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The aim of the work was to create a complex mathematical model simulating the course of the disease
caused by the SARS-CoV-2 virus on the level of interaction between functional systems of organism and
pharmacological correction of organism hypoxic states arising in the complicated course of the disease. In
the present work the methods of mathematical modeling and theory of optimal control of moving objects
were used. The proposed integrated mathematical model consisted on the mathematical models of
functional systems of respiration and blood circulation, thermoregulation, immune response, erythropoesis,
and pharmacological correction. Individual patient data were taken for this model, and the disturbing
effect in the form of viral disease was simulated. The reactions of functional respiratory and blood
circulatory systems were predicted. Partial pressures of respiratory gases in alveolar spaces and their
tensions in lung capillaries blood, arterial and mixed venous blood, and tissue fluid were calculated.
Further the intravenous injection of antihypoxant was simulated and the values of the same parameters
were calculated. In such a way it was possible to choose the most optimal way of hypoxic state correction
for any individual. This model is theoretical only for today because the models of respiratory and blood
circulation systems were designed for the average person and it does not suppose peculiarities of individual
persons infected with SARS-CoV-2. In particular, this concerns the pequliarities of gas exchange in the
alveolar space and characteristics of respiratory gases diffusion through the alveolar-capillary and
capillary-tissue membranes. However, it is one of possible directions for solving the complex tasks related
to treatment of the disease caused by SARS-CoV-2 virus. In the result of the work the complex of
information support for the imitation of viral disease course was developed at the level of interaction of
organism functional systems, as well as pharmacological correction of caused by it hypoxic states.
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New coronavirus infection burst had
happened in Republic of China with epicenter

The information on epidemiology, clinical
features, prevention, and treatment of

in Wuhan (Hubei Province) in late 2019. The
World Health Organization officially named
it COVID-19 (“Corona virus disease 2019”)
on February 11, 2020. The International
Committee on Viruses Taxonomy had
assigned the official name to the agent of
this infection — SARS-CoV-2 on February
11, 2020.
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this disease is limited until now. The most
common clinical manifestation of the new
variant of coronavirus strain infection was
bilateral pneumonia: the development of acute
respiratory distress syndrome was registered
in 3—4% of patients[1]. This potentially severe
acute respiratory infection causes dangerous
disease [2]. It can occur both in the form of
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acute respiratory viral infection with mild
course [3, 4] and in severe form with such
specific complications as viral pneumonia
caused acute respiratory distress syndrome or
respiratory failure with a risk of the death [5].
However, full clinical picture is not yet clear
[6]. There are no specific antiviral agents for
the treatment or prophylaxis of this disease [7].
In most cases (approximately 80%) it turns
out that no specific treatment is required,
and recovery takes place on its own [2, 8]. In
severe cases, specific means and methods are
used to maintain functions of vital organs
[9]. Respiratory insufficiency development
is also possible against the background
of this infection [3]. Less than a third of
patients demonstrated the development of
acute respiratory distress-syndrome [2]. In
case of acute respiratory distress-syndrome,
tachycardia, tachypnoea or cyanosis may also
be appeared to accompany hypoxia [6].

Inflammatory processes can influence on
cardiovascular system resulting in arrhythmias
and myocarditis. Acute heart insufficiency
is mostly found in severely or critically ill
patients. Infection can occure long-term
influences on the health of cardiovascular
system. In case of patients with cardiovascular
diseases in anamnesis, strict monitoring of
their conditions may be required [2].

There is no specific antiviral therapy
against SARS-CoV-2 virus [9] and there is
no evidence of effective immunomodulating
therapy [10]. Patients receive mainly
symptomatic and supportive therapy. In
severe cases, treatment aims to maintain vital
functions of organs [9].

Although unlicensed drugs and experimental
therapies are used today in practice of
coronaviral disease treatment, for example,
with the use of antiviral agents, such treatment
should be carried out within the framework
of ethically based clinical trials [2]. Critically
important is the use of tools that are justified
both ethically and scientific researches[11, 12].

