
Received: November 10, 2020. Revised: December 10, 2020. 506

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

An Extended Rule of the SysML Requirement Diagram Transformation into

OWL Ontologies

Ahmad Ashari1* Anny Kartika Sari1 Helna Wardhana1,2

1 Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia

2Department of Informatics, Universitas Bumigora, Lombok, Indonesia
* Corresponding author’s Email: ashari@ugm.ac.id

Abstract: The System Modeling Language (SysML) used the Requirement Diagram to model non-functional

requirements, such as response time, size, or system functionality, which cannot be accommodated in the Unified

Modeling Language (UML). SysML Requirement Diagram, in its implementation, integrates with several diagrams

describing the requirements, which are referred to as additional elements. The absence of transformation rules for these

additional elements to become OWL ontology causes difficulties in reading, understanding, and tracking the

requirements. In this research, an extended rule of the Requirement Diagram transformation is proposed to solve the

problems. First, some transformation rules are defined to make requirements easier to trace and realize the ontology

generation's automatic transformation. Second, the time required during transformation processing to prepare and

generate the OWL file shows the proposed model's performance. The ontology components produced from this

research, such as class, subclass, object property, and data property, can be viewed in Protégé.

Keywords: SysML diagram, Requirement diagram, Ontology, OWL, Transformation.

1. Introduction

The Requirement Diagram is used by the System

Modeling Language (SysML) to depict and model

non-functional requirements, such as response time,

size, or system functionality, which cannot be

accommodated in the Unified Modeling Language

(UML). Nevertheless, SysML still lacks the

capability to represent the semantic contexts within

the design.

The development of integrated models in

information modeling, where the model elements in

one diagram can be related to the model elements in

other diagrams, is one of the SysML benefits [1].

SysML Requirement Diagram, in its implementation,

integrates with several diagrams in describing the

system's requirements, such as activity, internal block,

interaction, state machine, and use case. These

diagrams become additional elements in the

requirement diagram. The absence of transformation

rules for these additional elements causes difficulties

in understanding and tracking the requirements.

An ontology is generally defined as an explicit and

formal representation of knowledge [2, 3]. The use of

ontology enables system engineers to model

metadata concepts and semantic contexts that can be

used in model inference and transformation

rulemaking [4-5]. Furthermore, the relevant concepts

of a domain are reflected by the ontology [6].

Therefore, the transformation of the SysML

Requirement Diagram into an ontology is needed.

In [7], we proposed an automatic transformation of

the SysML Requirement Diagram into the Web

Ontology Language (OWL) ontology. Using the

predefined transformation rules and algorithm, the

transformation process from elements of SysML

Requirement Diagram into ontology components

runs well. It can produce an OWL ontology displayed

through Protégé.

Although the transformation from SysML to

OWL has been proposed by [8] and [6], the

transformation is still done manually. In this research,

an extended rule of the SysML Requirement Diagram

transformation is proposed. First, some

Received: November 10, 2020. Revised: December 10, 2020. 507

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

transformation rules are defined, not only to complete

the previous rules but also to make requirements

easier to trace and realize the automatic

transformation. Second, the time required during

transformation processing for the generation of the

OWL file shows the proposed model's performance.

The main difference between our proposed model

with the existing approaches is that the model

suggests an automatic transformation from SysML

Requirement Diagram into OWL. Through automatic

transformation, this research is expected to increase

the use of requirement diagram to support object-

oriented system modelling, which models the

system's non-functional requirements and expresses

the structure and behavior of a system.

The rest of this paper is organized as follows. The

related researches with this study are explained in

Section 2. Section 3 presents the transformation rules

and algorithms. Section 4 describes the results and

discussion of the test. In section 5, the conclusion of

this work is presented.

2. Related work

Research on the transformation of SysML

Diagrams into OWL has been proposed by [8] and [6],

but the transformation process is still done manually.

Research by [8] uses several diagrams in SysML to

analyze and present scenarios about system model

change from a formal perspective, namely how to add,

remove, and modify model elements in response to

changes in a system's design. Ontology is applied to

formalize transformations in the influence of the

relationship between the system model's

requirements, behavior, and structure. Another

research was conducted by [6], translating the block

diagram into OWL, which created an OWL

knowledge base that could represent a system's

structural design information.

Several other researchers [9-15] have proposed

UML translation models into OWL automatically

using the class diagram. The aim of [9] is the

establishment of an appropriate conceptual

correspondence between UML and OWL through the

semantic-preserving scheme translation algorithm.

