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Abstract: Wireless sensor nodes help people to monitor any operational mechanism. It is important to be implemented 

in industrial automation in detecting unauthorized activity or malicious sensor nodes by the outsider. However, a 

massive number of devices or things which are needed to be controlled become a challenge. A fast mechanism to 

recognize a member or a valid device is needed to minimize production costs and avoid future procedural errors. It 

becomes an open problem for the implementation of massive scale Wireless Sensor Networks (WSN). Hence, a 

scalable two-dimensional Bloom filter is proposed in this paper to deal with this issue. The low computation 

complexity and the storage efficiency requirements by the two-dimensional Bloom filter are proven by the 

experimental results. The insertion, deletion and query procedure of the proposed method only need O (1), while the 

storage usage of two-dimensional Bloom filters not only lower than counting Bloom filter in average 131 bits 

difference but also approaches accommodative Bloom filter in about 10 bits difference. These two parameters support 

a fast membership scheme. Furthermore, the analysis of value initialization has been performed. To the best of our 

knowledge, the investigation of this parameter has not been addressed by other studies. This process aims to get the 

best scenario to increase scalability. Several recommendations for selecting dimension number has been stated which 

is useful for efficient storage usage and reduce false positive. 

Keywords: Dimensional bloom filter, Massive-scale, Scalable, Wireless sensor networks. 

 

 

1. Introduction 

Nowadays, devices or machines can be 

automatically monitored, based on sensor node 

information. This avoids human interaction which 

manually and physically detects each machine’s 

behavior. Wireless sensor nodes aim to connect 

things to the system through its senses ability such as 

based on movement [1], gas concentration [2], 

moisture [3], etc. However, sensor nodes are 

resource-constraint devices which have limitation in 

the power, storage, and computation. Therefore, they 

need a lightweight mechanism to implement their 

daily computation and extend their operational 

lifetime. 

Monitoring a machine needs several sensor nodes 

based on each sense. The factory has a large amount 

of machines to be monitored or product quality 

control to comply with the international standard [4], 

so it needs a lot of sensor nodes. The data from sensor 

nodes are transmitted to the base station. It can be 

continuously or periodically performed. Therefore, 

the base station needs to confirm whether the data is 

valid from the registered sensor node. Furthermore, 

several sensor nodes need to communicate with each 

other. They may exchange data or forward 

information that aims to reduce response time, 

network delay, latency among devices [5]. The 

challenge for carrying out this process is how to do it 

computationally cheap and time-efficient in 

determining valid sensor nodes. 

Bloom filter is a probabilistic data structure that 

is suitable to provide a fast membership scheme in the 

wireless sensor network. It needs low computation 

because only uses a hash function to map a member’s 

vector position [6]. It was developed to decrease 

storage on the receiver side. This method can be 
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implemented in the detection of RFID systems for 

filtering from unregistered tag [7, 8], database of 

password systems [9], security issues [10], data 

science [11, 12], caching management [13], etc. 

However, the false positive result becomes a 

limitation in its implementation. There is a possibility 

of an unregistered member to be detected as a valid 

member. The Bloom filter variants are developed to 

optimize their functionality and reduce the false 

positive.  

In this paper, a scalable two-dimensional Bloom 

filter is proposed as a membership scheme in wireless 

sensor networks. This method is fast and has low 

computation that is suitable for utilization on a huge 

number of wireless sensor networks. It is because this 

method has a simple procedure whether for querying, 

inserting, or deleting a member. Furthermore, there is 

an initialization parameter that needs to be adjusted. 

To the best of our knowledge, the investigation of this 

parameter has not been addressed by other studies. 

Therefore, this paper aims to analyze and optimize 

setting parameter values to increase its scalability. 

Thus, the main contribution of this study is to 

compare and select Bloom filter methods that are 

quickly characterized by low computational 

complexity and parameter initialization analysis to 

increase scalability on the massive WSN scale. 

