
Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 110

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2019 Issue: 06 Volume: 74

Published: 13.06.2019 http://T-Science.org

Vadim Andreevich Kozhevnikov

Peter the Great St.Petersburg Polytechnic University

Senior Lecturer

vadim.kozhevnikov@gmail.com

Nikita Mihailovich Slupko

Peter the Great St.Petersburg Polytechnic University

student

nislupko@gmail.com

Anatoliy Vasilievich Sergeev

Peter the Great St.Petersburg Polytechnic University

Assistant Professor

sergeev_av@spbstu.ru

DESIGN AND DEVELOPMENT OF PERSONAL FINANCE

MANAGEMENT SYSTEM

Abstract: This work is dedicated to engineering and implementation of application for personal finance

management. It describes existing market solutions and analyses their useful functionality and limitations. Taking

this into account we determine functionality of new application and its features that shows product as competitive

solution. Then article describes choice of developer tools and analyzing final application.

Key words: personal finance system, web-development.

Language: English

Citation: Kozhevnikov, V. A., Slupko, N. M., & Sergeev, A. V. (2019). Design and development of personal

finance management system. ISJ Theoretical & Applied Science, 06 (74), 110-115.

Soi: http://s-o-i.org/1.1/TAS-06-74-8 Doi: https://dx.doi.org/10.15863/TAS.2019.06.74.8

Introduction

Today, more than ever, the issue of rational

management and distribution of resources of different

kinds is one of the most important. This question

arises at different levels - from the management of

personal time among schoolchildren to the financial

planning of campaigns with billions of authorized

capitals. The amount of available information

consumed and created goods in the world is constantly

growing, but at the same time the complexity of

control over them is also growing rapidly.

The idea of competent management of personal

finances is not our contemporary at all. It appeared

along with the monetary system thousands of years

ago and was based on simple basic human needs [1].

Planning your income and expenses allows you not

only to get useful predictions, but also to change your

own habits: to give up excesses or, on the contrary, to

start investing finances in relevant areas - education,

health, family.

For thousands of years people have been

counting on paper with pencil. At the turn of the XX

and XXI centuries there was an important revolution.

Computers have tightly entered our home world and

brought new opportunities. Modern systems do not

allow us to do anything fundamentally new, but now

the construction of graphs and reports has become

truly accessible to people. The mobility of the systems

allows you to enter the purchase data directly in the

store via a mobile application or smartphone browser.

Simplicity, accessibility, elegance, practical

benefits, flexibility and mobility have popularized the

idea of managing personal finances. Today, hundreds

of such applications have millions of downloads in

mobile stores and application sites have millions of

visits per day.

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:vadim.kozhevnikov@gmail.com
mailto:nislupko@gmail.com
mailto:sergeev_av@spbstu.ru
http://s-o-i.org/1.1/TAS-06-74-8
https://dx.doi.org/10.15863/TAS.2019.06.74.8

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 111

The application market today is quite large,

although inertial - most popular applications have

been created for a very long time. This is manifested

in the use of outdated technologies, the old inflexible

interface and other equally important features. All

these reasons create the need for thorough market

research, identifying important features and creating a

new generation application.

The purpose of the article

We want to study the existing market offers, to

identify their advantages and disadvantages. On this

basis, it is necessary to design and implement an

application that can become a competitive product in

the market. The application should be focused on a

wide range of users and solve their financial

accounting problems effectively.

Market research

To determine the current state of the application

market in chosen area, we used two review articles

with a list of existing solutions [2][3]. Of these, we

chose the 4 most popular and large applications with

a web version. These services are "Drebedengi" (>

220 000 users), Home Money (> 250 000 users),

EasyFinance (> 350 000 users), Cash Organizer (>

100 000 users) [4][5][6][7].

As a result of the solutions analysis, the

advantages and basic functionality required by the

user were identified. These include the ability to add

records of spending and income, create various

accounts, the ability to view your statistics, create

savings targets, create categories of spending.

Benefits include multilingual, multi-user mode,

intuitive design and the use of modern standards.

The serious shortcomings of existing

applications include the partial lack of the above

described functionality, the garbage interface, the use

of the old technology stack and methods (Flash Player,

tabular markup, and others), the inconvenient multi-

user mode or the lack of it, the support of a single

language, poor user experience.

Platform

There are three global different platforms for

creating an application - a classic application for a

personal computer (Windows or Unix-based OS), a

web application and a mobile application.

 Priority features of the designed application are:

• Accessibility for the user from several devices

for convenient instant spending of expenses;

• Availability of service at any point where there

is access to the Internet.

Writing a desktop version of an application

limits application mobility and, obviously, does not

solve our needs.

