
Impact Factor: 

ISRA (India)       =  3.117 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.156  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  186 

 

 

QR – Issue                    QR – Article 

SOI:  1.1/TAS     DOI: 10.15863/TAS 

International Scientific Journal 

Theoretical & Applied Science 
  
p-ISSN: 2308-4944 (print)       e-ISSN: 2409-0085 (online) 

 

Year: 2019          Issue: 06      Volume: 74 

 

Published:  11.06.2019        http://T-Science.org  

  

Nizomiddin Najmiddin ugli Ochilov 

State Testing Center under the Cabinet of Ministers 

  reseacher, Republic of Uzbekistan,  Tashkent 

 

 

 

 

THE PRINCIPLE OF THE IMPLEMENTATION OF DRIVERS FOR 

DEVICES PROTECTED BY LINUX OS 

 

Abstract: In this article the principle of implementing a special-purpose device driver for secure Linux operating 

systems, using the example of a simple character driver is discussed. The main goal is to summarize and form the 

basic knowledge for writing future kernel modules. To interact with the equipment or perform operations with access 

to privileged information, the system needs a kernel driver. The Linux kernel module is a compiled binary code that 

is inserted directly into the Linux kernel, the internal and the least secure shell of executing instructions in the x86-

64 processor. Here the code is executed completely without any checks, but at an incredible speed and with access 

to any system resources. Changing the kernel, you run the risk of losing data. The kernel code does not have standard 

protection, as in normal Linux applications. 

Key words: driver, kernel, opening, reading, writing, closing, kernel level, inode, initialization. 

Language: English 

Citation: Ochilov, N. N. (2019). The principle of the implementation of drivers for devices protected by Linux 

OS. ISJ Theoretical & Applied Science, 06 (74), 186-191.    

Soi: http://s-o-i.org/1.1/TAS-06-74-20      Doi:    https://dx.doi.org/10.15863/TAS.2019.06.74.20       

 

INTRODUCTION  

The article discusses the principle of 

implementation of device drivers in secure operating 

systems (OS) Linux. The solution to this problem is 

relevant, since the creation of a secure OS causes 

problems with the interaction of devices. Linux 

provides a powerful and extensive API for 

applications, but sometimes it is not enough. A device 

driver is required to interact with equipment or 

perform operations. In order to ensure safe operation 

and safe handling of devices, a program is required 

[1]. The kernel communicates with devices through 

the appropriate drivers. A device driver is a collection 

of functions used to maintain it. One of the most 

important features of the Linux OS is the ability to 

dynamically load drivers. With this organization, the 

driver module becomes part of the kernel and can 

freely access its functions. In addition, a dynamically 

loaded driver may in turn be dynamically unloaded. If 

the driver is not explicitly unloaded, it remains 

permanently in the system until the next reboot [5]. 

If the module loads the system immediately after 

the start of the system starts, then this is the best failure 

scenario. The larger the code, the greater the risk of 

infinite loops and memory leaks. With carelessness, 

problems will gradually increase as the machine runs. 

In the end, important data structures and even buffers 

(intermediate data storage provided by software and 

intended to be transferred or copied between 

applications or parts of one application through cut, 

copy, paste operations) can be overwritten [6]. 

You can forget the traditional application 

development paradigms. In addition to loading and 

unloading a module, you can write code that will 

respond to system events, but it will not work in a 

certain sequence [1]. When working with the kernel, 

you can write an API, not the applications themselves. 

 

MAIN PART 

Sull_open.  Much of the Linux system can be 

represented as a file. What operations are performed 

with files more often - opening, reading, writing and 

closing. Also with device drivers, you can open, close, 

read and write to the device [9]. 

Therefore, in the file operations structure, you 

can see such fields as: read, write, open, and. release 

are the basic operations that the driver can perform 

[7]. 

 

 

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
http://s-o-i.org/1.1/TAS-06-74-20
https://dx.doi.org/10.15863/TAS.2019.06.74.20


Impact Factor: 

ISRA (India)       =  3.117 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.156  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

Philadelphia, USA  187 

 

 

 
Figure. 2. Block diagram of the device opening algorithm 

Begin 

Convert the search path name to an index, increase the 

value of the reference count in the index 

Allocate a place in the file table for a user file 

descriptor, as when opening a regular file. 

