
Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 82

QR – Issue QR – Article

SOI: 1.1/TAS DOI: 10.15863/TAS

International Scientific Journal

Theoretical & Applied Science

p-ISSN: 2308-4944 (print) e-ISSN: 2409-0085 (online)

Year: 2019 Issue: 06 Volume: 74

Published: 10.06.2019 http://T-Science.org

Stanislav Igorevich Bolsun

Peter the Great St. Petersburg Polytechnic University

student,

iters@yandex.ru

Vadim Andreevich Kozhevnikov

Peter the Great St. Petersburg Polytechnic University

Senior Lecturer,

vadim.kozhevnikov@gmail.com

Oleg Yurievich Sabinin

Peter the Great St. Petersburg Polytechnic University

assistant professor,

olegsabinin@mail.ru

DESCRIBING LOGGING POLICY FOR IT COMPANY TO IMPROVE

SYSTEM MAINTENANCE FOR COMPUTER PROGRAMMERS AND

SYSTEM ADMINISTRATORS

Abstract: The article describes a logging policy for an IT company to improve the quality of application

monitoring for developers and system administrators. It also describes the recommended improvements for the

logging open source library to integrate it into the new logging policy.

Key words: logging, Kotlin, monitoring, quality of system maintenance.

Language: English

Citation: Bolsun, S. I., Kozhevnikov, V. A., & Sabinin, O. Y. (2019). Describing logging policy for it company

to improve system maintenance for computer programmers and system administrators. ISJ Theoretical & Applied

Science, 06 (74), 82-86.

Soi: http://s-o-i.org/1.1/TAS-06-74-5 Doi: https://dx.doi.org/10.15863/TAS.2019.06.74.5

Introduction

Every day new products are born and

requirements for IT products will certainly grow due

to the growth of the market. So, computer

programmers and system administrators have to

monitor the system in real-time by different

monitoring systems like Prometheus with Grafana and

common logging files, that's can be used in ELK stack

(ElasticSearch + Logstash + Kibana). Thus, it's very

important to think about the structure of logging: How

we should write it? In which places and how often we

should logging? How to write logs which will be

understood by other employees, not only

programmers, who wrote this piece of code? Do we

need a common logging policy to our company to

maintain the quality of the system at a high level and

that the logs remain homogeneous in the entire

application?

Modern realities force companies to develop

their logging policies, that extends to the entire

product and to each developer. So, this article offers a

logging policy (that was introduced in one FinTech

company) for IT company and modifications for

logging library (Slf4j with Log4j) to integrate it into

the mentioned earlier logging policy. [1, 2]

Describing API of the improved logging

system

We assume the library has a LogTag class which

is responsible for a separate tag (EXCEPTION,

START, FINISH ...) and related information - a serial

number and a description. The LogTags class wraps

http://s-o-i.org/1.1/tas
http://dx.doi.org/10.15863/TAS
http://t-science.org/
mailto:iters@yandex.ru
mailto:vadim.kozhevnikov@gmail.com
mailto:olegsabinin@mail.ru
http://s-o-i.org/1.1/TAS-06-74-5
https://dx.doi.org/10.15863/TAS.2019.06.74.5

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 83

the LogTag and stores all the listed tags (LogTag) for

a particular entry. LogTags operates with methods to

add new tags, remove tags from the set, intersect tags

and provide tags toString() representation as an

ordered and formatted string.

The LogTiming class proposed to be responsible

for storing the operation duration time in milliseconds

inside a variable type of Long. This class not only

stores the duration of the operation but also provides

a method for forming a textual representation of the

current object.

The LogTuple class is a common tuple which

stores a single key and its associated value. The

LogTuples class is a wrapper for LogTuple, that is, it

stores a set of tuples. The methods of the LogTuples

class allow you to operate on tuples — add a new

tuple, form a set of tuples from the Mapped Diagnostic

Context — provide a textual representation of a set of

tuples for a logging entry. [3]

The LogMessage class is a representation of the

complete log entry, which contains LogTiming,

LogTags, LogTuples, the cause exception and,

accordingly, the text message itself with the necessary

parameters. It is this class that forms the complete line

for passing it to Log4j for further processing.

The Log class is the util class for quickly

creating a LogMessage object with a single tag value,

timing, tuple, exception, or message.

In the new logging policy, all logging operations

are performed through the logger package

ru.payment.system.logging.base. It applies the

delegation pattern to the standard log4j logger, but

takes as its parameters a new object of the

LogMessage class, described earlier. [4]

Describing the logging policy key feature

The first feature requires logging all exit points

from the method with messages, that describes a

business task that was completed before method

completion (see Figure 1).

Figure 1 - first feature of logging policy

The second feature requires logging all GET

HTTP requests with logging all URL parameters in

the first line of the controller method, that receives a

request. It information needs to state a fact of

receiving an incoming request with correct parameters

(see Figure 2).

Figure 2 - second feature of logging policy

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 84

The third feature requires logging full POST

HTTP request encoded body if that request is

responsible for creating a new entity in the system. So

in log files developers and system administrators will

able to monitor of creating new entities with

predefined fields (properties) (see Figure 3) [5].

Figure 3 - third feature of logging policy

The four feature requires logging full POST

HTTP request encoded body with existing entity

fields (what was and what will be), if that request is

responsible for updating exists entity in the

application (see Figure 4).

