
Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 257

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2019 Issue: 06 Volume: 74

Published: 17.06.2019 http://T-Science.org

Oleg Dmitrievich Romanov

Peter the Great St. Petersburg Polytechnic University

Bachelor

oleromd@gmail.com

Oleg Yurievich Sabinin

Peter the Great St. Petersburg Polytechnic University

Candidate of technical sciences, Docent,

Department of Intellectual Sciences and Technology

olegsabinin@mail.ru

SECTION 4. Computer science, computer

engineering and automation.

BUILDING A CONTAINER BASED APPLICATION AND SHIPPING IT

TO GOOGLE CLOUD PLATFORM

Abstract: This article describes the process of building a container based application (concert ticket search

service), deploying it into Google Kubernetes Engine, creating Cloud SQL instance and setting up a Virtual Private

Cloud. We will cover in detail the steps how to build a small size docker image and push it to a docker registry. Also,

we will compare image sizes with different build approaches on our application. After that we will focus on setting

up a Cloud SQL for PostgreSQL and we will not forget to mention some limitations. And finally, we will describe

what is VPC, how it can be basically configured and how to work with it.

Key words: google cloud platform, docker, kubernetes, cloud sql.

Language: English

Citation: Romanov, O. D., & Sabinin, O. Y. (2019). Building a container based application and shipping it to

google cloud platform. ISJ Theoretical & Applied Science, 06 (74), 257-262.

Soi: http://s-o-i.org/1.1/TAS-06-74-31 Doi: https://dx.doi.org/10.15863/TAS.2019.06.74.31

Introduction

The cloud services receive more and more

attention every day. And that’s explainable:

• it provides different computing resources on-

demand and self-service, requiring users to use simple

interface to get the processing power, storage, and

network they need;

• it is geographically wide, meaning that user

can access the resources from any place;

• provider keeps huge pool of these resources

and just gives some to the users, giving the win-win

offer for customer and themselves;

• these resources are elastic;

• payment system is dedicated only for

charging resources that are used;

It was also the definition of cloud.

In this article we are going to build an

application and ship it to the GCP. Also, we will

mention the advantages and disadvantages of different

steps of developing such application.

Concert ticket search service

We will use an application written in Go as an

example. It’s purpose is to find concert ticket which

are stored in database. From bird's-eye it does the

following:

• it has a TCP connection with other service

which sends messages;

• it parses the message and tries to select some

records from database;

• it completes some logic on extracted data and

sends back information to another service.

We have to keep in mind that this particular

application does not expose any ports. Instead, it

establishes the connection with another service and

works with.

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:oleromd@gmail.com
mailto:olegsabinin@mail.ru
http://s-o-i.org/1.1/TAS-06-74-31
https://dx.doi.org/10.15863/TAS.2019.06.74.31

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 258

Figure 1 - Example service interactions.

As a conclusion, our application example:

• does not have any ports to be exposed;

• requires ability to connect to database;

• requires ability to connect to external service.

Building and pushing docker image

First of all, we have to put our application into

Docker container. To do this we have to write a

Dockerfile with required steps to do during build

stage.

It is very important to keep built images

compact. There is more efficient space usage on

docker registry if image has small size. That also

means that machine (which runs the container) will

not have so much space usage. The way to minimize

image size is to keep only required files inside that

image.

For example, we can copy all the directory with

source code and build it then. At first glance

everything is ok: we can run our application and it

works. But what if we keep only binary file with

application? We don’t need keep our source files and

some source files which were fetched as

dependencies.

Let’s get deep into the details of the Dockerfile

mentioned on figure 2.

Figure 2 – Dockerfile.

This technique is called multi-stage builds [1]. In

this example we are defining two stages of the build.

During docker image building each stage get

processed. Each stage can get some files from

previous stages.

On the first stage we are copying all the source

files of our application and building it. On the 5th line

of our Dockerfile we assume that resulting image

would have all the source files and resulting binary.