Mobile applications are a good modern version

of the application. Today, most of the traffic is

consumed through mobile devices, and mobile

applications most conveniently convey the necessary

content to the consumer [8]. However, there is a cross-

platform problem - to properly reach an audience, it is

necessary to write at least two applications for IOS

and Android. In addition, the development of a single

mobile application makes it impossible for the end

user to use the application from a personal computer.

Finally, there is a universal solution in the form

of a modern web application. The advantages of this

option stem from the disadvantages of the above

alternatives:

• cross-platform in nature, it is enough to write

the application once and it will be available from any

device with a browser;

• undemanding of resources - the application

does not require installation;

• mobility, providing access to the service

wherever there is a mobile Internet;

• indicators of speed and cost of development are

also very good, because we need to write only one

application instead of several for each platform.

Thus, the web application is the ideal solution in

chosen area.

Architecture

It is important for us not only to transfer

calculations from the client, but also to store a large

amount of user data. At the same time, we can

optimize the number of requests to the server by

adding light scripts that serve the user and access the

server only at the moment of real need. Using

asynchronous interaction mechanisms, we will

achieve optimal performance and a better experience

for the user.

Thus, classical n-tier architecture is suitable for

us. It consists of three components:

• a client that serves as an entry point for a user,

displays data and generates queries;

• a server that receives requests, processes data,

stores and withdraws them from the database, and

generates and sends a response to the client;

• a database storing all user data and metadata.

Server

We will be defined with requirements to our

server. Our application does not imply any complex

calculations. The main priority is the fast processing

of requests from the client. The initial application

project should be designed to handle a large number

of simultaneous requests - the vast majority of them

will come to add and retrieve records from the

database.

The server could be implemented with C-like

language - C# or Java, but developing with them takes

multiple times more than in other languages. It is

worthwhile to use these productive, but heavy tools

when writing a server of an extremely high-loaded

application that performs complex data processing.

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 112

The classic server language for a long time was

PHP. With the release of new versions, many

problems were fixed in it, because of which this

language was scolded by the community. However,

this language still encourages the use of bad practices

and crutches, and innovations are created more to

facilitate the lives of programmers who support PHP

projects than to attract the attention of new projects.

Today, the share of new projects that use PHP is

inexorably decreasing. Choosing a tool for a new

project, we are forced to focus on its prospects and

trends and improvements.

One of the most promising languages today is

NodeJS [9]. This is a great tool to handle a large

number of asynchronous requests and simple

operations on the server. The Node API is written in

C ++, which provides high performance. Node is

simple and transparent to use, its syntax is almost

identical to JavaScript, which will be written frontend,

which allows the developer to easily move from server

development to client development and back. Node

has an excellent package manager with a huge number

of user libraries to install. Re-use of a quality code,

approved and tested by thousands of developers,

allows you to abstract from details and focus on

important aspects - architecture, useful functionality,

application ideology.

Node works fine in conjunction with the Express

framework and any settings on it, for example,

loopback [10]. The framework provides a flexible and

easily customizable API, simplifies writing handlers,

and communicates with databases. All this allows you

to write high-quality and productive code with

minimal time, labor and financial costs. Express is the

most popular NodeJS server solution. This niche he

occupied not by chance - the framework is easy and

fast, while there are no compatibility issues with other

packages.

NodeJS and Express are the ideal tool for

developing an application based on the criteria

specified. What is also important, the Node

community is very active, there is good

documentation on this technology and a lot of

educational and auxiliary literature both on the basic

basics of the language, and the design patterns and

good practice when developing. By virtue of the above

advantages, we will use Node as a back-end

development technology.

Client

We will use HTML5 as our markup language. It

is modern standard that has no serious competitors.

For CSS, you can use the SASS or SCSS

preprocessors. Reducing the time to write your own

styles allows you to focus on the design of the

interface, rather than its implementation. We try to use

the OOP approach as often as possible to manage

abstractions, rather than specific implementations, so

using the CSS Modules pattern will be an excellent

practice for separating code into structural and

stylistic components.

To design an application, it is advisable to use

one of the popular MVC frameworks for front-end

development. Today on the market we see three such

tools: Angular, React and Vue.

We will use React as a flexible and extremely

productive library. Moreover, we are working with the

advanced technology React Hooks, which will make

our code easy, simple and productive.

Let's talk about the popular bundle React +

Redux. Redux allows you to store all data in one place

and access the store as a single point; data is not stored

in components locally. However, Redux has a number

of drawbacks, which in our case collectively outweigh

the benefits. First of all, this is a significant increase

in the amount of code, the complexity of which grows

with each new line. In the conditions of a team of one

person and tight deadlines, it is necessary to observe

and balance the performance and speed of

development. Further, Re-dux, being the only

monolithic repository, risks storing up-to-date

irrelevant data. At the same time, we don’t need to

store “undo” states, which is another argument against

using Redux. As an alternative, we will use several

contexts that are connected to the components using

the use Conext Hook.

