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Abstract: Zero-Forcing (ZF) detector is used in Space-Division Multiplexing (SDM) receiver to remove interference 

among the received symbols. Previous works showed that the power of channel noise is enhanced in the output of the 

ZF detector. They recommend using the ZF detector when the received Signal-to-Noise Ratio (SNR) is high. This 

work proves that the performance of the ZF detector depends on the eigenvalues of the channel correlation matrix. The 

paper shows that if the sum of the eigenvalues of this correlation matrix is equal to the rank of the channel matrix, the 

ZF detector will not enhance noise power at its outputs. Moreover, if the sum of the eigenvalues is smaller than the 

rank of the channel matrix, the ZF detector will reduce noise power at its outputs. In this work, a theorem, which 

demonstrates the performance of the ZF detector in SDM receiver, is introduced and proved. The proposed work uses 

smart antennas in the transmitter and receiver to control the elements and eigenvalues of the channel matrix. The 

introduced theorem and a complete SDM receiver with ZF detector are simulated and evaluated at different conditions 

with different criteria. A real-time SDM receiver with ZF detector is also implemented and evaluated. The simulation 

and implementation results are shown at the end of this study. The results of the proposed systems show that a ZF 

detector can be used to remove interference in the SDM system without enhancing the channel noise. 

Keywords: Space division multiplexing, Zero-forcing detector, Interference cancellation, Noise reduction, 

Eigenvalues, Correlation matrix. 

 

 

1. Introduction 

The multiplexing of symbols is used to increase 

the data transmission rate in communication systems. 

Multiplexing systems transmit N modulated symbols 

through N parallel channels in one symbol period. 

Frequency Division Multiplexing (FDM), 

Orthogonal Frequency Division Multiplexing 

(OFDM), Code Division Multiplexing (CDM), and 

Space Division Multiplexing (SDM) are the known 

multiplexing methods, which are used in 

communication systems to increase the data 

transmission rate. SDM is used to increase the 

bandwidth efficiency of the communication system 

as well as increasing the data transmission rate [1, 2]. 

The bandwidth efficiency is defined as the ratio 

between the total transmission rate and the total 

transmission bandwidth. In FDM systems, the 

maximum achievable bandwidth efficiency is half [3]. 

On the other hand, the bandwidth efficiency of 

OFDM systems is close to one but it never reaches it 

[4]. In SDM systems, the bandwidth efficiency is 

greater than one. The SDM transmitter sends N 

different modulated symbols parallel through the 

same frequency channel at the same time slot (symbol 

period) using N transmitting antennas [5, 6]. The 

transmitted symbols in the SDM system occupy the 

same bandwidth, which is used by the non-

multiplexing system. Since the transmission rates 

from the N transmitting antennas are always equal, 

the total transmission rate in the SDM system is equal 

to the symbol rate of the non-multiplexed system 

multiplied by the number of the transmitting antennas. 

The bandwidth efficiency of the SDM system is also 

equal to the bandwidth efficiency of the non-

multiplexed system multiplied by the number of the 

transmitting antennas. The SDM system has 

bandwidth efficiency greater than the bandwidth 
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efficiency of any other multiplexing systems. The 

SDM receiver must contain N receiving antennas to 

achieve the required transmission rate. Moreover, the 

channels between the transmitting antennas and the 

receiving antennas must be uncorrelated [7]. The rank 

of the channel matrix in the SDM system must be 

equal to the number of the transmitting antennas and 

the number of the receiving antennas. The rank of the 

channel matrix is also equal to the improvement 

factor in the transmission rate and bandwidth 

efficiency. The improvement in the transmission rate 

of the SDM system does not come without any cost. 

The transmitter and the receiver in the SDM system 

are more complex than the transmitters and the 

receivers in the other multiplexing systems.  

The main disadvantage of multiplexing systems 

is the interference among the transmitted symbols. 

This interference is negligible in FDM systems 

because there is a guard band between the used 

frequency channels. However, in OFDM systems, the 

interference appears among the multiplexed symbols 

on the received subcarriers if there is a Doppler 

frequency shift in the transmission channel, or there 

is a miss-synchronization between the received 

subcarriers and the local subcarriers in the receiver 

[8,9]. In the CDM system, the interference among the 

multiplexed symbols appears when the used 

signature codes are not orthogonal [10]. As all 

multiplexing systems, the SDM system suffers from 

interference among the received symbols. The SDM 

system has the largest symbols interference among 

the multiplexing systems since the transmitted 

symbols from the N transmitting antennas have the 

same power and occupy the same bandwidth in the 

same time slot. Space-time codes are developed to 

prevent interference in SDM systems [11, 12]. 