The organization of this paper is as follows: Section 

2 discusses the implementation of previous methods. 

Section 3 explains the detail of the two-dimensional 

Bloom filter as proposed methods. Section 4 

discusses the implementation and analysis of the  

 
Table 1. Nomenclature 

Symbol Description 

𝐹𝑃𝑃 False Positive Probability 

𝐹𝑃𝑅 False Positive Rate 

𝐹𝑃𝑅𝐴𝐵𝐹 False Positive Rate of accommodative 

Bloom filter 
𝐶 Critical factor 

𝛼 False positive intolerance 

𝑛 The number of members 

𝑚 Size of Bloom filter 

𝑘 Number of hash function 

𝑓𝑝 Size of fingerprint in the TinySet 

𝐵 Number of Bucket in the TinySet 

𝑈𝐼𝐷𝑖  The unique identifier of ith member 

𝑃𝐾𝑖  The public key of ith member 

𝑚𝑠 The size of Bloom filter in the second layer 

𝑁𝑠 The maximum accepted member in each 

slice of the second layer 

𝑘1 The number of hash function in second 

layer which also means the number of 

partitions 

𝑏 The number of buckets in the first layer 

𝑙 The size of bucket in the first layer 

result. The last section is summarized in the paper 

content. In addition, the table of notation is 

summarized in Table 1. 

2. Related works 

Bloom filter can be grouped into five types. First 

is the original Bloom filter [14] which maps a 

member’s position into a single vector. This method 

is very simple and has low computation complexity. 

It has drawbacks in the false positive although there 

is no possibility of a false negative. Furthermore, this 

method does not support member deletion. Second is 

counting Bloom filter (CBF) [15]. This method is the 

improvement of the original Bloom filter which 

supports member deletion. It adds several bits, 

usually 4-bit length, which acts as a counter. This 

counter is positioned in each bit of the Bloom filter 

vector. Third is the fingerprint-based Bloom filter. 

Several methods are using this idea such as TinySet 

[16], sliding counting Bloom filter [17], Cuckoo filter 

[18], etc. The advantage of those methods is low false 

positive because a member is not only represented by 

its position in the Bloom filter vector but also by its 

several bits of the hash value. The member position 

in the TinySet is placed in three parameters such as 

bucket (𝐵), chain (𝐿), and fingerprint (𝑓𝑝). The size 

of those parameters can be fixed or dynamic. There is 

more addition procedure which is needed for 

dynamic size than fixed size [16]. Furthermore, this 

method supports member deletion by removing 

fingerprints in a specific position based on the 

member’s unique value and shifting the other 

fingerprint to obtain efficient storage. Fourth is the 

hierarchical Bloom filter. Several methods are using 

this idea such as hierarchical segmented Bloom filter 

[7], Bloom filter-based framework [19], 

Accommodative Bloom filter (ABF) [20], etc. This 

type of Bloom filter utilizes several Bloom filters at 

multiple levels to increase scalability. 

Accommodative Bloom filter has 2 layers of Bloom 

filter such as bucket (first layer) and each bucket has 

a partition of Bloom filter (second layer) [20]. The 

number of hash function, size of Bloom filter in the 

first and second layers are different. The number of 

hash functions in the second layer affects the number 

of partitions. Furthermore, there are two main 

computations based on mechanism in each layer. 

Therefore, this type of Bloom filter has a limitation 

in high computation in the query and addition 

procedure. The last type is the multidimensional 

Bloom filter or rDBF [21]. The idea is a modification 

of the hierarchical Bloom filter but in a simple 

manner. It consists of several dimensions of Bloom 

filter ranging from 2 to 5. The higher dimension of 
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Bloom filters the more time is needed for adding, 

querying, and deleting processes and the lower false 

positive probability [21]. This paper proposed a two-

dimensional Bloom filter because of its simplicity. It 

is an appropriate method to be implemented in the 

resource constraint device such as wireless sensor 

networks. However, it has a limitation in scalability. 