Bases for used methodology. Therapy
prescriptions should not be based on
hypotheses, but on clinical studies that
confirm the effectiveness of such therapy.
Hypotheses, however, may be the basis for a
planned clinical trial [13]. Therefore, it seems
reasonable to apply simulation modeling of
coronaviral disease course and exposure to
pharmacological drugs.

The methods of information technologies
and mathematical modeling complement
those of experimental biology and medicine.
Modern diagnostic methods, whatever perfect

they may be, give only a “slice” of current
organism state. Therefore, the mathematical
modeling of organism functional systems and
an organism as a whole became widespread in
the last third of the last century, allowing to
simulate various processes taking place in the
organism and to study these processes at the
level inaccessible to the modern methodical
diagnosis level, for example, to simulate
extreme organism disturbances and forecast
the functional state of organs and systems with
this disturbance.

Mathematic model of functional
respiratory system, developed by the united
efforts of the scientists from Glushkov
Institute of Cybernetics and Bogomoletz
Institute of Physiology both of the National
Academy of Sciences of Ukraine was based
exactly on these principles.

The purpose of the work was to create
integrated mathematical model to simulate
the course of the disease caused by SARS-
CoV-2 virus and pharmacological correction of
complications — organism hypoxic states.

Mathematical models of respiration
and blood circulation systems

Many mathematical models of various
functional systems and organism as a whole
exist nowadays. Let’s observe the models related
to the respiratory and blood circulatory systems
because of several reasons. First, according to
the current information, exactly these systems
are the most affected by the SARS-CoV-2 virus
[14—-2T7]. Secondly, in the theory of adaptation
developed by Meyerson, exactly these systems
responded most noticeably to changes of living
conditions [28, 29]. Thirdly, in a number
of publications there were shown that if we
consider the human organism from the point
of view of reliability theory, and assume it as
a “chain with a weak link”, then such “weak
links” are exactly the respiratory and blood
circulatory systems [30—37].

First of all, Gray model should be
highlighted, in which the respiratory system
was presented as a feedback system and thus
the background for studying the relationships
between alveolar ventilation V and oxygen
pressures pO,, carbon dioxide pCO, and the
arterial blood acidity pH was laid [38].

The next qualitatively important step was
the model of Grodins, who suggested that the
respiratory system should be considered as
a dynamic system, which made it possible to
use the appropriate mathematical apparatus
[39, 40]. The ventilation dynamics was studied
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when the concentration of carbon dioxide
in respiratory system changed. Therewith
elements of system analysis were used. The
control and controlled systems responsible
for process of gas exchange were given up,
tissue reservoirs of an organism in which
oxygen was consumed and carbon dioxide
was released were subdivided. Two reservoirs
were identified as “brain” and “non-brain”.
The first reservoir included vitally important
organs, the second one — peripheral organs
and tissues. Grodins derived the differential
equations describing the dynamics of partial
pressures and tensions of respiratory gases
in the lungs, blood and tissues, basing on the
principles of material balance and continuity
of the flow [39, 40]. A significant disadvantage
of the model was the assumption that during
inspiration, a constant pCO, was maintained in
the respiratory mixture, alveoli and blood.

Mathematical models of respiratory
and blood circulatory systems:
their use for the solution of practical
and theoretical problems
in medicine and physiology

Further development of Grodins model was
a model of mass transfer and mass exchange of
respiratory gases in human body and dolphin,
proposed by Kolchinskaya and Misyura [41].
The model considers the process of mass
transfer and mass exchange of respiratory
gases through the alveolar-capillary and
capillar-tissue membranes, taking into
account their structural and functional
pequliarities. This approach enabled to study
gases transportation in human body during
respiratory cycle: inspiration, expiration and
pause, taking into account the biophysical and
biochemical characteristics of the processes.
Besides, tissue reservoirs were differentiated
in the model, tissues of brain, heart, liver,
kidneys, skeletal muscles, and etc. were
defined. This made it possible to elaborate
the models of gases saturation and to study
the process of hypoxia development in them
[41]. The proposed model contained equations
for determining of alveolar ventilation and
systemic blood flow obtained on the basis
of experimental data. However in order to
calculate oxygen and carbon dioxide regimes
of human organism under changes in living
conditions, it was required the data that
were impossible to obtain at the current
methodological level of bioexperiment.
Therefore, it is quite problematic to use such
type of models for the cases upon changing the
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levels of energy consumption, environmental
conditions without solving the problem
concerning control of respiratory system
function.