The algorithm proposes an approach that

automatically extracts OWL from UML. Research

conducted in [10] uses eXtensible Stylesheet

Language (XSL) style sheets to transform UML

models, producing applications that automatically

transform class diagrams into OWL. An eXtensible

Stylesheet Language Transformations (XSLT)-based

architecture for automated OWL development

consisting of Metamodel Definition of Ontology that

is defined using the Meta-Object Facility (MOF) has

been proposed by [11]. Other research is carried out

in [12-13], which has revised the transformation rules

and proposed the verification rules to check the UML

class diagram's suitability with the ontological

domain in OWL. An automatic translation of UML

into OWL is proposed in [14] through an approach

that analyzes UML models' consistency and

satisfaction using logical reasoning for OWL. The

design and software development that uses a model-

based approach to produce OWL-based Web Service

ontologies from the UML model is proposed [15].

3. Transformation rules and algorithm

This section presents the extent of the

transformation rules and algorithms [7] used to

change the Requirement Diagram into an OWL.

3.1 Transformation rules for additional elements

This research uses a set of rules to transform the

SysML Requirement Diagram into ontology, as

described in [7]. The transformation rules for most of

the SysML Requirement Diagram elements have

been discussed in [7]. This study proposes rules for

<<testcase>> and notes, as shown in Table 1.

The <<testcase>> element is transform become a

class like a requirement, but there is a label

given to add remark that the class is a

<<testcase>>. In addition to notes,

<<rationale>> and <<problem>> are also

included in the notes group. Notes are

transformed into the label in the ontology that

contains information or notes like written in the

symbols.

The rules are also constructed to transform

elements from other diagrams, hereinafter referred to

as additional elements used in the SysML

Requirement Diagram, as shown in Table 2. Several

other diagrams are used in conjunction with the

SysML Requirement Diagram to describe the

system's non-functional requirements [16]. The

diagrams are activity, internal block, state machine,

interaction, and use case. External documents or

artifacts include additional elements used as a

reference for tracking by the SysML Requirement

Diagram element. All additional elements are

transformed into class in ontology by explaining the

label to differentiate from the class formed from
<<requirement>>.

3.2 Algorithm

This research still uses the transformation

algorithm S2OTransformation [7] with several

Received: November 10, 2020. Revised: December 10, 2020. 508

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

Table 1. Transformation rules of SysML requirement diagram into OWL ontologies

SysML

requirement

diagram element

SysML requirement

diagram graphical

symbol

Corresponding

OWL ontology

component

OWL representation

Additional

remark on

the label

testCase

an OWL class (an

entity class)

<owl:Class

rdf:about="TestCase-..."

rdf:label="testCase"/>
testCase

Notes/comments

a label
<rdfs:comment>……...

</rdfs:comment>

According to

the content of

notes in the

graphical

symbol

Table 2. Transformation rules of additional elements in SysML requirement diagram into OWL ontologies

Additional

elements from

other diagrams

SysML requirement

diagram graphical

symbol

Corresponding

OWL ontology

component

OWL representation

Additional

remark on the

label

activity from

Activity diagram

an OWL class (an

entity class)

<owl:Class

rdf:about="Activity-…"

rdf:label="Activity

Diagram"/>

From Activity

diagram

block from

Internal block

diagram

an OWL class (an

entity class)

<owl:Class

rdf:about="Block-…"

rdf:label="Internal Block

Diagram"/>

From Internal

block diagram

statemachine

from

Statemachine

diagram

an OWL class (an

entity class)

<owl:Class

rdf:about="Statemachine-…"

rdf:label=" Statemachine

Diagram"/>

From

Statemachine

diagram

interaction

Interaction

diagram

an OWL class (an

entity class)

<owl:Class

rdf:about="Interaction-…"

rdf:label=" Interaction

Diagram"/>

From

Interaction

diagram

useCase from

useCase diagram

an OWL class (an

entity class)

<owl:Class

rdf:about="useCase-…"

rdf:label="useCase

Diagram"/>

From useCase

diagram

document from

An external

document

an OWL class (an

entity class)

<owl:Class

rdf:about="Document-…"

rdf:label="External

Document"/>

Refer to an

external

document

artifact from

An external

document

an OWL class (an

entity class)