But since we are using multi-stage builds we can do

elegant move: we are copying only application binary

file from the previous step.

Let’s now compare the sizes of both images.

First of all let’s build them with the following tags:

fat-application (for image with source files and

binary) and small-application (for image only with

binary file).

Image size inspection is mentioned on the figure

3.

Figure 3 – Image size inspection.

As a result we received the following numbers:

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 259

Table 1. Image size comparison

Image Size, bytes

fat-application 798374840

small-application 782278454

The difference is almost 16 megabytes! That is

very important especially if you expect that your

image will be used as a base for someone else.

Our image can be pushed to any desired docker

registry now via docker push command.

Creating Cloud SQL instance

We need to have a storage for our example

application as it was mentioned before. This article is

dedicated to the usage of Google Cloud Platform and

there is fully-managed database service, Cloud SQL

[2]. Currently Cloud SQL can be used with MySQL

or PostgreSQL. We will use PostgreSQL one in this

article.

First of all we have to create one instance, it can

be done with the help of Cloud Platform Console, a

web user interface as shown on figure 4.

Figure 4 – Example of Cloud SQL instance configuration.

 There are some parameters for creation, such as

number of vCPU, number of memory, permanent

storage type, its capacity and etc. We will create an

instance with the smallest possible configuration.

Now we have instance with Public IP address.

We can connect from anywhere we need. But firstly

we have to set up a whitelist (add addresses for

establishing connection with them). It can be done on

editing page of instance. Also Cloud SQL for

PostgreSQL gives an ability to set different database

flags.

Figure 5 – PostgreSQL flags

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 260

But Cloud SQL for PostgreSQL is different from

typical PostgreSQL. Here are some limitations, which

may cause troubles: not all of the database flags are

supported, also there are only some of PostgreSQL

extensions [3].

Now we can execute DDL script to create some

objects which are required for our example

application. And later we can connect to it.

Deploying the application

In our GCP project we can create a Google

Kubernetes Engine cluster. We are going to do it via

Cloud Platform Console as shown on figure 6.

Figure 6 – Just creating instance

We can execute different kubectl commands to

work with Kubernetes cluster manager [4].

First of all we have to create a namespace to

place our application resources in there. To do so we

have to apply the configuration shown on figure 7.

Figure 7 – Just creating instance

Since now we can work with Kubernetes cluster

and place resources in example-namespace

namespace

Let’s now create a deployment configuration

shown on figure 8 and examine its lines.

Figure 8 – Deployment configuration

Deployment represents a desired state of a pod

(which is a container or a group of containers). That

means that we have to describe this state in

configuration and apply it. After that the deployment

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 261

controller will provide declarative updates for this pod

[5].

Let’s get deeper in the provided configuration.

The first line is the entrance point and definition of

Kubernetes API version. After that we are defining

object type and in this case it is deployment. It’s time

to define metadata of the deployment: its name,

namespace and also some labels (key - value pairs).

The next thing to do is to describe deployment

specification:

• only one pod will be ran since replicas field

is set to 1;

• we are defining labels in selector field to let

deployment to know which pods it should control;

• finally, pod templates are defined.

The Pod specification determines how each Pod

should look like: what applications should run inside

its containers, which volumes the Pods should mount,

its labels, and more [6].

Also we have defined the requested and limited

resources. In our example we have requested 1 vCPU

and 100Mi of memory [7]. And our requested values

are equal to the limit ones.

After applying with the help of kubectl

command this configuration our example application

will be started [8]. It will do all the business logic

including interaction with external service and a

database that is placed in Cloud SQL.

Virtual Private Cloud

As we have mentioned before, our Cloud SQL

instance has Public IP. And the way our application

can connect to is the following:

• add application IP address to the instance’s

whitelist;

• connect to the instance via internet.

But let’s get into details and image what can be

bad here:

• since we are connecting through the internet

there may be some unwanted network latencies;

• public IP of the instance is exposed to the

public internet, which may be a potential

vulnerability.