However, these codes reduce the symbols 

transmission rate. This contradicts with the main 

objective of the multiplexing systems. The problem 

of symbols interference in multiplexing systems is 

directly proportional to bandwidth efficiency. Since 

the SDM system has the highest bandwidth efficiency, 

the interference in the SDM system is always larger 

than the interference in the other multiplexing 

systems. The receivers of the SDM systems must 

have interference cancellation detectors to eliminate 

or reduce the interference among the received 

symbols. 

The interference cancellation detectors are 

classified into optimal interference cancellation 

detectors and suboptimal interference cancellation 

detectors [13,14]. The Maximum Likelihood (ML) 

detector is the optimal interference cancellation 

detector. It maximizes the likelihood function of the 

observation vector after the matched filters. The 

complexity of the ML detector is very high. The ML 

detector makes an exhaustive search for the most 

probably transmitted vector in a vector space of MN 

vectors, where M is the number of the constellation 

symbols in the used modulation scheme and N is the 

number of the transmitting antennas [15]. The 

suboptimal interference cancellation detectors are 

proposed because their complexities are less than the 

complexity of the ML detector [16]. The suboptimal 

interference cancellation detectors are divided into 

three groups. The first group is the Parallel 

Interference Cancellation (PIC) detectors such as the 

Zero-Forcing (ZF) detector and the Minimum-Mean-

Square Error (MMSE) detector. These detectors are 

linear. They remove the interferences among the N 

multiplexed symbols in the observation vector 

concurrently [17-19]. In ZF detection, the detector 

multiplies the observation vector by the inverse of the 

channel matrix. However, the MMSE detector 

multiplies the observation vector by the MMSE 

solution matrix, which minimizes the energy of the 

error between the desired symbols and the detected 

symbols. The second group of suboptimal detectors 

is the Successive Interference Cancellation (SIC) 

detectors. In these detectors, a decision is made about 

an interfering symbol in one stage, and then this 

symbol is subtracted from the other interfering 

symbols in the next stages. This process is repeated 

until all interfering symbols are detected [20, 21]. 

This procedure removes interferences if the decisions 

of the detected symbols in previous stages are correct; 

otherwise, it will duplicate the contribution of the 

interference. The last group of the suboptimal 

detectors is the Decision-Feedback (DF) detectors 

[22, 23]. These detectors are nonlinear. In DF 

detectors, a linear matrix maps the observation vector 

to the decision vector. This mapping removes a large 

amount of interference in the observation vector. A 

decision device is used to detect the symbols from the 

decision vector. These symbols are returned to the 

input of the decision device after remapping with 

another mapping matrix. The remapped vector is 

subtracted from the input of the decision device to 

remove the residual interference. The mapping 

matrices are chosen according to the MMSE criterion 

to minimize the error between the detected symbols 

and the desired symbols. The performance of the DF 

detectors is better than the performance of the linear 

detectors [24, 25]. However, the complexity of the 

DF detectors is higher than the complexity of the 

linear detectors.  

In this paper, we concentrate on parallel 

interference cancellation using ZF detectors. The ZF 

detector has less computation complexity than the 

ML detector. The literature of communications says 
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that the ZF detector removes the interferences among 

the received symbols completely, but it enhances the 

channel noise at its output [16, 26-28]. Moreover, the 

ZF detector is very sensitive to the input Signal-to-

Noise Ratio (SNR). The performance of the ZF 

detector is good at high input SNR and it is 

deteriorating at low SNR [16, 28-31]. This is the main 

disadvantage of the ZF detector and the reason for its 

suboptimal performance. However, in this work, it is 

proved that the performance of the ZF detector does 

not depend on the received SNR. However, it mainly 

depends on the sum of the eigenvalues of the channel 

correlation matrix. The paper will show that the noise 

power at the output of the ZF detectors varies at the 

same input SNR according to the sum of the 

eigenvalues of the channel correlation matrix. The 

proposed work will also show that the performance 

of the ZF detector can achieve performance closed to 

the performance of the ML detector and can 

outperform the MMSE detector if the channel matrix 

satisfies a certain condition. 

The paper is organized as followed. In section 2, 

the mathematical models of the transmitted SDM 

signal and the received SDM signal are introduced. 

The used channel model is also represented in this 

section. Section 3 presents the eigenvalues theorem, 

which controls the performance of the ZF detector in 

different states. In section 4, an algorithm is 

introduced to control channel gain and channel 

matrix eigenvalues. Section 5 evaluates the 

eigenvalues theorem using MATLAB m-files. 