Select the major and minor device numbers from the 

index 

Save context (setjmp algorithm) in case of transfer of 

control from the driver 

Block type 

device 

Use the major number of the device as a 

pointer in the I / O device key table in 

blocks 

Use the major device number as a 

pointer in the character key I / O device 

key table 

Call the procedure for opening the driver 

at the given index: pass the minor 

number of the device, the opening 

modes 

Call the procedure for opening the driver 

at the given index: pass the minor 

number of the device, the opening 

modes 

True False 

Opening in 

driver failed 

Bring the file table to its original 

form, decrease counter value in 

index 

Finish 

True 

 

False 

 

1. The name of the search path 

2. Opening mode 

File descriptor 



Impact Factor: 

ISRA (India)       =  3.117 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.156  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

 

Philadelphia, USA  188 

 

 

 

int scull_open(struct inode *inode, struct file *flip) 

{ 

 struct scull_dev *dev; 

 dev = container_of(inode->i_cdev, struct 

scull_dev, cdev); 

 flip->private_data = dev; 

 if ((flip->f_flags & O_ACCMODE) == 

O_WRONLY) { 

  if (down_interruptible(&dev-

>sem)) 

   return -ERESTARTSYS; 

  scull_trim(dev); 

  up(&dev->sem); 

 } 

 printk(KERN_INFO "scull: device is 

opened\n"); 

 

 return 0; 

} 

 

The function takes two arguments: 

A pointer to an inode structure. An inode 

structure is an inode that stores information about 

files, directories, and file system objects. 

A pointer to the file structure. The structure that 

is created by the kernel each time the file is opened 

contains the information needed by the upper levels of 

the kernel [1-3]. 

The main function of scull open is to initialize 

the device (if the device is opened for the first time) 

and fill in the necessary fields of the structures for its 

correct operation. Since the device does nothing, there 

is nothing to initialize. 

Further we will execute several actions: 

 

dev = container_of(inode->i_cdev, struct 

scull_dev, cdev); 

                flip->private_data = dev; 

 

In the above code, using container_of, we obtain 

a pointer to cdev of type struct scull_dev using inode-

> i_cdev. The resulting pointer is recorded in the 

private_data field. 

 

if ((flip->f_flags & O_ACCMODE) == 

O_WRONLY) {... 

 

Further, if the file is open for writing, it is cleared 

before use and a message is displayed that the device 

is open (Fig. 2). 

 

 

scull_read. When a read function is called, 

several arguments are passed to it. 

 

ssize_t scull_read(struct file *flip, char __user 

*buf, size_t count, 

   loff_t *f_pos) 

{ 

 struct scull_dev *dev = flip->private_data; 

 struct scull_qset *dptr; 

 int quantum = dev->quantum, qset = dev-

>qset; 

 int itemsize = quantum * qset; 

 int item, s_pos, q_pos, rest; 

 ssize_t rv = 0; 

 

 if (down_interruptible(&dev->sem)) 

  return -ERESTARTSYS; 

 if (*f_pos >= dev->size) {  

  printk(KERN_INFO "scull: *f_pos 

more than size %lu\n", dev->size); 

  goto out; 

 } 

 if (*f_pos + count > dev->size) { 

  printk(KERN_INFO "scull: correct 

count\n");  

  count = dev->size - *f_pos; 

 } 

 item = (long)*f_pos / itemsize;  

 rest = (long)*f_pos % itemsize;  

 

 s_pos = rest / quantum;   

 q_pos = rest % quantum;   

 dptr = scull_follow(dev, item);  

 if (dptr == NULL || !dptr->data || !dptr-

>data[s_pos]) 

  goto out; 

 if (count > quantum - q_pos) 

  count = quantum - q_pos; 

 if (copy_to_user(buf, dptr->data[s_pos] + 

q_pos, count)) { 

  rv = -EFAULT; 

  goto out; 

 } 

 *f_pos += count; 

   rv = count; 

out: 

 up(&dev->sem); 

 return rv; 

} 

 

buf - is a pointer to a string, and _user reports 

that this pointer is in user space. The argument passes 

the user [2]. 

count – the number of bytes to read. The 

argument passes the user. 

f_pos – bias. The argument passes the kernel. 

That is, when the user wants to read from the device, 

the read function (not scull_read) is called, while 

indicating the buffer where the information and the 

number of read bytes will be written [10]. 

 

if (*f_pos >= dev->size) {  



Impact Factor: 

ISRA (India)       =  3.117 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.156  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

 

Philadelphia, USA  189 

 

 

 

 printk(KERN_INFO "scull: *f_pos more 

than size %lu\n", dev->size); 

 goto out; 

} 

 

if (*f_pos + count > dev->size) { 

 printk(KERN_INFO "scull: correct 

count\n");  

 count = dev->size - *f_pos; 

} 

 

Checks: 

1. If the offset is greater than the file size then 

read no longer works. An error is displayed and exits 

the function [6]. 

