allows homonymy

in one of the following ways: without considering the

context and vice versa.

Removing homonymy without regard to the

context is possible due to the training of the naive

Bayesian classifier on the marked-out case with the

removed homonymy [10]. The probability of an

unknown word stem having a stem basis and the ending

flex to belong to the para (paradigm) is calculated by

the formula 1 [10]:

where para – paradigm,

 stem – base of word,

 flex – end of word,

 word – our word.

It is assumed that stem and flex are independent

and random variables.

In turn, removing context-specific homonymy is

pluggable and uses MatrixNet technology. The main

idea is to rank parses based on the words (contexts)

closest to the parsed.

Consider the same example with the source code

used above. To connect to your MyStem project, you

can use the wrapper written in the Python programming

language - pymystem3 [12]. This tool is publicly

available and licensed under the MIT license.

, (1)

Listing 8. The result of parsing word "вода" using PyMorpy2

Listing 9. Lemmatization using MyStem

Impact Factor:

ISRA (India) = 4.971

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.126

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 320

As can be seen MyStem did a better job of

finding a lemma for the word “вода when pymorphy2

considered the word “вода” to be a masculine word in

the genitive and made a conversion to the word “вод”

which turned out to be completely wrong.

Conlusion

We examined what basic pre-processing

methods are applied to data for their further use with

machine learning methods: tokenization, removal of

stop words, reduction to the basic form

(normalization). We showed different approaches

with using NLKT, pymporphy2, spaCy, gensim and

MyStem. We also considered an additional method -

recognition of named entities with using capabilities

of the deeppavlov framework.

References:

1. (n.d.) An open source conversational AI

framework: [online]. [Accessed at 20 April

2020]. Retrieved from https://deeppavlov.ai

2. (n.d.) Vse, chto nujno znat’ ob algoritme BERT

v poiske Google: [online]. [Accessed at 20 April

2020]. Retrieved from

https://searchengines.ru/bert-faq.html

3. (n.d.) NLTK: [online]. [Accessed at 20 April

2020]. Retrieved from https://www.nltk.org

4. (n.d.) SpaCy: [online]. [Accessed at 20 April

2020]. Retrieved from https://spacy.io

5. (n.d.) Gensim: [online]. [Accessed at 20 April

2020]. Retrieved from

https://radimrehurek.com/gensim

6. (n.d.) PyMorpy2: [online]. [Accessed at 20 April

2020]. Retrieved from

https://pymorphy2.readthedocs.io

7. (n.d.) MyStem: [online]. [Accessed at 20 April

2020]. Retrieved from

https://yandex.ru/dev/mystem

8. Mozharova, V., & Loukachevitch, N. (2016).

Two-stage approach in Russian named entity

recognition. International FRUCT Conference

on Intelligence, Social Media and Web, ISMW

FRUCT. Saint-Petersburg; Russian Federation,

DOI 10.1109/FRUCT.2016.7584769

9. (n.d.) Nacionalnii korpus russkogo yazika:

[online]. [Accessed at 20 April]. Retrieved from

http://ruscorpora.org

10. Bolshakova, E.I., Voroncov, K.V., Efremova,

N.E., Klishinskii, E.S., Lukashevich, N.V., &

Sapin, A.S. (2017). Avtomaticheskaya

obrabotka tekstov na estestvennom yazike i

analyz dannih. (p.269). Moscow: HSE.

11. Segalovich, I. (2003). A Fast Morphological

Algorithm with Unknown Word Guessing

Induced by a Dictionary for a Web Search

Engine. MLMTA, pp. 273-280.

12. (n.d.) Python wrapper for the Yandex MyStem

3.1 morphological analyzer of the Russian

language: [online]. [Accessed at 20 April 2020].

Retrieved from

http://pypi.org/project/pymystem3/

https://deeppavlov.ai/
https://searchengines.ru/bert-faq.html
https://www.nltk.org/
https://spacy.io/
https://radimrehurek.com/gensim
https://pymorphy2.readthedocs.io/
https://yandex.ru/dev/mystem
http://ruscorpora.org/
http://pypi.org/project/pymystem3/