Figure 4 - four feature of logging policy

The fifth feature requires logging all outgoing

requests with tag - TX, so it will speed up the search

by tag if computer programmers or system

administrator want to see outgoing requests in detail.

In demo payment service there is no outgoing

requests.

The six feature requires logging all incoming

requests with tag - Rx, with the same meaning as in

fifth feature description (see Figure 5).

Figure 5 - six feature of logging policy

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 85

The seventh feature requires logging all

exception cases with tag - EXCEPTION to monitor

extraordinary cases by special useful tag. This tag very

important for system administrators while the

deploying microservice on production to decide if

need rollback for this release (see Figure 6).

Figure 6 - seventh feature of logging policy

Advantages of the new approach

With the introduction of the logger and the new policy into operation, the following advantages can be distinguished

compared to the usual logger Slf4j and informal logging:

1) there is a convenient opportunity to quickly search for tags using Linux utilities grep and less; [6]

2) there is an understandable plan for logging and clear requirements for log entries, so the trace becomes

homogeneous and structured;

3) the obligatory condition of additional parsing of log entries in CSV format (using the strategy developed when

modifying the logger) allows you to build analytical repositories that can easily parse and use incoming format (CSV);

[7]

4) system behavior has become easier and more convenient to monitor - each team member knows which log file to

look at and what information can be obtained from it;

5) due to a clear plan and requirements for logs, unnecessary (unnecessary, irrelevant) logs became less. Thus, disk

space is spent more efficiently;

6) due to the clear structure of the logs and the CSV format, the possibility of abandoning monitoring systems, such

as Prometheus and Grafana, has appeared. Logs can be parsed in real time and display graphics on the screen; [8, 9]

7) It has become easier for system administrators to maintain working components — the fact of an error is important

for them, and not the stack trace (which usually has large sizes and does not fit in one terminal session), which carries

an informative load only for developers;

Disadvantages of the new approach

When introducing a new logging policy and a modified logger, several weaknesses were also identified:

1) a new dependency must be added to the project with a modified logger;

2) the need to bring a new logging API for each developer in the team;

3) teams need a tougher and more attentive review code to keep the logging system in a homogeneous state;

4) The “old” Slf4j API is still available for developers and they can use it by mistake;

All these drawbacks lose their significance against the background of the advantages that we get for monitoring the

whole application (microservice) within a large team of developers and system administrators whose work and time

are expensive. [10]

Conclusion

Impact Factor:

ISRA (India) = 3.117

ISI (Dubai, UAE) = 0.829

GIF (Australia) = 0.564

JIF = 1.500

SIS (USA) = 0.912

РИНЦ (Russia) = 0.156

ESJI (KZ) = 8.716

SJIF (Morocco) = 5.667

ICV (Poland) = 6.630

PIF (India) = 1.940

IBI (India) = 4.260

OAJI (USA) = 0.350

Philadelphia, USA 86

When introducing and operating a new logging policy and a modified library, the quality of monitoring components

inside the system was significantly improved, the work of system administrators (who do not know the business code

and the tasks performed inside the components as thoroughly as the developers know) was greatly facilitated. Due to

a large amount of work on implementation and maintenance, first, the new approach will be extended to new

components that are not yet in production, as well as to the most key places of the legacy system (which perform key

tasks in the payment system). Over time, an increasing number of components and modules will apply a new approach

to logging, which has proven successful for industrial development.

References:

1. (n.d.). SLF4J documentation. Retrieved June 02,

2019, from https://www.slf4j.org/docs.html

2. (n.d.). Log4J documentation. Retrieved June 03,

2019, from

https://logging.apache.org/log4j/2.x/javadoc.ht

ml

3. (n.d.). Log4j – Log4j 2 Thread Context.

Retrieved June 03, 2019, from

https://www.baeldung.com/mdc-in-log4j-2-

logback

4. (n.d.). Delegation pattern. Retrieved June 03,

2019, from

https://en.wikipedia.org/wiki/Delegation_patter

n

5. (n.d.). In Introduction to HTTP Basics. Retrieved

June 03, 2019, from

https://www.ntu.edu.sg/home/ehchua/program

ming/webprogramming/HTTP_Basics.html

6. (n.d.). Using less and grep with logs. Retrieved

June 04, 2019, from

https://www.ianlewis.org/en/using-less-and-

grep-with-logs

7. (n.d.). Comma-separated values format.

Retrieved June 04, 2019, from

https://en.wikipedia.org/wiki/Comma-

separated_values

8. (n.d.). Prometheus documentation. Retrieved

June 05, 2019, from

https://prometheus.io/docs/introduction/overvie

w/

9. (n.d.). Grafana documentation. Retrieved June

05, 2019, from https://grafana.com/docs/

10. (n.d.). Microservice. Retrieved June 05, 2019,

from

https://en.wikipedia.org/wiki/Microservices

https://www.slf4j.org/docs.html
https://logging.apache.org/log4j/2.x/javadoc.html
https://logging.apache.org/log4j/2.x/javadoc.html
https://www.baeldung.com/mdc-in-log4j-2-logback
https://www.baeldung.com/mdc-in-log4j-2-logback
https://en.wikipedia.org/wiki/Delegation_pattern
https://en.wikipedia.org/wiki/Delegation_pattern
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.ianlewis.org/en/using-less-and-grep-with-logs
https://www.ianlewis.org/en/using-less-and-grep-with-logs
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Comma-separated_values
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://grafana.com/docs/
https://en.wikipedia.org/wiki/Microservices