2.  If the sum of the current offset and the size of 

the data to be read is greater than the size of the 

quantum, then the size of the data to be read is 

corrected and report the message to the top. 

 

if (copy_to_user(buf, dptr->data[s_pos] + q_pos, 

count)) { 

 rv = -EFAULT; 

 goto out; 

} 

 

copy_to_user - copies data to buf (which is in 

user space) from the memory allocated by the kernel 

dptr-> data [s_pos] size count. 

 

scull_write. The scull_write function is very 

similar to scull_read [4-8]. 

 

ssize_t scull_write(struct file *flip, const char 

__user *buf, size_t count, loff_t *f_pos) 

{ 

struct scull_dev *dev = flip->private_data; 

 struct scull_qset *dptr; 

 int quantum = dev->quantum, qset = dev-

>qset; 

 int itemsize = quantum * qset; 

 int item, s_pos, q_pos, rest; 

 ssize_t rv = -ENOMEM; 

 

 if(down_interruptible(&dev->sem)) 

 return -ERESTARTSYS; 

 item = (long)*f_pos / itemsize; 

 rest = (long)*f_pos % itemsize; 

 s_pos = rest / quantum; 

 q_pos = rest % quantum; 

dptr = scull_follow(dev, item); 

 

if (dptr == NULL) 

  goto out; 

 

 if (!dptr->data) { 

dptr->data = kmalloc(qset * sizeof(char *), 

GFP_KERNEL); 

if (!dptr->data) 

 goto out; 

     memset(dptr->data, 0, qset * sizeof(char *));

  

 }  

 

 if (!dptr->data[s_pos]) { 

dptr->data[s_pos]=kmalloc(quantum, 

GFP_KERNEL); 

 if (!dptr->data[s_pos]) 

   goto out; 

 } 

 if (count > quantum - q_pos) 

 count = quantum - q_pos; 

 if(copy_from_user(dptr->data[s_pos] + 

q_pos, buf, count)) { 

  rv = -EFAULT; 

  goto out; 

 } 

 

*f_pos += count; 

rv = count; 

if (dev->size < *f_pos) 

 dev->size = *f_pos; 

 

out: 

 up(&dev->sem); 

 return rv; 

} 

 

Simplified code: 

#include <linux/module.h> 

#include <linux/kernel.h> 

#include <linux/fs.h> 

#include <linux/cdev.h> 

#include <linux/semaphore.h> 

#include <linux/uaccess.h> 

   

int scull_minor = 0; 

int scull_major = 0;  

 

struct char_device { 

 char data[100]; 

} device; 

struct cdev *p_cdev; 

ssize_t scull_read(struct file *flip, char __user 

*buf, size_t count, loff_t *f_pos) 

{ 

 int rv; 

 printk(KERN_INFO "scull: read from 

device\n"); 

 rv=copy_to_user(buf, device.data, count); 

 return rv; 

} 

 



Impact Factor: 

ISRA (India)       =  3.117 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.156  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

 

Philadelphia, USA  190 

 

 

 

ssize_t scull_write(struct file *flip, char __user 

*buf, size_t count, loff_t *f_pos) 

{ 

 int rv; 

 printk(KERN_INFO "scull: write to 

device\n"); 

 rv = copy_from_user(device.data, buf, 

count); 

 return rv; 

} 

 

int scull_open(struct inode *inode, struct file 

*flip) 

{ 

 printk(KERN_INFO "scull: device is 

opend\n"); 

 return 0; 

} 

int scull_release(struct inode *inode, struct file 

*flip) 

{ 

 printk(KERN_INFO "scull: device is 

closed\n"); 

 return 0; 

} 

 

struct file_operations scull_fops = {   

 .owner=THIS_MODULE,    

 .read = scull_read, 

 .write = scull_write, 

 .open = scull_open, 

 .release = scull_release, 

}; 

 

void scull_cleanup_module(void) 

{ 

 dev_t devno = MKDEV(scull_major, 

scull_minor); 

 cdev_del(p_cdev); 

 unregister_chrdev_region(devno, 1);  

} 

 

static int scull_init_module(void) 

{ 

 int rv; 

 dev_t dev; 

 rv = alloc_chrdev_region(&dev, 

scull_minor, 1, "scull");  

 if (rv) { 

  printk(KERN_WARNING "scull: 

can't get major %d\n", scull_major); 

  return rv; 