In addition, blood circulatory system,
contrary to respiratory one, is multifunctional,
and this causes certain difficulties linked
with determination of optimality criterion.
Consequently, the concept of organism’s
oxygen regimes regulation formulated by
Kolchinskaya and Lauer was an actual one
[42]. According to this concept, the regulation
in organism is carried out by one complex
system that coordinates joint functioning of
various mechanisms and subordinates this
system to its main task — to maintain optimal
oxygen parameters along the oxygen pathes
in organism. Herewith, the delivery speed
should match the oxygen demand in tissues.
In accordance with this concept, mathematical
models should consider the united action of
the systems of external respiration, blood
circulation, and tissue respiration, aimed on
the providing of tissues demand in oxygen.

There are numerous other mathematical
models [43—52]. Let’s observe exactly the models
developed by Onopchuk and representatives of
his scientific school [37, 53—59]. Basing on above-
described approach, few mathematical models of
heat transfer and heat exchange [60—62], immune
system [63—65], system of energy supply [66] and
erythropoesis [67, 68] were developed.

These models were used to solve a number of
practical and theoretical problems in medicine
and physiology. Namely, the theoretical
problems linked with investigations of cerebral
blood circulatory tensions in operators of
continuous interaction system were solved
[69—T74], compromise resolution of conflict
situations in the problem of optimal control
in decisions making in difficult situations
was studied [37, 75—77], the role of hypoxia,
hypercapnia and hypometabolism during
adaptation of the respiratory system to
intensive muscular activity and stay in
conditions of hypoxic hypoxia were investigated
[78—82], mathematical models of short-term,
medium-term and long-term adaptation of the
respiratory system to extreme environmental
influences were developed [35, 37, 83, 84],
parameters of self-organization of the rescue
command members breathing system during
short-term and medium-term adaptation to
hypoxic hypoxia were studied [35, 82], the tasks
of modeling of the hypoxic and hypercapnic
stages of training athletes were considered [85,
86], dependence of parameters of functional
self-organization for high qualification
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women-athletes on the hormonal status of their
organisms were studied [87—-89], algorithm for
predicting of fatigue development in highly
skilled athletes with refined muscular activity
was constructed [90, 91], mathematic models
for the development of hypoxia at coronary
heart disease were developed [92—-97], algorithm
for the selection of data models and algorithms
for their processing to build an integrated
estimation of the reliability and performance of
athletes was proposed [98—101]. Separately, it
is necessary to highlight the use of these models
in sports of the highest achievements, for the
sportsmen specializing in cyclic sports [102],
martial arts [103—107], alpinism [108], their
practical application in research at the Elbrus
Medical and Biological Station of Bogomoletz
Institute of Physiology of the National Academy
of Sciences of Ukraine [109-121], for solution
of a broad range of problems connected with
the examination of operators of continuously
interacting systems and flying personnel.

Separately, it is necessary to write about
the works [122-124] associated with the
development of software for the improving
of the tools and methods for operational data
mining, processing and analysis of functional
diagnostic data, and the person’s stay in
hyperbaric environment [125, 126].

There is also a number of works devoted
to the research and identification of organism
reserves under the extreme disturbances [127—
132] and optimization of the recovery and
rehabilitation processes after the extreme loads
on an organism [133,134], thermoregulation
processes under the extreme influences [116].

Therefore, the idea to apply such models
for new class of problems related to studying

and treatment of infectious organism lesions
infected with SARS-CoV-2 seems quite
reasonable and appropriate.