<owl:Class

rdf:about="Artifact-…"

rdf:label=" Artifact/External

Document"/>

Refer to an

artifact/ An

external

document

modifications to transform the additional

elements became the classes by making classname

and labelname to accommodate that

transformation. For more details, the fundamental

steps for transforming the SysML Requirement

Diagram into an OWL file are presented in the

<<testCase>>

<<activity>>

<<block>>

<<statemachine>>

<<interaction>>

<<useCase>>

<<document>>

<<artifact>>

<<rationale>>

<<problem>>

Received: November 10, 2020. Revised: December 10, 2020. 509

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

flowchart in Fig. 1 and Fig. 2. We divide the

flowchart drawing into two, namely first to describe

the preparation of the OWL file generation, as shown

in Fig. 1, and secondly, about the generation of the

OWL file itself, as shown in Fig. 2.

4. Result and discussion

This study uses the SysML Requirement Diagram

model [17] to prove the additional elements'

transformation into classes.

4.1 Example of SysML requirement diagram

Fig. 3 shows the Requirement Diagram, created
with Visual Paradigm Modeler v16.2. The
requirement diagram is showing the traceability of
the Maximum Acceleration requirement. The

traceability to a text-based requirement includes
the design elements to satisfy it, other

requirements derived from it, and a testcase to

verify it. The rationale for the

deriveReqt relationship based on parametric

analysis is also shown. This case example illustrates
the use of all the SysML Requirement Diagram
elements and the additional elements to represent all
transformation rules' application to all components in
the ontology. Fig. 3 contains the following elements:

❖ requirements such as Maximum

Acceleration and Engine

Specification

❖ requirement containment such as Engine
Power

❖ dependencies between requirements such as
trace, verify, satisfy, derive

and refine,

❖ item id and text in Maximum

Acceleration and Engine Power

requirements

❖ testCase such as Max Acceleration

❖ note such as rationale

❖ the additional elements such as activity,

block, and artifact

Figure. 3 Requirement diagram modeled using the visual paradigm

Received: November 10, 2020. Revised: December 10, 2020. 510

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

Figure. 1 Flowchart for preparation of OWL file generation

Figure. 2 Flowchart for generating of OWL file

Received: November 10, 2020. Revised: December 10, 2020. 511

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

4.2 The resulted ontology

According to the Requirement Diagram shown in

Fig. 3, the S2OTransformation algorithm [7] is

applied. The resulted ontology is shown in Fig. 4, Fig.

5, and Fig. 6.

Fig. 4 and Fig. 5 show the class hierarchy, which

is the product of the transformation of requirements

and the additional element, as shown in Fig. 3.

Labeling for classes that are transformed from the

additional elements such as activity diagram

and internal block diagram is also visible.

Figure. 4 The OWL class resulted from the

transformation for activity

Figure. 5 The OWL class resulted from the

transformation for block

Figure. 6 The OWL object properties resulted from the

transformation

Fig. 6 shows object properties as the results of the

transformation process of the <<derive>>,

<<trace>>, <<satisfy>>, <<refine>>, and

<<verify>> dependencies. Fig. 6 also shows the

source (domain) and destination (range) of each

dependency. For example, the domain (derive from)

of the derive object property is class Engine

Power, while the range (towards) is class Maximum

Acceleration. The label, as the results of the

transformation process of the rationale, is also

shown.

4.3 Algorithm efficiency test

The accuracy and speed of the transformation

process of all SysML Requirement Diagram elements

into an OWL ontology can show the good

performance of the proposed model. Ten SysML

Requirement Diagrams created with Visual Paradigm

tools were tested in the experiments, as listed in Table

3. This study uses ten examples of SysML

Requirement Diagrams, taken from several

references regarding using the SysML Requirement

Diagram [16–20]. The reason for choosing this case

example is because these examples can represent the

entire transformation process of all the elements of

the SysML Requirement Diagram and the additional

elements.

Table 3 shows the number of each SysML

Requirement Diagram element contained in each

case study, namely requirement (Req),

containment (Cont), dependencies such as

trace (T), copy (C), derive (D), verify (V),

refine (R), and satisfy (S). Table 3 also shows

the number of items, testcase, notes, and the

additional elements related to the SysML

Requirement Diagram, such as activity

diagram, internal block diagram,

state machine diagram, interaction

diagram (Intr), use case diagram,

artifact, and external document (Doc).

The verification result of the transformation, as

shown in Table 3, shows that all elements in the

SysML Requirement Diagram case examples have

been transformed into ontology components.