Therefore, the initial setting parameter for creating 

the two-dimensional Bloom filter must be analyzed 

to avoid another cost for recreating the new 

membership scheme. 

3. Two-dimensional bloom filter 

The sensor nodes are identified by their UID 

(Unique Identifier) and the public key. Those values 

are unique for each node. The length of UID varies 

from 8 to 48 bits which depends on the protocol in 

the lower OSI layer [22]. While the public key is used 

for key-based authentication. This paper used the 

Elliptic Curve Digital Signature Algorithm (ECDSA) 

[23]. It is because with the same security level 

ECDSA only needs 40 bytes key length while RSA 

needs 128 bytes [24].  

The proposed scheme is shown in Figure. 1. 

Registering and querying members in two-

dimensional Bloom filters have the same procedure. 

The first step is concatenating UID and PK of sensor 

nodes. For example, in Figure. 1 UID3 is 

concatenated with PK3. Then the result is hashing 

using any hash function. In this paper, SHA1 is used 

as a cryptographic hash function with a length of 160 

bits [25]. This value is converted into decimal and 

translated into three parameters such as first, second, 

and third dimension which is denoted as  𝑥, 𝑦, and 𝜎. 

The first and second dimension must be prime 

number to avoid collision [21]. Those parameters 

produce a cell in the form of a single Bloom filter 

vector with length  𝜎 bits. Based on the example in 

Figure. 1, the cell position is shown in the blue 

character, and its Bloom filter is pointed by an orange 

arrow. The blue character in this Bloom filter is 

marked by 1 which means the vector position of  

 

 
Figure. 1 Two-dimensional bloom filter on WSN 

UID3| PK3 is in the 60th bit. 

Another feature of the two-dimensional Bloom 

filter is member deletion. The first step is the same as 

registering and querying members. Once the location 

of the member to be removed in the Bloom filter 

vector is found, update the value from 1 to 0. 

Bloom filter membership query has the possibility of 

false positive in querying procedure. This parameter 

can be calculated using false positive probability 

which is shown in Eq. (1) [21]: 

 

𝐹𝑃𝑃 = ∑ (
𝑖

𝑚
) (

𝑚
𝑖

) ∑ (−1)𝑗 (
𝑖
𝑗
)𝑖

𝑗=0
𝑚
𝑖=0 (

𝑖−𝑗

𝑚
)

𝑛
  (1) 

 

where,  

 

𝑚 = 𝐶. 𝑥. 𝑦 

and 

𝐶 =
𝜎

𝛼
 . 

 

False positive can be also measured by Eq. (2) 

[26]. The number of hash functions in a two-

dimensional Bloom filter is only one, so the value of 

𝑘 is 1. The critical factor (𝐶) is a measurement to 

determine the empty space in the third dimension of 

2DBF. It ranges from 1 to the maximum size of third 

dimension ( 𝜎 ). The higher value of 𝐶 , the more 

important of false positive meaning to the 2DBF. 

 

𝐹𝑃𝑅 = (1 − 𝑒
−𝑘𝑛

𝑚 )
𝑘

= 1 − 𝑒−
𝑛

𝑚         (2) 

 

According to these equations, this paper aims to 

adjust the best value of 𝑚  by considering the low 

value of false positive either measured by Eq. (1) or 

Eq. (2). 

The false positive measurement for the 

hierarchical Bloom filter is different. The false 

positive probability for each layer must be 

determined. The total false positive probability value 

is obtained from intersection among the result of false 

positive probability in each layer. Therefore, the false 

probability of accommodative Bloom filter can be 

measured using Eq. (3) [20]: 

 

𝐹𝑃𝑅𝐴𝐵𝐹 = 𝑓𝐼
𝐴𝐵𝐹 . 𝑓𝐼𝐼

𝐴𝐵𝐹                  (3) 

 

where, 

𝑓𝐼
𝐴𝐵𝐹 = (1 − 𝑒

−𝑘𝑛

𝑏 )
𝑘

, 

 

𝑓𝐼𝐼
𝐴𝐵𝐹 = 1 − (∏(1 − 𝑓𝑠

𝐴𝐵𝐹)

𝑠=𝑖

𝑠=1

), 
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and 

𝑓𝑠
𝐴𝐵𝐹 = ((1 − 𝑒

−𝑘1𝑁𝑠
𝑚𝑠 )

𝑘1

)

𝑏

 . 