Integrated model of the functional system
of respiration, blood circulation, heat
transfer, and immune response

To simulate the hypoxic state caused
by SARS-CoV-2 virus we proposed to use
integrated mathematical model of the
functional respiratory and blood circulatory
system, thermoregulation, and immune
response to predict the course of viral disease
[37, 54, 55, 57, 60—-65].

When studying the organism adaptation
to one or another disturbances, including
infectious disease, it is advisable to take into
consideration the possibility of participation
of intersystem mechanisms in process of
organism state stabilizing, taking into account
both intra-systemic and intersystemic conflict
situations. In response to the environment
disturbing influence (external or internal),
all organism functional systems react against
it to some extent, trying to stabilize the
organism state, despite the contradictions
between goals and interests. The structural
scheme of complex mathematical model for
investigation of the main functional systems
(respiration, blood circulation, heat transfer,
immune), their pharmacological correction as
well as mechanisms of their interaction and
interconnection during the life activities in
extreme conditions of the external and internal
environment was shown on Fig. 1.

Let’s give a description of the models
of individual functional systems. Briefly,
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‘ Self-organization of respiratory and blood circulatory |
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Fig. 1. Integrated model of the functional system of respiration, blood circulation,
heat transfer, and immune response
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the mathematical model of the functional
respiratory system could be represented as
follows. Mathematical model of respiratory
and blood circulatory system is a controlled
dynamic system, the phase state of which is
characterized by partial pressures and tensions
of respiratory gases in each element of the
system.

The controlled part of the model is based on
differential equations describing changes in
average partial pressures of respiratory gases
in each part of respiratory cycle — during
inspiration, expiration and pause. Briefly, the
model can be submitted as follows:

dp

O .
72: (p(pi029p[C029n[9V)Q9Q1, 9G11029q402) 4 (1)

dp,CO,

T =v(p0.pCO,, n.V,0,0,,G,C0,,4,C0,), (2)

where the functions ¢ and y are described in
detail in [54, 55], V is ventilation, 1 is a degree
of hemoglobin saturation with oxygen, @ is
volumetric velocity of systemic and @, — local
blood flows, ¢;0, is oxygen consumption rate
by i-th tissue reservoir, ¢, 0, is the rate of
carbon dioxide release in i-th tissue reservoir.
The velocities G; O, of oxygen flows from the
blood into the tlssue and G, O, of carbon dioxide
from the tissue into the blood are determined
by the ratio:

Gti = Dtisti(pcti_ pti)’ 3)

where D, are gas permeability coefficients
through ‘the airhematic barrier, S, is gas
exchange surface area.

In this model, respiratory, cardiac and
vascular smooth muscles are the active
mechanisms of self-regulation. Accordinly
V, @, @, i = 1,m are the control parameters
in the dynamic system, which are determined
as a result of solving the task of optimal
output of the disturbed dynamic system into
a stable equilibrium state characterized by the
following retios:

GO, -q0 =0, i=1 ' @
- =V, 1I1=1
AU . 5)

G,CO, +¢,C0, =0, i=Lm

The
optimal values are those that provide a
minimum of the functional:

I= I[pIZA (G,0,-4,0 )+p22/1 (G,co, +4,c0, Jd(e)

fo
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under the restrictions:

V'min < V SV’max’ Qmin SQ SQmax’ Q/’m\n SQ <

o™, ¥0,=0. (7)

In (7) py, py are organism sensitivity
coefficients to the oxygen deficiency and
carbon dioxide excess, A, characterize
functionally the morphologlcal features of
tissue region.

The dynamics of infectious lesion of
organism was given by Marchuk as a system of
ordinary nonlinear differential equations with
delay [135]. Let’s consider one of the equations
of this system:

dm —=ov(l-m)—-p,, €))
dt

where m(t) is relative characteristics of

an affected organ. If M is characteristics

of healthy organ (mass or area), and M’ is

corresponding characteristic of the healthy

part of affected organ, then

m=1-—, 9)

is a relative characteristic of lesion of an organ-
target. The factor (1 — m) in (8) determines
the effect of antigens on unaffected part of an
organ-target.

