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Introduction 

There is still a huge problem that we can see in the 

practice of creating and transforming data collections 

that are large enough, which forces us to pay attention 

to efficiency in developing data applications.  

Pre-processing is the most important step in the 

data analysis, and if it is not performed, then further 

analysis in most cases is impossible due to the fact that 

analytical algorithms simply cannot work, or the results 

of their work will be incorrect or ineffective. In other 

words, the GIGO principle is implemented - garbage in, 

garbage out. 

This paper is devoted to an overview of the 

methods that will be used to pre-process text data in 

Russian language in order to prepare them for using of 

machine learning algorithms. And we will also describe 

the methods that are used in our application “chat bot 

assistant for organizing employee support”. 

 

About a corpus 

At present moment natural language is one of the 

forms of data available today and which are little used 

in machine learning algorithm in its initial form. Its 

analysis allows us to increase the usefulness of data and 

make it more accessible for our lives. 

The main task of any machine learning application 

is to determine what is considered useful from a large 

flow of information and how to distinguish this useful 

information from information noise. 

The analysis of text data is the splitting of large 

text into separate fragments - the selection of sentences, 

unique words, common phrases - with the subsequent 

application of other processing methods to these 

fragments. Data analysis is represented by a large 

number of different methods and practices and can be 

applied at various levels, and usually all of them are tied 

to one key element - a corpus.  

A corpus is a collection of documents or texts, 

possibly related to one subject, in a natural language. 

Size of corpus can be large or small. The corpus can be 

annotated, that is, the data in them can be pre-marked 

with certain labels, such cases are used for training with 

a teacher, or unannotated - such documents are used in 
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clustering algorithms and various modeling tasks, for 

example, to predict dollar exchange rates.  

As mentioned above, the corpus can consist of 

documents and it can be divided into categories of 

documents or into individual documents. Documents 

can be divided into paragraphs, each of which usually 

expresses one idea - semantic units of speech. 

Paragraphs are divided into sentences - syntactic units. 

A completed sentence is one specific expression. 

Sentences, in turn, consist of words and punctuation 

marks - lexical units. These units determine the general 

meaning of the proposal and can be used not only 

individually, but also in combination, so they can be of 

greater importance for analysis.  

The corpus with which we will work is consisted 

of data that were taken from ticket systems operating in 

the company and represent a collection of text 

messages. First of all, each message is needed to be 

marked. For our task - the classification of the input 

message as belonging to a particular class, two classes 

are selected “question” and “application”. A “question” 

class message is any message that you can try to answer 

without human’s help. 

 An «application» class message is a message for 

which additional forces are required. For example, if an 

employee wrote “I want to buy a teapot,” then the bot 

itself cannot in any way influence the decision of this 

application, it can only create a ticket in the ticket 

system and in the future find out the status of this ticket, 

inform the employee about various changes, and when 

ticket is solved send employee an answer. 

 

Processing and transformation of a corpus 

Any corpus in its initial form is absolutely 

unsuitable for analysis - it is necessary to pre-process it 

first. 

To begin with, briefly note the components of the 

corpus. The corpus consists of documents, each 

document consists of paragraphs, paragraphs of 

sentences, sentences of words. We will consider 

paragraphs as structural units of the document. And 

sentences as semantic units containing a complete 

thought formulated and expressed by the author of this 

proposal. At this stage, we need to implement 

segmentation, i.e., the division of the text into 

sentences. Then these proposals will be further 

subjected to various processing methods, which we will 

discuss later. The paragraphs are segmented into 

sentences based on punctuation marks: a period (.), a 

question mark (?), an exclamation point (!). It is also 

necessary to consider compound punctuation marks, for 

example “!?”. After segmentation, you can directly start 

to process sentences. 

 

Tokenization 

The first thing to do is to remove the punctuation 

marks and service characters. This can be done 

“manually”, that is, write code yourself that checks the 

characters and removes those that we don’t need, or use 

the tools from NLTK (Natural Language Toolkit). Also, 

this process can be combined with the tokenization of 

the sentence to words - the allocation of individual 

tokens of each sentence. This is what we are doing for 

working directly with words. Tokenization of sentences 

must be carried out with the peculiarities of the 

language with which you work. For example, if we use 

the NLTK tools, we can get unexpected results for the 

Russian language. Suppose we have the word «Санкт-

Петербург". With tokenization for all punctuation 

marks that are possible, we get two separate words 

“Санкт” and “Петербург”, which in some cases after 

processing simply will not make any sense. So, at this 

stage, you must be very careful. 