 

The first layer, the second layer, and the slice in the 

second layer of accommodative Bloom filter are 

denoted as 𝑓𝐼
𝐴𝐵𝐹 , 𝑓𝐼𝐼

𝐴𝐵𝐹 , and 𝑓𝑠
𝐴𝐵𝐹, respectively. 

4. Experimental design 

The detailed environment to implement the 

proposed method is shown in Table 2. Python 

programming language is chosen because of its 

simplicity and features, which makes the proposed 

method easier to be implemented. 

5. Experimental scenario 

There are five scenarios for each method which 

aim to analyze one cycle of insertion, querying, and 

deletion. All proposed scenarios provide space for 

storing the same number of members. In this 

experiment, four methods will be analyzed. All of 

them support member deletion with a different 

mechanism except the accommodative Bloom filter 

[20]. 

The first method is CBF and its detailed scenario 

can be seen in Table 3 The counter length is 4 bits. 

Each scenario has different size of Bloom filter and 

the number of hash function to analyze the false 

positive parameter. 

The second method is TinySet [16]. There are two 

types of TinySet which are differentiated by its block 

size. TT32 stands for TinySet using 32 bits array 

while TT64 stands for TinySet using 64 bits array of  

 
Table 2. Experimental environment 

Name Specification 

CPU Intel® Core ™ i5-

9300HF CPU @ 

2.40GHz  

Number of CPU 8 

RAM 8192 MB 

HDD 1 TB 

Programming Language Python 

 

Table 3. CBF's scenarios 

CBF Sc1 Sc2 Sc3 Sc4 Sc5 

𝑘 1 2 3 4 5 

𝑚 (bit) 130 260 390 520 650 

 

Table 4. TT32's scenarios 

TT32 Sc1 Sc2 Sc3 Sc4 Sc5 

𝑓𝑝 (bit) 4 10 16 22 28 

𝐵 3 3 3 3 3 

 

Table 5. TT64's scenarios 

TT64 Sc1 Sc2 Sc3 Sc4 Sc5 

𝑓𝑝 (bit) 2 7 11 16 20 

𝐵 2 2 2 2 2 

 
Table 6. ABF-1's scenarios 

ABF-1 Sc1 Sc2 Sc3 Sc4 Sc5 

𝑚𝑠 37 57 68 82 88 

𝑘1 3 4 5 6 7 

 
Table 7. ABF-2's scenarios 

ABF-2 Sc1 Sc2 Sc3 Sc4 Sc5 

𝑚𝑠 45 71 84 102 109 

𝑏 6 8 10 12 14 

 

block. The detailed scenarios of TT32 and TT64 are 

shown in Table 4 and Table 5, respectively. 

The fourth method is the Accommodative Bloom 

filter (ABF) [20]. There are two types of ABF which 

are classified based on its purpose. ABF-1 focuses on 

extending the second level of Bloom filter whether by 

adding the partition number or the size of Bloom 

filter in each slice. The detailed scenario of ABF-1 is 

shown in .Table 6 The number of  𝑁𝑠, 𝑘, 𝑙 and 𝑏 are 

20, 3, 4, and 5, respectively. It is fixed for each 

scenario.  

ABF-2 aims to analyze the first level of Bloom 

filter, so it extends the value and size of bucket. 