Decrease in this characteristic occur due to
the regenerative activity of an organism with
W,, coefficient characterizing the rate of mass
recovery of the affected organ.

The pathological state of an organism that
developed due to the infectious lesion can be
considered as disturbance during modeling
of blood circulatory system. Then ¢ and p,, in
(8) are the functions depended on @,. When
considering joint modeling of respiratory,
circulatory and immune systems and their
regulation, it is necessary to add the term

P, 137 (m(2),V (7)), (10)

to the quality criterion of regulation (6)
into the integration element, where pn is a
coefficient characterizing the influence degree
of the simulated disease type on the level of gas
homeostasis. The function f;(m, V)determines
the damage degree of target-organ at current
moment. At control points, this function was
taken as:

f,(m,V)=am+by (1)

It could be assumed that the flow of energy
processes in the tissues of an organ-target is
supplied only due to its unaffected part. Then
the mass of metabolizing part of the organ will



Reviews

be determined:
v, (t) = v, (1-m(2)), (12)

where vt? is a total mass (volume) of tissues of
healthy organ.

In case of infectious disease, it is natural to
assume a reaction of thermoregulatory system.
Let’s complete our model of the dynamics of
the course of infectious disease by introducing
the variable T (the temperature of internal
sphere of organism [136, 137]) in the equation
below:
dT, . . .
d—;= K (Fv=(Fv) W(Fv=(Fv)) =, (T, =T,"), (13)

k

where Ky, ur are coefficients, Fv is
concentration of Fv complexes, (Fv) is
maximal permissible concentration of
complexes, Tffk is normal temperature of core
of organism, x is Heaviside function. In this
case, it was natural to put the coefficients
in model (8)—(12) in the form of functions
depending on T,

= B(T)

= kT 14
B(T,) v, (7, T (14)
oy, =T )+b, (T, =T)], (15)

where B(;)=B.&(T;)=d, a, b, arecoefficients.

It is natural to assume that at the initial
stage of disease, the passive mechanisms of
self-regulation such as erythropoesis, release
of hemoglobin and mioglobin into blood were
involved. An increase of the content of red
blood cells and the content of hemoglobin
in them is powerful regulatory mechanism
for maintaining of organism stable state in
conditions that lead to oxygen deficiency under
the various disturbances. In [67] the linear
dependences of erytropoetin (EPO), Ht and Hb
were obtained and than they were introduced
into the mathematical model of functional
respiratory and blood circulatory system to
enhance the regulation of respiratory system
main function in hypoxia.

Further, due to the fact that severe hypoxia
develops in organism as a result of lung
damage, the injection of antihypoxants into
the organism is advisable in order to study the
possible ways of organism state relief in case
of hypoxia. The integrated model described
above for this case has to be supplemented by
the equations of transport of pharmacological
preparations in organism in forms, suggested

previously [107, 118, 138]. The algorithm for
the application of this approach is given in Fig.
2.

Our developed mathematical model
of pharmacological correction of hypoxic
states clarifies the role of pharmacological
preparation use for prevention of hypoxic
states development in organism (for
organism state perfection). It was assumed
that the withdrawal of antihypoxant f from
the organism is carried out through the
kidneys. It was assumed as well that we use
pharmacological preparations that improve
oxygen permeability through the capillary
tissue membranes of blood vessels. According
to this scheme it was assumed that the most
effective was intravenous administration of
antihypoxant, although the model enabled
to simulate as well as respiratory, oral
and intramuscular way of antihypoxants
administration.

Procedure for the work with the model

1. Patient examination is carried out.

2. The data obtained from the survey are
the source for calculation of organism oxygen
regimes [121, 122].

3. The data obtained during patient
examination and some data obtained as a
result of calculation of organism oxygen
regimes were taken as input source data in the
models of functional respiratory system, blood
circulatory system and thermoregulation. In
such a way the models individualization was
fulfilled.