GCP allows us to use Virtual Private Cloud

(VPC) which can solve mentioned disadvantages [9].

VPC creation is shown on figure 9. We are doing

it via Cloud Platform Console. We have to setup a

subnet by mentioning some information such as used

GCP region, address range for a subnet, enabling or

disabling logger and a route mode.

Figure 9 – VPC creation

By doing these steps we have created a VPC

network. Now we can enable its support on our

kubernetes cluster and Cloud SQL instance.

But it is also important to mention the noticeable

limitation: once Cloud SQL instance enables private

IP usage with VPC it cannot be disabled.

Let’s get a summary over VPC usage:

• both GKE and Cloud SQL supports just

created VPC network;

• our example application connects to the

PostgreSQL via VPC;

• the connection from our application to Cloud

SQL instance is secured;

• nothing is exposed to the public internet from

Cloud SQL instance;

• there is a variety of abilities to setup different

rules to be used later [10].

Conclusion

We have shown the way to build a small size

docker image of our example application. Also we

have compared the actual size of both images: fat-

application and small-application. We’ve made a

conclusion that difference is important and may be

essential in some cases.

After that we have setup a PostgreSQL instance

in Cloud SQL, showing that it is fully managed and

ready-to-use. But we have also mentioned some

limitations and disadvantages of this solution.

Next thing to do was kubernetes cluster creation

in GKE. We have created the cluster and the

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 262

namespace. After that we have provided the

deployment which controls the required pod with

some labels. We have also mentioned the resource

limits and requests and did not forget to use them in

configuration.

Finally, we have described how VPC can be

created and used in our application. Although, we

have shown a limitation of its usage with Cloud SQL.

References:

1. (n.d.). Use multi-stage builds. Retrieved June 13,

2019, from

https://docs.docker.com/develop/develop-

images/multistage-build/

2. (n.d.). Cloud SQL documentation. Retrieved

June 13, 2019, from

https://cloud.google.com/sql/docs/

3. (n.d.). PostgreSQL extensions. Retrieved June

13, 2019, from

https://cloud.google.com/sql/docs/postgres/exte

nsions

4. (n.d.). Kubernetes References. Retrieved June

13, 2019, from

https://kubernetes.io/docs/reference/

5. (n.d.). Deployments documentation. Retrieved

June 13, 2019, from

https://kubernetes.io/docs/concepts/workloads/c

ontrollers/deployment/

6. (n.d.). Kubernetes Engine: Deployment.

Retrieved June 13, 2019, from

https://cloud.google.com/kubernetes-

engine/docs/concepts/deployment

7. (n.d.). Managing Compute Resources for

Containers. Retrieved June 13, 2019, from

https://kubernetes.io/docs/concepts/configuratio

n/manage-compute-resources-container/

8. (n.d.). Kubectl Reference Docs. Retrieved June

13, 2019, from

https://kubernetes.io/docs/reference/generated/k

ubectl/kubectl-commands

9. (n.d.). Cloud SQL: Private IP. Retrieved June 13,

2019, from

https://cloud.google.com/sql/docs/mysql/private

-ip

10. (n.d.). Virtual Private Cloud (VPC) Network

Overview. Retrieved June 13, 2019, from

https://cloud.google.com/vpc/docs/vpc

https://docs.docker.com/develop/develop-images/multistage-build/
https://docs.docker.com/develop/develop-images/multistage-build/
https://cloud.google.com/sql/docs/
https://cloud.google.com/sql/docs/postgres/extensions
https://cloud.google.com/sql/docs/postgres/extensions
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://cloud.google.com/kubernetes-engine/docs/concepts/deployment
https://cloud.google.com/kubernetes-engine/docs/concepts/deployment
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://cloud.google.com/sql/docs/mysql/private-ip
https://cloud.google.com/sql/docs/mysql/private-ip
https://cloud.google.com/vpc/docs/vpc