Furthermore, this method extends several bits of the 

second layer Bloom filter to get a fair comparison in 

the size of accepted member in the ABF. The detailed 

scenario of ABF-1 is shown in Table 7. The number 

of 𝑁𝑠, 𝑙, 𝑘, and 𝑘1 are 25, 4, 3, and 2, respectively. It 

is fixed for each scenario. 

The last method is 2DBF which stands for two-

dimensional Bloom filter. There are two types of 

2DBF which are differentiated by its analysis purpose. 

2DBF-1 aims to analyze the size of the Bloom filter 

in each cell while the size of the first and second 

dimensions of the cell is fixed. 2DBF-2 aims to 

analyze the size of the first and second dimensions of 

the cell while the size of the Bloom filter is fixed. The 

detailed scenario of 2DBF-1 is shown in Table 8. The 

number of 𝑥 and 𝑦 is 3.  

The detailed scenario of 2DBF-2 is shown in 

Table 9. The number of 𝐶 is range from 36 up to 59. 
 

Table 8. 2DBF-1's scenarios 

2DBF-1 Sc1 Sc2 Sc3 Sc4 Sc5 

𝐶 60 120 180 170 340 

𝜎 64 130 190 280 350 

Table 9. 2DBF-2's scenarios 

2DBF-2 Sc1 Sc2 Sc3 Sc4 Sc5 

𝑥 3 3 3 3 3 

𝑦 5 7 11 13 17 
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All of the scenarios in each method are compared 

in the same environment. They have the same 

purpose to provide space for 90 members. This 

number is fixed and chosen to simplify the parameter 

comparison among CBF, TT32, TT64, ABF-1, ABF-

2, 2DBF-1, and 2DBF-2.   

6. Results and discussion 

Aforementioned, the false positive measurement 

could be implemented in two ways such as 𝐹𝑃𝑃 and 

𝐹𝑃𝑅. The false positive in the 𝑟-dimensional Bloom 

filter is usually measured by using 𝐹𝑃𝑃  [21]. 

However, in its implementation, there are some 

unstable results because of repeated multiplications 

required to compute the binomials and powers. It 

makes significant digits disappear and the inner 

summation with alternating signs [27]. Furthermore, 

the difference false positive measurement between as 

𝐹𝑃𝑃 and 𝐹𝑃𝑅 in a simple case of 2-DBF can be seen 

in Figure. 2. The higher value of the first and second 

dimension, the lower deviation between 𝐹𝑃𝑃  and 

𝐹𝑃𝑅. It shows that the values of  𝐹𝑃𝑃 and 𝐹𝑃𝑅 in 2-

DBF are close to the same. 

Moreover, it is supported by the result of 𝐹𝑃𝑅 

which is shown in Figure. 3. The higher value of the 

first and second dimensions, the lower 𝐹𝑃𝑅 value. It 

means that the difference value between 𝐹𝑃𝑃  and 

𝐹𝑃𝑅  become insignificant. Therefore, 𝐹𝑃𝑅  is used 

as parameter to compare 2DBF with the other 

methods in this paper. 

The 𝐹𝑃𝑅 value among several scenarios in each 

Bloom filter variation method is shown in Figure. 4. 

The value of 𝐹𝑃𝑅 in the CBF is the highest which is 

occurred  in  all  scenarios. The decreasing  value of  
 

 
Figure. 2 Difference between FPP and FPR on two-

dimensional Bloom filter using 𝐶=1 and 𝑛 is 95% filled 

 

 
Figure. 3 FPR on 2-DBF using 𝐶=16 and 𝑛 is 65% filled 

 