According to the rules defined, the transformation

results are in the form of OWL files containing

classes, subclasses, object properties,

data properties, and labels. The

transformation process's success is 100% of all the

example diagrams show that a fully automatic

ontology transformation can be achieved.

The algorithm's efficiency was tested to

determine the transformation algorithm's actual

Received: November 10, 2020. Revised: December 10, 2020. 512

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

execution time of the SysML Requirement Diagram

with different diagram sizes. The size of each

diagram (𝑁) is determined based on its many

elements, namely the number of requirements, the

number of containments, the number of dependencies,

the number of items, the number of testcase, the

number of notes, and the number of other diagram

elements. Eq. (1) shows the calculation of the size of

the diagram.

𝑁 = 𝑁𝑅 + 𝑁𝐶 + 𝑁𝐷 + 𝑁𝐼 + 𝑁𝑇 + 𝑁𝑁 + 𝑁𝐸 (1)

where:

𝑁 = Diagram size

𝑁𝑅 = Number of requirement

𝑁𝐶 = Number of containment

𝑁𝐷 = Number of dependency

𝑁𝐼 = Number of item

𝑁𝑇 = Number of testcase

𝑁𝑁 = Number of note

𝑁𝐸 = Number of other diagram elements

Furthermore, the execution time will be

calculated from the proposed model algorithm

routine that runs the SysML Requirement Diagram.

To see the algorithm's effectiveness, the calculation

of time is divided into the execution time for the

preparation of generating the OWL file and the

execution time for the generation OWL file. The

calculation of the two types of time is carried out to

see which algorithm's performance during the

process, which takes more time. Time measurement

is done empirically. We use the millisecond (ms) as a

unit of time in writing processing time calculations.

The results of calculating the execution time for the

entire SysML Requirement Diagram are shown in

Table 4. Table 4 shows that the processing time

required is based on each diagram's size in each case

study to prepare and generate the OWL file. Based on

experiments conducted on ten examples, as shown in

Table 4, each diagram's processing time is greatly

influenced by several things: the number of

requirements, containment, and diversity of elements

in each diagram.

The preparation stage of creating an OWL file

takes a longer time than it takes to generate an OWL

file, although the time difference is not very

significant. The time required to prepare the OWL

file is due to several processes that must be carried

out in the execution algorithm. These processes are:

• Mapping classname and tablename

• Finding the SysML model

• Prepare data to generate an OWL file.

• Checking subclass of diagram element

• Searching object property

• Searching property data.

Table 4 shows that the greater the number of

requirements and containment in a diagram, the

longer it will take for the preparation process to

produce an OWL file. From the ten examples used,

diagram example #7 takes the longest time to prepare

and generate the OWL file, namely 315 ms for

preparation and 72 ms to generate the OWL file.

Diagram example #7 has the highest number of

requirements and containment and contains several

additional elements. Example diagrams #6 and # 9

have the fastest processing time to prepare to generate

OWL files, namely 250 for #6 and 248 for #9. These

two examples have the smallest number of

requirements for other examples. The time to

generate OWL files is influenced by the many types

of diagram elements involved. The more types of

elements in a diagram, the longer it will generate the

OWL file. Example of diagram #1 has the fastest time

to generate OWL files, namely 60 ms, because this

example only contains item elements other than

requirement and containment.

5. Conclusion

In this paper, the automatic transformation from

SysML Requirement Diagram into OWL ontology,

especially for additional elements, has been fully

achieved. The additional elements are activity

diagrams, internal block diagrams, state machine

diagrams, interaction diagrams, use case diagrams,

artifacts, and external documents. Based on the

experimental results, it can be concluded that the

extent of transformation rules and algorithms can

produce an ontology file.

The number of all elements in a SysML

Requirement Diagram, especially the additional

elements, greatly affects the length of time it takes to

transform the diagram into an OWL ontology. The

experimental results show that the actual execution

time needed to prepare the OWL file generates longer

than the time required to create OWL files. The

number of requirements and the amount of

containment determines the length of processing time

needed to prepare the OWL file generation. The more

the number of requirements and containment, the

longer it will take for processing. Meanwhile, the

time required to generate the OWL file is influenced

by the many additional elements in the SysML

Requirement Diagram. The more types of elements

involved, the longer it will take.