 } 

 scull_major = MAJOR(dev); 

 p_cdev = cdev_alloc(); 

 cdev_init(p_cdev, &scull_fops); 

 p_cdev->owner = THIS_MODULE; 

 p_cdev->ops = &scull_fops; 

 rv = cdev_add(p_cdev, dev, 1); 

 if (rv) 

 printk(KERN_NOTICE "Error %d adding 

scull", rv); 

 printk(KERN_INFO "scull: register device 

major = %d minor = %d\n", scull_major, 

scull_minor); 

 return 0; 

} 

MODULE_AUTHOR("Ochilov Nizomiddin"); 

MODULE_LICENSE("GPL"); 

 

module_init(scull_init_module); 

module_exit(scull_cleanup_module); 

 

CONCLUSION  

The article presents the principle of 

implementation of a special-purpose of the device 

driver for secure Linux operating systems. The basics 

of an I / O device through mapped memory and 

macros used in memory allocation are discussed. As a 

practical example of allocating resources for an I / O 

device through the displayed memory, the code from 

the already debugged driver was given. The 

mechanisms for initializing and deleting devices in the 

Linux operating system kernel have been proposed 

and clarified. An optimized algorithm for initializing 

and deleting devices in the kernel of the Linux safe 

operating system has been developed, which makes it 

possible to optimize the running time of the algorithm 

by reducing the number of unnecessary functions in 

the code. The algorithm is designed for protected 

Linux OS class 2A. 

Thus, the article describes the procedure for 

working with kernel components. Using the acquired 

skills, you can develop your own kernel module and 

build security mechanisms in it. 

 

 

 

 

 

 

 

 

 



Impact Factor: 

ISRA (India)       =  3.117 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.156  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

 

Philadelphia, USA  191 

 

 

 

 

 

References: 

 

 

1. Torvalds, L., & Diamond, D. (2002). For Fun = 

Just for fun. (p.288). Moscow: EKSMO-Press. 

ISBN 5-04-009285-7. 

2. Love, R. (2006). Linux kernel development = 

Linux Kernel Development. 2nd ed. (p.448). 

Moscow: Williams. ISBN 0-672-32720-1. 

3. Rodriguez, K. Z., Fisher, G., & Smolski, S. 

(2007). Linux: ABC of the kernel. (p.584). SPb: 

KUDITS-PRESS. ISBN 978-5-91136-017-7. 

4. Barret, D. (2007). Linux: basic        commands. 

Pocket guide. 2nd ed. (p.288). SPb.: KUDITS-

PRESS. ISBN 5-9579-0050-8. 

5. Torvalds, L. (2015). Linux Format = Linux 

format. (p.228). Moscow: EKSMO-Press. ISBN 

0-04-009183-1. 

6. Ochilov, N. N. (2019). The Driver for the 

Scull_Open Discovery Function, Read / Write 

Scull_Read / Scull_Write For a Protected Linux 

OS // International Journal of Computer Science 

Engineering and Information Technology 

Research (IJCSEITR). c. India, Vol - Issue: 9-1, 

30 June, pp.31-42. 

7. Palix, N., Thomas, G., Saha, S., Calves, C., 

Lawall, J.,  & Muller, C. (2011). Faults in Linux: 

Ten years later. Proceedings of the sixteenth 

international conference on Architectural 

support for programming languages and 

operating systems (ASPLOS 'll), USA. 

8. Tixomirov, V.  P., & Davidov, M. I. (1988). 

Operatsionnaya sistema UNIX: Instrumentalnûe 

sredstva programmirovaniya. (p.206). Moscow: 

Finansû i statistika.  

9. Stolyarov, A. V. (2009). Operatsionnaya sreda 

UNIX dlya izuchayuùix programmirovanie.  

MGU im. Lomonosova, fakultet VMiK, 

Moskva.  

10. Ball, T., Bounimova, E., Kumar, R., & Levin, V. 

(2010). SLAM2: Static Driver Verification with 

Under 4% False Alarms. FMCAD. 

 

 

 

  



Impact Factor: 

ISRA (India)       =  3.117 

ISI (Dubai, UAE) = 0.829 

GIF (Australia)    = 0.564 

JIF                        = 1.500 

SIS (USA)         = 0.912  

РИНЦ (Russia) = 0.156  

ESJI (KZ)          = 8.716 

SJIF (Morocco) = 5.667 

ICV (Poland)  = 6.630 

PIF (India)  = 1.940 

IBI (India)  = 4.260 

OAJI (USA)        = 0.350 

 

 

 

Philadelphia, USA  192 

 

 

 

 