𝐹𝑃𝑅 cannot compete with other methods even if the 

number of the hash function is increased in each 

scenario. The values of 𝐹𝑃𝑅  in the 2DBF-1 and 

2DBF are lower than in the CBF. However, it is 

higher than the values of 𝐹𝑃𝑅 in the ABF-1, ABF-2, 

TT32 and TT64. This value is decreased by an 

average 33.06% between scenarios. It occurred 

almost in all scenarios except in the first scenario 

(Sc1) of TT64. The 𝐹𝑃𝑅  value of 2DBF-1 and 

2DBF-2 is lower than TT64 by a difference of about 

0.0226. However, decreasing the FPR value in other 

scenarios cannot compete with TT64, and certainly, 

TT32, although 2DBF-1 increases the critical factor 

in the third dimension or 2DBF-2 increases the value 

of the second dimension. Furthermore, the value of 

𝐹𝑃𝑅 in the 2DBF-1 and 2DBF-2 are almost the same 

for each scenario. It means the increasing dimension, 

whether by increase the second dimension or critical 

factor in the third dimension, does not affect the FPR. 

TT32 has a lower 𝐹𝑃𝑅 value than TT64 and ABF-1 

except for the first scenario (Sc1). The FPR value of 

ABF-1 is lower than TT32 only in the first scenario 

by a difference of about 0.02099. The FPR value of 

TT32 decreased by approximately 98.4375% 

between scenarios. The 𝐹𝑃𝑅 value of TT64 is higher 

than TT32. The FPR value of TT64 decreased, 

ranging from 93.75% to 96.875% between scenarios. 

ABF-2 has the lowest FPR. This value is decreased 

by average 98.48157% between scenarios. The FPR 

value of ABF-1 is higher than TT64, TT32, and ABF-

2 in all scenarios except Sc1. The FPR value of ABF-

1 decreased by average 44.57% between scenarios.  

The storage required by each method is shown in 

Figure. 5. CBF requires the highest storage space 

because it needs 4 bits counter to support member 

deletion for each bit Bloom filter vector. It means one 

member needs 5 bits which consists of 1-bit position 
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Figure. 4 FPR measurement of 2DBF-1, 2DBF-2, CBF, 

TT32, TT64, ABF-1, and ABF-2 

 

 
Figure. 5 Storage requirement of 2DBF-1, 2DBF-2, CBF, 

TT32, TT64, ABF-1, and ABF-2 

 

and 4 bits counter. Storage usage of 2DBF-1 and 

2DBF-2 was lower than CBF, with an average 131 

bits difference in all scenarios. However, the storage 

requirement of both types in 2DBF is higher than the 

TT32. It is because 2DBF needs more unallocated 

space to increase false positive value while TT32 

avoids it by using fingerprint. TT64 requires the 

lowest storage space because it uses a lower number 

of buckets and fingerprint length than TT32, even 

though the size of fingerprint container of TT64 is 

higher than TT32. ABF-1, and ABF-2 require almost 

the same storage space. This value is higher than 

TT32 dan TT64 because both types of ABF needs 2 

layers of Bloom filter either for a bucket or for a slice. 

Each layer has its size. The total storage requirement 

of the second layer is the multiplication of the first 

layer and the size of the second layer of the Bloom 

filter. Therefore, the storage requirement in the ABF 

approaches 2DBF. The difference among them is 

about 10 bits. It occurred because both ABF and 

2DBF have more than one Bloom filter vector 

representation to locate the membership position. 

The computation complexity comparison among 

the proposed method and other methods can be seen 

in Table 10. The 2DBF has the lowest computation 

complexity because of 2 reasons. First, 2DBF needs 

one bit to represent a member so it only assigns zero 

for non-member and one for a member. Second, 

2DBF only need one hash function to compute the 

position of first, second, and third dimension. 

Furthermore, the false positive value in the CBF only 

depends on the number of hash function (𝑘) even a 

member representation only needs 1 bit. The higher 

value of 𝑘 , the higher computation complexity. It 

occurs in the insertion, query, and deletion procedure. 