Received: November 10, 2020. Revised: December 10, 2020. 513

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

Table 3. Transformation of all model elements into ontology

Case

study

Number of SysML requirement diagram elements Number of additional elements Number of OWL ontology components The percentage

of successful

transformation

(%)
Req Cont

Dependency
Item

Test

case
Notes Activity Block

State

machine
Intr useCase Artifact Doc Class Subclass

Object

property

Data

property

Label

(notes) T C D V R S

#1 9 7 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 9 7 0 2 0 100

#2 5 9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 5 9 0 2 0 100

#3 10 0 0 0 9 0 0 0 0 0 3 0 0 0 0 0 0 0 10 0 1 0 3 100

#4 2 2 0 0 2 0 0 1 4 0 2 0 1 0 0 0 0 0 3 2 2 2 3 100

#5 2 1 1 0 1 1 1 2 2 1 1 1 1 0 0 0 1 0 6 1 5 2 5 100

#6 2 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 5 0 4 0 3 100

#7 9 9 0 0 9 1 0 0 1 1 3 0 0 0 0 0 0 0 10 9 2 2 4 100

#8 4 0 1 0 3 0 0 0 0 0 1 0 0 0 0 0 0 1 5 0 2 0 2 100

#9 2 0 0 0 1 1 2 0 0 0 0 0 0 1 1 1 0 0 5 0 3 0 3 100

#10 14 0 0 0 12 0 0 0 14 0 0 0 0 0 0 0 0 0 14 0 1 2 0 100

Table 4. Transformation processing time

Case

study

Diagram

size

Number of elements The processing time for

preparation of generation

OWL file (ms)

The processing time

for generation OWL

file (ms)
Req Cont Dep Item Testcase Notes Additional elements

#1 18 9 7 0 2 0 0 0 301 60

#2 15 5 9 0 1 0 0 0 304 63

#3 22 10 0 9 0 0 3 0 310 62

#4 14 2 2 3 4 0 2 1 295 65

#5 16 2 1 6 2 1 1 3 298 69

#6 9 2 0 4 0 1 0 2 250 61

#7 33 9 9 10 1 1 3 0 315 72

#8 10 4 0 4 0 0 1 1 256 62

#9 9 2 0 4 0 0 0 3 248 63

#10 40 14 0 12 14 0 0 0 312 64

Received: November 10, 2020. Revised: December 10, 2020. 514

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

The ontology components resulted from this

research, such as class, subclass, object property, and

data property, can be viewed through Protégé. Based

on the predefined transformation rules, through

automatic transformation, this research is expected to

increase the use of requirement diagrams to support

object-oriented system modeling, which not only

models the system's non-functional requirements but

also expresses the structure and behavior of a system.

For further research, this SysML Requirement

Diagram transformation tool will be further

developed and analyzed to transform other types of

diagrams in SysML and integrate them with diagrams

in Unified Modeling Language (UML).

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

The contributions by the authors for this research

are as follows: conceptualization, methodology,

validation, formal analysis, Ahmad Ashari, and Anny

Kartika Sari; software, investigation, resources, data

curation, writing—original draft preparation, project

administration, Helna Wardhana; writing—review

and editing, visualization, supervision, Ahmad

Ashari, and Anny Kartika Sari.

Acknowledgments

This research was supported by Rekognisi Tugas

Akhir (RTA) program from the Research Directorate

of Universitas Gadjah Mada through contract number

2488/UN1.P.III/DIT-LIT/PT/2020.

References

[1] D. Wu, L. L. Zhang, R. J. Jiao, and R. F. Lu,

“SysML-based design chain information

modeling for variety management in production

reconfiguration”, J. Intell. Manuf., Vol. 24, No.

3, pp. 575–596, 2013, doi: 10.1007/s10845-011-

0585-6.

[2] H. Wardhana, Y. Suyanto, and S. Priyanta,

“Utilization Of Query Rewriting Over Ontology

Change : A Review”, Int. J. Sci. Technol. Res.,

Vol. 7, No. 3, pp. 117–124, 2018.

[3] A. K. Sari, “Mapping of Change Operations

from Gene Ontology into Medical Subject

Headings”, International Journal of Intelligent

Engineering and Systems, Vol. 13, No. 4, pp.

44–55, 2020, doi: 10.22266/ijies2020.0831.05.

[4] A. Makwana, “A Known in Advance, What

Ontologies to Integrate ? For Effective Ontology

Merging Using K-means Clustering”,

International Journal of Intelligent Engineering

and Systems, Vol. 11, No. 4, pp. 72–87, 2018,

doi: 10.22266/ijies2018.0831.08.