Different ZF detectors at different conditions are 

simulated and they are evaluated using different 

criteria according to the introduced eigenvalues 

theorem. A complete SDM receiver with ZF detector 

is also simulated and implemented using Xilinx 

FPGA kit to detect symbols from Rayleigh fading 

channel. Finally, the conclusions of the introduced 

study are represented. 

2. The mathematical model of the received 

SDM signal 

This section introduces the baseband transmitter 

and the baseband receiver of the SDM system. The 

transmitter of the SDM system is very simple. It 

consists of a baseband modulator, a serial-to-parallel 

converter, and N transmitting antennas. The baseband 

modulator converts binary symbols to complex 

modulated symbols according to the used modulation 

scheme. The serial-to-parallel converter arranges the 

modulated symbols into parallel vectors of N 

modulated symbols. The N transmitting antennas are 

used to transmit the modulated symbols in the parallel 

vectors. Each transmitting antenna transmits its 

corresponding modulated symbol in the parallel 

vectors. N also represents the multiplicative factor of 

the total symbol rate.  

The symbol rate at the output of the baseband 

modulator in SDM transmitter is N×Rs. Rs is the 

symbol rate at the output of the baseband modulator 

in the non-multiplexing system. In SDM transmitter, 

the parallel vectors of the modulated symbols are sent 

to the transmitting antennas with a rate of Rs vectors 

per second. The transmission rate of each 

transmitting antenna is Rs. The null-to-null 

bandwidth of the transmitted symbols is 2×Rs, which 

is the same as the bandwidth of the transmitted 

symbols in non-multiplexing system. Therefore, the 

SDM transmitter sends the modulated symbols with 

a rate of N×Rs in the same bandwidth of the non-

multiplexing system. Eq. (1) shows the bandwidth 

efficiency of the SDM system (𝜂𝑆𝐷𝑀) and its relation 

with the bandwidth efficiency of the non-

multiplexing system (𝜂𝑁𝑀𝑆). 

 

𝜂𝑆𝐷𝑀 =
𝑆𝑦𝑚𝑏𝑜𝑙 𝑟𝑎𝑡𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
=

𝑁𝑅𝑠

2𝑅𝑠
=

𝑁

2
= 𝑁𝜂𝑁𝑀𝑆   (1) 

 

Eq. (2) represents the transmitted symbol by the 

nth antenna in the mth transmission period. 

 

𝑠𝑛(𝑡 − 𝑚𝑇𝑠) = 𝑑(𝑚−1)𝑁+𝑛𝑝(𝑡 − 𝑚𝑇𝑠)             

    (𝑚 − 1)𝑇𝑠 ≤ 𝑡 ≤  𝑚𝑇𝑠      (2) 

 

𝑑(𝑚−1)𝑁+𝑛  is the modulated symbol, which is 

transmitted in the mth transmission period by the nth 

transmitting antenna. 𝑝(𝑡 − 𝑚𝑇𝑠) is the normalized 

shaping pulse of the transmitted symbols. 𝑇𝑠  is the 

period of one transmitted symbol. Fig. 1 (a) and 1 (b) 

show the block diagram of the SDM transmitter and 

receiver. 

In the used SDM system, the transmitted symbols 

pass through Rayleigh flat fading channel. They are 

also corrupted with Additive-White Gaussian Noise 

(AWGN). The received symbols suffer from no Inter-

Symbol Interference (ISI) if the channel is flat fading. 

When the fading channel is frequency selective, the 

received symbols suffer from ISI. To maintain the 

condition of flat fading, the bandwidth of the 

transmitted symbols is adjusted to be always smaller 

than the coherence bandwidth of the fading channel. 

In non-multiplexing systems, adjusting the symbols 

bandwidth to be smaller than the coherence 

bandwidth of the channel requires a reduction in the 

transmission rate. In the SDM system, the condition 

of flat fading is conserved at high transmission rates. 

This is accomplished by reducing the individual 

transmission rate (Rs) of each transmitting antenna to 

be smaller than half the coherence bandwidth of the  
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(a) 

 
(b) 

Figure. 1: (a) The block diagram of the SDM transmitter and (b) the block diagram of the SDM receiver 

 

fading channel. However, increasing the number of 

transmitting antennas (N) keeps the total transmission 

rate high. This is similar to what happens in OFDM 

systems. The individual transmitting antennas play 

the same role as the subcarriers in OFDM systems. 

Hence, increasing the number of transmitting 

antennas is the cost, which should be paid by the 

SDM system to increase the symbol rate in flat fading 

channels. 