4. Further, using the model of immune
response, the effect of virus is simulated;
with the interaction and interinfluence of the
models, the partial pressures and tensions of
respiratory gases in all parts of respiratory
system, alveolar ventilation and systemic blood
flows are calculated.

5. The next step is to simulate the effects
of pharmacological preparations and,
consequently, the values of the same indicators
have to be calculated again.

6. The obtained data are analyzed and
further, in case of unsatisfactory result,
another effect of antihypoxant is simulated, or
if the obtained indicators are acceptable, then
this scheme of pharmacological preparation
use is chosen.

Thus in this publication, the results of
development of comprehensive integrated
mathematical model for simulation of
the course of disease caused by SARS-
CoV-2 were suggested. It could be used
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Fig. 2. Scheme of mathematical model for simulating the course of viral disease and its pharmacological
correction: Hb, BH — concentrations of hemoglobin and buffer bases in blood; @ — volurimetric velocity of
systemic blood flow; @;. — volurimetric velocity of local blood flows; ORO — oxygen regimes of organism;
v — alveolaf ventilation (air volume that pass through alveolar space during 1 min)

for pharmacological correction of hypoxic
states that occur with the complication of
disease course as well. The bases for the
used methodology were observed as well
as mathematical models of respiration and
blood circulation systems. The information
about the developed models of respiratory
and blood circulatory systems and their use
for the solution of practical and theoretical
problems in medicine and physiology were
suggested. For simulation of hypoxic state
caused by SARS-CoV-2, we proposed to
use the integrated mathematical model of
functional respiratory and blood circulatory
systems, thermoregulation, and immune
response one to forecast the course of viral
disease. The structural scheme of complex
mathematical model for the investigations
of main functional systems (respiration,
blood circulation, heat transfer, and immune
response), their pharmacological correction
as well as mechanisms of their interaction
and interconnection during the life activities
in extreme conditions of the external and
internal environment was demonstrated. In
the result, the complex of information support
for imitation of viral disease course as well as
for it pharmacological correction caused by
the organism hypoxic states were developed.
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For today, this mathematical integrated
model has theoretical significance only. It is
based on the information about the clinically
registered manifestations of coronaviral
(SARS-CoV-2) disease available in the public
domain. Therefore, this model requires further
perfection. In particular, it seems necessary
to clarify some characteristics of respiratory
gases transport through the alveolar-capillary
membrane, peculiarities of gas exchange in
the alveolar space, which cause the decrease of
blood oxygenation. These are the problems that
need to be solved in close collaboration with the
professionals in medicine. At the same time,
the imitation on this model the development
of infectious disease and associated hypoxic
state is one of the possible and quite effective
tool for solving the tasks associated with
the support of patients in acute hypoxic
respiratory and heart failure caused by the
complications of viral (SARS-CoV-2) disease.