 

Named entity recognition 

When a large number of various tickets created in 

ticket systems were viewed, it was noticed that very 

often there are human names and surnames, names of 

organizations, locations, etc., for example, “Organize a 

workplace for Ivan Ivanov.” For training, these data do 

not carry any useful information and therefore it was 

necessary to get rid of them. To do this, it was decided 

to use one of the most popular tasks in NLP - the 

recognition of named entities (NER - Named-entity 

recognition). In most cases, the NER task can be 

formulated as follows: for a given sequence of tokens 

(words and possibly punctuation marks), it is necessary 

to provide a tag from a predefined set of tags for each 

token in the sequence. 

For the task of recognizing named entities, there 

are several general types of objects used as tags: 

• people; 

• locations; 

• organization; 

• expressions related to time; 

• quantitative data; 

• monetary values. 

In addition, many applications use the BIO 

tagging scheme to distinguish adjacent objects with the 

same tag. Here, “B” indicates the beginning of the 

object, “I” means “inside” and is used for all words that 

make up the object except the first, and “O” means the 

absence of the object. 

In order to perform entity recognition, it was 

decided to take advantage of the open-source 

conversational AI of the deeppavlov framework [1]. In 

figure 1 you can see how entity recognition occurs. 
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Figure 1. Demo of named entity recognition using deeppavlov 

 

At present moment they have two main types of 

models available: standard based on RNN and BERT. 

RNN (recurrent neural network) is a class of neural 

networks in which the output from the previous step is 

supplied as input for the current step. In traditional 

neural networks, all inputs and outputs are independent 

of each other, but in cases where, for example, it is 

necessary to predict the next word of a sentence, 

previous words are required and, therefore, it is 

necessary to remember them. Thus, a recurrent neural 

network appeared, which solved this problem with the 

help of a hidden layer. The main and most important 

feature of RNN is the latent state, which stores some 

sequence information. 

BERT (Bidirectional Encoder Representations 

from Transformers) is a natural language processing 

method based on the use of neural networks of a new 

architecture for working with sequences, better known 

as “transformers”. This technology helps Google better 

define the context of words in search queries [2].  

Deeppavlov has various BERT and RNN models, 

trained in various languages and able to recognize up to 

19 entities. Models for the Russian language are trained 

on the Collection 3 dataset [8] and are able to recognize 

three entities, such as ORG - organizations, agencies, 

institutes, PER - people, including fictional 

personalities and LOC - locations, mountain ranges, 

rivers, etc. Models for the English language and 

multilingual models (104 languages are available in 

them) can recognize more entities: events, products, 

numerical values, time, language names, percentages, 

numerical values, cities, countries and states, etc. 

In figure 2 you can see pre-trained models 

available at deeppavlov. 

 

 
Figure 2. Pre-trained NER deeppavlov models 

 

Stop words 

 One of the main forms of preprocessing is 

filtering out unnecessary data. In natural language 

processing, useless words (data) are called stop words. 

A stop word is a commonly used word (such as 

“и”, “на”, “или”), which the search engine should 

ignore both when indexing records to search, and when 

retrieving them as the result of a search query, for the 

exception of strict search for a specific phrase. In order 

to analyze text data and build NLP models, these words 

do not add special importance to the document. 

When to delete such words and when not? In 

situations where it is necessary to classify the text, for 

example, filtering spam or generating titles (scripts) to 

the image or tags, it is possible to use techniques to 

remove stop words. On the contrary, in such tasks as 

machine translation, language modeling, a short 

summary of the text, it is recommended to leave stop 

words, because they have great importance. 

In our work of development chat bot for 

organizing employee support, we are more interested in 

the classification of the input message — the definition 

of which class it belongs to — an application or a 

question, and therefore we can use the method of 

removing stop words because we would not like these 

words to occupy a place in our database or occupy extra 
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time for processing and interfered with the 

classification. 

There are several different methods. 

The first is the removal of stop words using NLTK 

(Natural Language Toolkit, a natural language toolkit) 

[3] - a large package of libraries and programs for 

processing natural language written in the programming 

language Python. As for stop words, NLTK has lists for 

16 different languages. You can see the list of words for 

the Russian language as follows (listing 1):  

 

 

Consider a usage example, you can see the 

messages after tokenization: 

 

After applying the algorithm to delete words from 

the stop words list, we will receive the following 

message. It may be noted that some words still 

remained, for example, “будьте,” which is the form of 

the word “быть” while the word “была” was deleted 

(listing 3). The list of stop words in the NLTK package 

is not complete and can be expanded depending on your 

needs. 

 

 

The second method is to remove stop words using 

spaCy. SpaCy is one of the most versatile and widely 

used libraries in NLP [4]. In the following way, you can 

get a list of stop words for one of 48 languages (listing 

4). We would also like to note that spaCy has almost 

two times more words in the list of stop words for the 

Russian language than in NLTK. 