Data Base

Today, there are two main directions in the way

information is presented and stored in databases -

relational (SQL) and non-relational (NoSQL). Their

selection is determined by the requirements provided

in the data. In the case of relational databases, this is

so-called ACID - Atomicity, Consistency, Isolation,

Durability. The choice of non-relational bases is

determined by the requirements for flexibility,

scalability and speed of access to data. The data can

be stored without visible logical connections, as it

always happens with the data in the SQL solution,

where the base schema is represented by entities and

relationships between them. When choosing a

solution for your project, you need to understand the

absence of a panacea - there is no perfect solution, you

always have to sacrifice either stability or speed in one

form or another.

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 113

Figure 1 - Physical database scheme

For us, the first priority is the consistency and

reliability of the data obtained. Speed, which increases

by a fraction of a second, is not so critical for us, as in

multimedia applications of high load. Scaling up an

application is not so often the case; it will be fairly

easy to do with its initial size — in the case of a

relational solution, we will need about a dozen

entities.

As a relational management system, we will

choose MySQL as the most popular solution at the

moment.

Based on the functionality of the application, we

create a database schema. It consists of 7 tables. This

model will be implemented with Loopback

technology - Juggler. All data scheme is described is

JSON-file and is used on server as global data model.

Every entity will have own API methods. Juggler use

this json model to create physical model and exploit it

later. You could see this scheme above (Fig. 1).

Application

After implementation we have to cover our

project by functional tests. Main user scenario should

test all features of application, such as registration,

authorizing, searching history, adding new money

account, adding new category, adding people to

managing this account in cooperate, adding new

financial purpose, analyzing statistics of chosen

account. Here are some figures representing these

steps (Fig. 2-4).

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 114

Figure 2 - Authorization Page

Figure 3 - Adding new record of incoming finance

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 115

Figure 4 - Fragment of statistic page

Conclusion

The developed application meets all the

requirements [11]. It is ergonomic, easy and satisfies

the basic needs of the consumer. Moreover, it is not

inferior to competitors in the market and even

surpasses some of them in functionality. Conclusions

about the choice of tools can be used when designing

similar applications.

References:

1. Frolova, T. A. (2007). Finansy i credit: conspect

lekciy. Taganrog: TTI UFU. Retrieved April 12,

2019, from http://www.aup.ru/books/m171

2. (n.d.). Lifehacker. Article «9 samyh udobnyh

programm dlya vedeniya semejnogo

byudzheta». Retrieved April 14, 2019, from

https://lifehacker.ru/family-budget/

3. (n.d.). Startpack. Retrieved April 14, 2019, from

https://startpack.ru/category/personal-finance

4. (n.d.). Drebedengi. Retrieved April 15, 2019,

from https://www.drebedengi.ru/

5. (n.d.). HomeMoney. Retrieved April 15, 2019,

from https://homemoney.ua/app/

6. (n.d.). EasyFinance. Retrieved April 15, 2019,

from https://easyfinance.ru/

7. (2019). CashOrganizer. Retrieved April 15,

2019, from https://www.cashorganizer.com/rus/

8. (n.d.). Web-canape. Aritcle «Internet 2017–2018

v mire i v Rossii: statistika i trendy». Retrieved

April 16, 2019, from https://www.web-

canape.ru/business/internet-2017-2018-v-mire-

i-v-rossii-statistika-i-trendy/

9. (n.d.). Official NodeJS documentation.

Retrieved April 16, 2019, from https://js-

node.ru/

10. (n.d.). Official Loopback documentation.

Retrieved April 17, 2019, from

https:/loopback.io

11. (n.d.). GitHub repo of project. Retrieved June 3,

2019, from

https://github.com/Nislupko/budgety/

http://www.aup.ru/books/m171
https://lifehacker.ru/family-budget/
https://startpack.ru/category/personal-finance
https://www.drebedengi.ru/
https://homemoney.ua/app/
https://easyfinance.ru/
https://www.cashorganizer.com/rus/
https://www.web-canape.ru/business/internet-2017-2018-v-mire-i-v-rossii-statistika-i-trendy/
https://www.web-canape.ru/business/internet-2017-2018-v-mire-i-v-rossii-statistika-i-trendy/
https://www.web-canape.ru/business/internet-2017-2018-v-mire-i-v-rossii-statistika-i-trendy/
https://js-node.ru/
https://js-node.ru/
https://js-node.ru/
https://github.com/Nislupko/budgety/