“To develop mathematical models of the
integration organisms of functional systems
for a body and methods of integration of their
mathematical models to maintain the reliability
and safety of human life in extreme conditions”
(State registration number 0114U001052).
2014-2018 Research work B.F.170.09.
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MeToio po6oTu 0yJIO CTBOPEHHS KOMILIEKCHOI
MaTeMaTU4YHOI MOeJIi, 110 iMiTye mepebir 3axBo-
pioBaHHs, cupuunHeHoro Bipycom SARS-CoV-2,
Ta (h)apMaKOJOTiUYHOI KOPEKIlii INIOKCUYHUX CTaHiB
OpraHisMy B pasi YCKJIaJHEHHA ITHOT0 3aXBOPIOBAH-
Hs. B 11i#t poboTi 6yJI0 BUKOPUCTAHO METOIU MAaTe-
MATUYHOTO MOJIETIOBAHHS Ta TEOPil ONITUMAIBHOTO
KepyBaHHA PyXoMUMHU 00’€KTaMu. 3alIpOIOHOBaHA
MaTeMaTUYHa MOeJb CKJagajacd 3 MaTeMaTuy-
HUX Mojegeil (GpYHKI[IOHATLHUX CHUCTEM AUXAHHSA
Ta KPOBOOOITY, TEPMOPETyJIsIlil, iMyHHOI BigmoBii,
epuTpomoesdy Ta papMaKoJoriuHol KopeKItii. [aa
miei mozesti 0yJ10 B3ATO iHAUBiAyaIbHI HaHi malfieH-
Ta i 3ificHeHO iMiTallifo BipyCHOTO 3aXBOPIOBAHHA.
IIporuosyBasu peakIiii opraniB fuxaHHa Ta KPOBO-
00iry: po3paxoBaHO MaPIiaJbHUN TUCK TUXAJTbHUX
rasiB y aJIbBEOJIIPHUX IIPOCTOPAX Ta iXHIO HATIPYTY
B KPOBI JIeTeHeBUX KalllJIApiB, apTepiaabHOI Ta 3Mi-
maHoi BEeHO3HOI KPOBi Ta TKaHMHHOI piguuu. lami
iMiTyBasmM iH’€KIlif0 AHTUTIIIOKCAHTY Ta PO3pPaxo-
BYBAJIU 3HAUEHHS TUX caMux mapaMerpiB. Takum
YMHOM MOKHA 0yJ10 BUOpATH HAMOIIBIII ONITUMAJTE-
HU cI0ci0 KOPEKITii MITOKCUYHOTO CTaHy JAJIA Oy Ib-
AKol JogunHEu. Ha chboromHi 115 MOEJb € CYTO Teo-
PETHUYHOIO, OCKiIbKY MOJEJi CUCTEMU JUXAHHSI Ta
KPpOB00O6iTy 0yJ10 po3p0o0JIeHo Ha ycepeaHeHi nami, i
BOHU HE BPaXOBYIOTh OCOOJIMBOCTEI OKpPeMUX ocio,
indirkoBanux SARS-CoV-2. 3okpema, 1ie CTOCYEThCA
Ta3000MiHy B aJIbBEOJIIPHOMY ITPOCTOPI MOXKJIUBUX
0CcO0JIMBOCTEM TPOHUKHOCTI AMXAJIbHUX TasiB uepes
aJIbBEOJISIPHO-KAIIIApHY MeMOpany. OZHaK e OqUH
i3 MOXKJIMBUX HAIIPAMIB BUPilIeHHA CKJIQJHUX 3a-
BIaHb, ITIOB’A3aHUX 3 JIIKYBAHHAM 3aXBOPIOBAaHH,
cupuunHeHoro Bipycom SARS-CoV-2. ¥V pesyabraTi
0yJio PO3PO0IEHO KOMILIEeKC iH(opMaIifHol mif-
TPUMKHU IJ1dA imiTarii mepebiry BipycHUX 3aXBOpIO-
BaHb, a TAKOK (DapMaKOJIOT1YHOI KOPeKIIii crpuyn-
HEHUX HUMU TiTIOKCUYHUX CTAHiB.