 

And the third, but not the last - the use of Gensim. 

Gensim is a pretty handy library for working on NLP 

tasks [5]. During preprocessing, gensim also provides 

methods for removing stop words. Using the method 

from this library is noteworthy in that it can be used 

immediately throughout the text. 

Listing 1. Collection of stop words using NLTK 

Listing 2. Input text after tokenization 

Listing 3. Input text after removing stop words 

Listing 4. Collection of stop words using spaCy 
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And also there is no need to apply tokenization before 

that (listing 5). 

 

 

 

 

In addition to such well-known packages and 

libraries, there are a large number of open-source 

projects in which stop-word lists can have different 

types, and also, as was noted earlier, you can expand 

any of these lists to your own needs. 

 

Words normalization 

In any natural language, words can be written in 

more than one form, depending on the situation. For 

example: 

- “Я был в Америке трижды”. 

- “Я буду в Америке 25 мая”. 

- “Мы бываем в Америке каждое первое число 

апреля”. 

In all these sentences, we see that the word “быть” 

is used in several different forms. For us people, it’s 

really easy to understand that “быть” is some activity. 

And it does not matter in what form we see this word - 

“был”, “бываем”, etc. We know for sure that they mean 

the same thing. 

But this is not the same as with machines. They 

believe that all these words are different. Therefore, we 

need to normalize them to the root word, in our example 

it is "быть" Therefore, normalization is the process of 

converting a word into a single canonical form. This can 

be done in two ways, which are called stemming and 

lemmatization. 

Stemming is a method of normalizing a word, 

which truncates its end or beginning, according to the 

list of common prefixes or suffixes that can be found in 

this word. Lemmatization, on the other hand, is an 

organized and step-by-step procedure for obtaining the 

root form of a word. It uses vocabulary (vocabulary 

meaning of words) and morphological analysis (word 

structure and grammatical relationships). 

Why do stemming or lemmatization? Consider the 

following sentences: 

1) “Я буду в этом ресторане в 12 часов”. 

2) “Я побываю в этом ресторане в 12 часов”. 

We easily understand that both of these sentences 

mean the same action, that someone will be at the 

restaurant at 12 noon in the future. But the machine will 

handle these sentences in different ways. Thus, in order 

to make the text understandable for the machine, we 

need to perform stemming or lemmatization. Another 

advantage of text normalization is that it reduces the 

number of unique words in text data. This helps reduce 

time for execution of machine learning algorithm. 

To sum up, the stemming algorithm works by 

cutting out a suffix or prefix from a word. 

Lemmatization is a more powerful operation, since it 

takes into account the morphological analysis of the 

word. Lemmatization returns a lemma, which is the root 

word of all its various variations. 

We can say that stemming is a quick and “dirty” 

method of trimming words to their root form, while, on 

the other hand, lemmatization is an intellectual 

operation that uses dictionaries created by deep 

linguistic knowledge. Therefore, lemmatization helps 

in the formation of the best features. 

What are the options for applying the algorithms 

of stemming and lemmatization. 

First, let’s consider the features of NLTK. In 

stock, NLTK has a number of great methods for 

performing this step - normalization. To stamp English 

words, you can choose between Porter and Lancaster. 

The Porter Algorithm is the oldest stemming algorithm 

supported by NLTK and was published in 1979. The 

Lancaster algorithm is newer and was published in 1990 

and may be slightly more aggressive than the Porter 

Stemmer. The WordNet Lemmatizer uses the WordNet 

database to search for lemmas. 

For non-English words, you can use the Snowball 

stemmer. Actually, Snowball is a language for creating 

stemmers and was added to NLTK version 2.0b9 as a 

separate SnowballStemmer class. This stemmer 

supports the following languages: Danish, English, 

Finnish, German, Spanish, Swedish, most importantly 

for us Russian and some other languages. 

Since NLTK has few features for the Russian 

language, we’ll only consider stemming with 

SnowballStemmer. Consider the source text and the text 

obtained after stemming. As we see, after performing 

word processing using stemming, most of the words 

were trimmed (listing 6). 

Listing 5. Removing stop words using gensim 
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When two options are available, lemmatization 

will always be a better option than stemming. Stamming 

algorithms are an optimized way to identify related 

words using a relatively short algorithm and without the 

need for vocabulary data for each language. The 

disadvantage is that it is not always accurate: sometimes 

it connects by kinship relations words that do not come 

from the same word, but on the other hand, does not 

identify the related forms of a particular word. 

In turn, lemmatization will always give a better 

result, because lemmatizers rely on the correct language 

data (dictionaries) to identify the word with its lemma. 