Moreover, the representation of a member in TT32 

and TT64 is using a fingerprint (𝑓𝑝).  It increases the 

efficiency of storage usage. The longer of 𝑓𝑝 length, 

the higher value of 𝐹𝑃𝑅 . However, it increases 

computation complexity to put 𝑓𝑝  into specific 

position in the block 𝑅 and chain 𝐿. The procedure to 

discover a chain, compare the 𝑓𝑝, and shift the other 

𝑓𝑝 is denoted by 𝑠. The lower number of Block (𝑅) 

decreases the computation complexity. Therefore, the 

computation of  𝑠 in  TT32  is lower than in TT64 

[10]. This paper analyses a fixed size of  𝑅 and 𝑓𝑝. 

The dynamic size of those two parameters increase 

complexity of 𝑠  [16]. The ABF has the highest 

computation complexity because its mechanism 

depends on the two different values of hash function 

and the number of buckets. The hash computation 

using 𝑘  and  𝑘1  is occurred in each bucket, so 

multiplication of the total number of hash functions 

is used in the insertion procedure. The query  

 
Table 10. Computation comparison 

Name CBF TT32 TT64 2DBF ABF 

Bits/ 

item 

1 𝑓𝑝 𝑓𝑝 1 𝑘. 𝑘1 

Number 

hash 

𝑘 1 1 1 𝑘 + 𝑘1 

Insertion O(𝑘) O(𝑠) O(𝑠) O(1) O( 𝑏(𝑘 +
𝑘1)) 

Query O(𝑘) O(𝑠) O(𝑠) O(1) O( 𝑘 +
𝑘1) 

Deletion O(𝑘) O(𝑠) O(𝑠) O(1) - 

 



Received:  November 2, 2020.     Revised: November 26, 2020.                                                                                      480 

International Journal of Intelligent Engineering and Systems, Vol.x, No.x, 20xx             DOI: 10.22266/ijies2019.xxxx.xx 

 

Table 11. 2DBF-3's scenarios 

2DBF-3 Sc1 Sc2 Sc3 Sc4 Sc5 

𝑥 5 7 5 7 7 

𝑦 7 7 11 11 13 

𝜎 18 23 31 37 41 

 

procedure of ABF only depends on the number of the 

hash function in the first and second layers because 

the computation in each layer can be done separately. 

Therefore, the computation complexity of query 

procedure is lower than insertion procedure in the 

ABF. The deletion procedure is not supported by 

ABF because each Bloom filter position may be 

owned by other members too.  

This paper focused on a fast Bloom filter 

algorithm for a massive scale of sensor nodes. 

Therefore, 2DBF is the most appropriate for this case 

study. It has low computation complexity although 

has a higher false positive rate than a TinySet and 

ABF. It also has a lower storage requirement than 

CBF. Furthermore, 2DBF supports member removal 

with only one hash function operation. 

The challenge in 2DBF is the initialization 

parameter to determine the value of the dimension 

and its Bloom filter vector or size of the third 

dimension. Prime number dimensions must be 

fulfilled to avoid collision [21]. However, there are a 

lot of prime numbers that can be chosen. For this 

purpose, another scenario has been added. The 

detailed parameter value for 2DBF-3 can be seen in 

Table 11. This version of 2DBF focuses on increasing 

the value in all dimensions. Moreover, each scenario 

in 2DBF-3 still has the same storage requirement and 

𝐹𝑃𝑅 as 2DBF-1 and 2DBF-2. It aims to make fair 

comparison among scenario in different version of 

2DBF. 

The number of members which is registered in the 

Bloom filter vector is analyzed. In fact, there are 90 

members that are added into 2DBF but not all of them 

are uniquely registered because one position in the 

Bloom filter vector may contain more than one 

member. The result is shown in Figure. 6. Another 

parameter that supports initialization parameter 

analysis is the number of empty cells in 2DBF. This 

means for each Bloom filter vector in the cell may not 

contain any member. There are possibilities of 

uneven placement of members. This parameter result 

is shown in Figure. 7. The 2DBF-1 has the same value 

for the first and second dimensions. This has an 

impact on the number of empty cells which is about 

66.67% of the total available cell. It also occurred in 

the Sc2 of 2DBF-3 which has about 85.71% empty 

cell. The cell dimension of Sc2 of 2DBF-3 is higher 

than all scenarios in the 2DBF-1. Therefore, the 

percentage of an empty cell in the Sc2 of 2DBF-3 is  

 
Figure. 6 The number of registered members in a 

different version of 2DBF 

 