Kanawuosi cnosa: Bipyc SARS-CoV-2, mozmenb
iMyHHOTO BifITYyKy, MaTeMaTUYHA MOJIEJIb TUXAJIhb-
HOI cucTeMu, TiTOKCUYHUI CTaH, iHQEKIiliHe
ypasKeHHA.
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ITenbio paboTHI OBLIO CO3MaHNE KOMILIEKCHOMR
MaTeMaTUUeCKOi MoAean, UMUTUPYIOIeil TeueHme
3abosieBaHUsA, BhI3BaHHOTO Bupycom SARS-CoV-2,
¥ (PapMaKOJIOTMIECKON KOPPEKIIUY M’MIOKCUYECKUX
COCTOSTHUIT OpTaHM3Ma, BOSHUKAIOITUX B CIydae oc-
JIO’KHEHUA 3TOoro 3aboneBanHud. B aToii pabore uc-
MOJIb30BAJINCH METOIbI MATEMATUUYECKOT'0 MOIEJIH-
pOBaHUSA U TEOPUH ONITUMAJIBHOTO VIIPABJIEHUA ABU-
JKyIHuMucs oobekramu. Ilpemiaraemas mareMaTu-
yecKas MOJIEeJIb COCTOSIA M3 MaTeEMaTUYEeCKIX MO/Ie-
Jet GYHKITMOHAIBHBIX CUCTEM ABIXaHUA U KPOBOO-
OpalreHus, TepMOPETYIAINUNT, UMMYHHOT'O OTBETA,
SPUTPOII033a U (PapMaKOJIOTUUECKON KOPPEKIIUN.
Hs aT0l MoAeau ObLIV B3ATHI MHAWBUAYATbLHBIE
DaHHbIE MTallieHTa U CMOAeJIMPOoBaH ah(PEKT B BUIe
BUpycHOro 3a6omeBanusi. COpOrHO3UPOBAHBI peaK-
I ObIXaTeJbHOM U KPOBEHOCHOM CUCTEM: pacCUu-
TaHbI TAaPIIHAIbHOE JaBJIeHNE AbIXaTeJbHBIX Ta30B
B aJIbBEOJIAPHBIX IIPOCTPAHCTBAX U X HATIPKEHIIE
B KPOBU KallWJLJIAPOB JIETKUX, AapTePUATHHOIT U CMe-
IIaHHOM BEHO3HOII KPOBU U TKAHEBOU JKUIKOCTH.
Hastee UMUTHPOBAIN MHBEKIINIO AHTUTUIIOKCAHTA
M PacCUMTHIBAJIN 3HAUEHUS TeX Ke ITapaMeTpOB.
Takum 06pa3oM MOKHO OBLIO BHIOpPATh Hambojee
OIITUMAJIbHBIIN CII0CO0 KOPPEKIIUU TUITOKCHUUECKOT0
COCTOSTHUSA IJIsI CPeIHECTAaTUCTUUECKOTO UeIOBeKa.
Ha cerogusinnuii 1eHb 9Ta MOZEJIb ABJISIETCS YHCTO
TEOPeTUUECKOIl, TOCKOJIbKY MOJIEJIV CUCTEMBI AbIXa-
HUA ¥ KPOBOOOPAIIeHMA ObLIN paspaboTaHbl ycpes-
HeHHbIe TaHHble, U He YUUTHIBAIOIE 0COOEHHOCTH
OTIeJbHBIX JIUIT, HHPUIIpoBaHHLIX SARS-CoV-2.
B uacTHOCTH, 5TO Kacaercs razoo0MeHa B aIbBEO-
JIIPHOM IIPOCTPAHCTBE M BOBMOXKHBIX 0COOEHHOCTEI
TTPOHUIIAEMOCTH AbIXaTeJIbHBIX Ta30B Uepes aabBeo-
JSAPHO-KaOWLIAPHYIO0 MeMOpany. OZHaKO 3TO OTHO
13 BO3MOXKHBIX HAIIPABJIEHUN PEIIeHUA CIOKHBIX
3aJ]au, CBA3AHHBIX C JIeUeHNEeM 3a00JIeBaHUsA, BbI-
3BaHHOro Bupycom SARS-CoV-2. B pesyibrare ObLT
paspaboTaH KOMILIEKC NH(OPMAIIOHHON IOAAePIK-
KU )i UMUTAIIUY TeYEeHUS BUPYCHBIX 3a00JeBa-
HUH, a TaK:Ke (DapMaKOJOTTYeCKON KOPPEKITUU BbI-
3BAHHBIX MU TUIIOKCUYECKUX COCTOSHUI.

Knwmouesvte cnosa: Bupyc SARS-CoV-2, monmennb
UMMYHHOTO OTKJIMKA, MaTeMaTHYecKas MOIeJb
IBIXaTeJbHON CHUCTEeMbI, TUIIOKCUUYECKOe COCTOS-
HUe, NHPEKIINOHHOE II0PaKeHue.