[5] F. Mary and H. Fernandez, “A Novel Analysis

and Prediction of Students ' Behaviour Using

Semantic Similarity-Based Improved J48 IL

Algorithm in Personalized Library Ontology”,

International Journal of Intelligent Engineering

and Systems, Vol. 11, No. 5, pp. 173–182, 2018,

doi: 10.22266/ijies2018.1031.16.

[6] H. Graves, “Integrating SysML and OWL”, in

CEUR Workshop Proceedings, 2009, Vol. 529,

No. Owled.

[7] H. Wardhana, A. Ashari, and A. K. Sari,

“Transformation of SysML Requirement

Diagram into OWL Ontologies”, Int. J. Adv.

Comput. Sci. Appl., Vol. 11, No. 4, pp. 106–114,

2020.

[8] H. Wang, V. Thomson, and C. Tang, “Change

propagation analysis for system modeling using

Semantic Web technology”, Adv. Eng.

Informatics, Vol. 35, pp. 17–29, 2018, doi:

10.1016/j.aei.2017.11.004.

[9] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan,

“Automatic extraction of OWL ontologies from

UML class diagrams: a semantics-preserving

approach”, World Wide Web, Vol. 15, No. 5–6,

pp. 517–545, 2012, doi: 10.1007/s11280-011-

0147-z.

[10] A. Belghiat and M. Bourahla, “Transformation

of UML models towards OWL ontologies”, In:

Proc. of 2012 6th International Conf. on

Sciences of Electronics, Technologies of

Information and Telecommunications, SETIT

2012, pp. 840–846, 2012, doi:

10.1109/SETIT.2012.6482025.

[11] D. Gasvic, D. Djuric, V. Devedzic, and V.

Damjanovic, “From UML to ready-to-use OWL

ontologies”, In: Proc. of Second IEEE

International Conf. on Intelligent Systems, 2004,

No. June, pp. 485–490, doi:

10.1109/is.2004.1344798.

[12] M. Sadowska and Z. Huzar, “Representation of

UML Class Diagrams in OWL 2 on the

Background of Domain Ontologies”, e-

Informatica Softw. Eng. J., vol. 13, no. 1, pp. 63–

103, 2019, doi: 10.5277/e-Inf190103.

[13] M. Sadowska and Z. Huzar, “Semantic

Validation of UML Class Diagrams with the Use

of Domain Ontologies Expressed in OWL 2”, in

Software Engineering: Challenges and

Solutions, Vol. 504, 2017, pp. 47–59.

[14] A. H. Khan and I. Porres, “Consistency of UML

class, object and statechart diagrams using

ontology reasoners”, J. Vis. Lang. Comput., Vol.

Received: November 10, 2020. Revised: December 10, 2020. 515

International Journal of Intelligent Engineering and Systems, Vol.14, No.1, 2021 DOI: 10.22266/ijies2021.0228.47

26, pp. 42–65, 2015, doi:

10.1016/j.jvlc.2014.11.006.

[15] Il-Woong Kim and Kyong-Ho Lee, “A Model-

Driven Approach for Describing Semantic Web

Services: From UML to OWL-S”, IEEE Trans.

Syst. Man, Cybern. Part C (Applications Rev.,

Vol. 39, No. 6, pp. 637–646, 2009, doi:

10.1109/tsmcc.2009.2023798.

[16] OMG, “OMG Systems Modeling Language”,

2017, [Online]. Available:

http://www.omgsysml.org/INCOSE-

OMGSysML-Tutorial-Final-

090901.pdf%5Cnhttp://scholar.google.com/sch

olar?hl=en&btnG=Search&q=intitle:OMG+Sys

tems+Modeling+Language#8.

[17] S. Friedenthal, A. Moore, and R. Steiner, “An

Automobile Example Using the SysML Basic

Feature Set”, in A Practical Guide to SysML,

Elsevier, 2015, pp. 53–81.

[18] S. Friedenthal, A. Moore, and R. Steiner, Water

Distiller Example Using Functional Analysis.

2015.

[19] S. Friedenthal, A. Moore, and R. Steiner,

Modeling Text-Based Requirements and Their

Relationship to Design. 2015.

[20] T. Weilkiens, Systems Engineering with

SysML/UML Modeling, Analysis, Design. The

OMG Press, 2008.