higher than 2DBF-1. The cell positions that are zero 

in 2DBF-1 and Sc2 in 2DBF-3 will remain empty, 

although the size of the Bloom filter in the third 

dimension is increased. It is because any member will 

get the same value, either for the first or second 

dimension. This version of 2DBF is not 

recommended to use because the member’s cell 

position is not equally spread. Some cell position has 

a lot of registered members and the rest of them will 

remain empty. It makes the storage is not efficiently 

used.  

The 2DBF-2 and 2DBF-3 (except Sc2) focuses on 

the expanding dimension rather than its Bloom filter 

vector or its third dimension. They use a different 

prime number combination for each scenario. As can 

be seen in Figure. 6, the number of registered 

members in the 2DBF-2 and 2DBF-3 are higher than 

2DBF-1 except for Sc2. It may be caused by the third 

dimension or the size of Bloom filter vector is not a 

prime number. The value of the dimension in the 

2DBF is depended on modulo operation. If it is not 

prime numbers, then the result may not be evenly 

distributed. In addition, the higher the third 

dimension, the greater number of empty cells is, even 

though it is still lower than 2DBF-1. 

Based on the latest experiment, there are some 

recommendations in determining the initialization 

parameter in the 2DBF: 

1. avoid using the same value and make sure to use 

the prime number for every dimension;  

2. focus on extending the first and second 

dimension; 

3. select the appropriate scenario which is suitable 

for resource and environment.  

The Sc5 of 2DBF-3 is the best scenario for the 

base station to recognize 90 members of sensor nodes. 

It is because this scenario has the lowest FPR and 

recognized all the members uniquely. This condition  
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Figure. 7 The number of empty cells in the different 

version of 2DBF 

 

is followed by high storage requirements and the 

number of empty cells. However, it does not become 

a problem because the Base station has more 

resources than sensor nodes.  

The Sc1 of 2DBF-1 is the best scenario for a 

sensor node to recognize the other member. It is 

because this scenario needs the lowest storage 

requirement and the number of empty cells. It means 

this scenario uses the storage efficiently. It is suitable 

for the characteristic of sensor node which has a 

limitation in the storage and computation. 

The initialization parameter recommendations are a 

general suggestion that can be implemented in the 

other study cases and the other number of members.  

7. Conclusion 

A membership scheme for a massive number of 

sensor nodes is needed in industrial automation. They 

need a fast mechanism to recognize a valid member 

so the cost of production can be reduced. In this study, 

a scalable 2DBF is recommended for massive scale 

WSN implementation. The experimental result 

shows that the computation complexity of 2DBF for 

insertion, query, and deletion is only O(1). However, 

the 2DBF’s false positive probability decreased is 

only 33.06% among scenarios. Therefore, the 

proposed method has the lowest complexity although 

the false probability rate is higher than TinySet and 

ABF. This condition supports the 2DBF as the fastest 

procedure for a membership scheme. The storage 

usage of 2DBF is not only more efficient than the 

counting Bloom filter in average 131 bits difference 

but also approaches ABF in about 10 bits difference. 

Moreover, the analysis of the best initialization value 

has been conducted. This analysis result shows 

several recommendation rules for selecting the 

appropriate initialization parameter in a scalable 

2DBF. These are general suggestions that can be used 

in other 2DBF case studies. Furthermore, several 

recommended scenarios can be analyzed for future 

works. There will be another optimization 

mechanism to measure the best scenario for a specific 

environment and to distribute members in a balanced 

cell position. It aims to improve 2DBF performance 

and increase efficient storage usage. 
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