In addition, the result will always be another element of 

the dictionary (infinitives, singular forms, etc.), and not 

a “basis”, which can sometimes be difficult to 

determine (especially when working with typologically 

different languages). 

For our tasks, we also decided to choose 

lemmatization, because we believe that this will help to 

give a better result in the classification. And besides, we 

need to highlight keywords that will help us search for 

answers for questions in the future. And this would not 

be possible if we normalized using stemming 

algorithms, because the knowledge base will be filled in 

by a person (in the future, an algorithm) who will also 

select keywords for articles, and it will be difficult for 

them to select them with stemming. 

Consider lemmatization using the pymorphy2 

morphological analyzer (listing 7) [6]. 

 

 

The normal form of the word can be obtained 

through the attributes Parse.normal_form and 

Parse.normalized. To get the Parse object, you must 

first parse the word and select the correct parsing option 

from the ones proposed. pymorphy2 now uses the 

algorithm for finding the normal form, which works 

most quickly (the first form in the token is taken) - 

therefore, for example, all participles are now 

normalized to infinitives. This can be considered an 

implementation detail. At the same time, pymorphy2 

returns all valid parsing options, but in practice you 

usually only need one option, and therefore if you want 

to normalize words differently, you can use the 

Parse.inflect() method, into which you can pass 

parameters for selection, such as part of speech, case, 

number, genus. 

But in some cases, this analyzer may not work 

correctly. If we consider the text taken as an example, 

then there were two words “воду” and “вода”. In the 

first case, pymorphy2 recognizes everything correctly 

and produces a normal “вода” form.  

But in the second case, the word "воду" was 

recognized with the following set of tags: noun, 

masculine, genitive. And, accordingly, the normal form 

of such a word is “вод”. Although we understand that 

the word “вода” is already in itself a normal form. 

As a result, which we obtained when executing the 

parse method, we can see that there are two options for 

Listing 6. Stemming using SnowballStemmer from NLTK 

Listing 7. Lemmatization using PyMorphy2 
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word “вода”, and the second variant in the parsed result 

(listing 8) is more suitable for us. But to understand this 

will be quite difficult. 

 

 

 

 

 

Let’s consider another popular morphological 

analyzer along with PyMorphy2 MyStem - a 

morphological analyzer of the Russian language with 

support for the removal of morphological ambiguity, 

developed by Ilya Segalovich at Yandex [7]. The 

program works on the basis of a dictionary and is able 

to form morphological hypotheses about unfamiliar 

words. 

The first version was developed in the 90s [11], 

but it was not very popular and could not be found in 

the public domain. Now there is already a version of 

MyStem 3.1, which fully provides all the functions of 

morphological analysis. The MyStem morphoanalyzer 

is based on the NKRL (National Corpus of the Russian 

Language) dictionary [9], which contains more than 

200 thousand lemmas. MyStem source codes are not 

accessible to ordinary users, so the characteristics of the 

data structure used are not known. 

Like PyMorphy2, MyStem can parse non-

dictionary forms and also provides the ability to resolve 

morphological homonymy. To solve this problem, 

depending on the input data, MySte allows homonymy 

in one of the following ways: without considering the 

context and vice versa.  

Removing homonymy without regard to the 

context is possible due to the training of the naive 

Bayesian classifier on the marked-out case with the 

removed homonymy [10]. The probability of an 

unknown word stem having a stem basis and the ending 

flex to belong to the para (paradigm) is calculated by 

the formula 1 [10]: 

 

where para – paradigm, 

           stem – base of word, 

           flex – end of word, 

           word – our word. 

It is assumed that stem and flex are independent 

and random variables. 

In turn, removing context-specific homonymy is 

pluggable and uses MatrixNet technology. The main 

idea is to rank parses based on the words (contexts) 

closest to the parsed. 

Consider the same example with the source code 

used above. To connect to your MyStem project, you 

can use the wrapper written in the Python programming 

language - pymystem3 [12]. This tool is publicly 

available and licensed under the MIT license. 

 

 

, (1) 

Listing 8. The result of parsing word "вода" using PyMorpy2 

Listing 9. Lemmatization using MyStem 
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As can be seen MyStem did a better job of 

finding a lemma for the word “вода when pymorphy2 

considered the word “вода” to be a masculine word in 

the genitive and made a conversion to the word “вод” 

which turned out to be completely wrong. 

 

Conlusion 

We examined what basic pre-processing 

methods are applied to data for their further use with 

machine learning methods: tokenization, removal of 

stop words, reduction to the basic form 

(normalization). We showed different approaches 

with using NLKT, pymporphy2, spaCy, gensim and 

MyStem. We also considered an additional method - 

recognition of named entities with using capabilities 

of the deeppavlov framework. 
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