To achieve the required symbols rate in the SDM 

system, the receiver must contain N receiving 

antennas. Moreover, the channel paths from the 

transmitting antennas to the receiving antennas must 

be uncorrelated. The spaces between the receiving 

antennas are adjusted to be multiple of the received 

signal wavelength to have uncorrelated paths from 

the transmitting antennas to the receiving antennas 

[7]. The fading channel between the transmitter and 

the receiver is assumed to be quasi-static. This means 

that the fading gain from each transmitting antenna to 

each receiving antenna is constant during the symbol 

period 𝑇𝑠, but it changes randomly from one symbol 

to another. Eq. (3) shows the received symbol 

𝑟𝑙(𝑡 − 𝑚𝑇𝑠) by the lth antenna at the mth transmission 

period. 

 

𝑟𝑙(𝑡 − 𝑚𝑇𝑠) = ∑ 𝛼𝑙𝑛𝑒−𝑗𝜙𝑙𝑛𝑑(𝑚−1)𝑁+𝑛𝑝(𝑡 −𝑁
𝑛=1

𝑚𝑇𝑠) + 𝑤𝑙(𝑡)      (𝑚 − 1)𝑇𝑠 ≤ 𝑡 ≤  𝑚𝑇𝑠 (3) 

 

𝛼𝑙𝑛  is a Rayleigh random variable with √
𝜋

2
𝜎  mean 

and (2 − 𝜋

2
)𝜎2 variance. 𝜙𝑙𝑛  is a uniform random 

variable in the interval [–𝜋, 𝜋]. The average power 

gain in the fading path from the nth transmitting 

antennas to the lth receiving antennas is 2𝜎2. 𝑤𝑙(𝑡) is 

a sample function of a white Gaussian noise process 

W(t) at the output of the lth receiving antenna. The 

noise process has zero mean and 𝜎𝑤
2  variance.  

The output of each receiving antenna passes through 

a matched filter, which is matched to the shaping 

pulse of the received symbols. The output 𝑦𝑙𝑚 of the 

lth-matched filter at the mth symbol period is: 

 

𝑦𝑙𝑚 = ∑ 𝛼𝑙𝑛𝑒−𝑗𝜙𝑙𝑛𝑑(𝑚−1)𝑁+𝑛
𝑁
𝑛=1 + 𝑛𝑙𝑚    (4) 

 

𝑛𝑙𝑚  is a zero-mean Gaussian random variable. It 

represents the noise random variable after the lth-

matched filter at the mth symbol period. The outputs 

of the N matched filters at the mth symbol period are 

arranged in one vector 𝒚𝑚 as shown in Eq. (5). 

 

𝒚𝑚 = 𝑯. 𝒅𝑚 + 𝒏𝑚               (5) 

 

𝒚𝑚 is the input observation vector to the interference 

cancellation detector. H is an N×N channel matrix. 

The elements of H are the fading gains from the 

transmitting antennas to the receiving antennas. The 

noise samples in 𝒏𝒎  are independent identical 

distributed (i.i.d) random variables, because they 

come from independent sample functions of the 

Gaussian noise process W(t). The noise samples in 

𝒏𝒎 are Gaussian random variables with zero mean 

and 𝜎𝑤
2  variance. A proper channel estimator is used 

to estimate the channel matrix H in the receiver. The 

channel estimation process is out of the scope of this 

paper. Thus, it is assumed that the receiver gets the 

Channel Status Information (CSI) from the channel 

estimator each symbol period. 

According to Eq. (5), there are Multiplexing 

Interferences (MI) among the received symbols at the 

outputs of the matched filters. The ZF detector is used 
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to remove these interferences. It multiplies the 

observation vector in Eq. (5) by the inverse of the 

channel matrix H. All previous works say that the 

mapping process done by the ZF detector enhances 

the channel noise power at its outputs. This is the 

reason for the suboptimal performance of the ZF 

detector. However, in this work, it is proved that the 

performance of the ZF detector is merely affected by 

the eigenvalues of the channel correlation matrix. As 

aforementioned, the performance of the ZF detector 

can achieve performance closed to the ML detector 

performance if the channel matrix satisfies a certain 

condition. In the following section, a theorem is 

introduced to determine the condition, which should 

be satisfied by the channel matrix and its inverse to 

remove the MI and to achieve a closed performance 

to the ML detector performance by the ZF detector.  

3. The eigenvalues theorem for ZF detector 

The output vector of the ZF detector is shown in 

Eq. (6). The ZF detector completely removes the MI 

among the received symbols. The elements of the 

output vector 𝒅̂𝑚  are the estimations of the 

transmitted symbols in vector 𝒅𝑚. 

 

𝒅̂𝑚 = 𝑯−𝟏. 𝒚𝑚 = 𝒅𝑚 + 𝑯−𝟏. 𝒏𝑚          (6) 

 

The ZF detector will not increase the noise power at 

its output in Eq. (6) if the inverse of the channel 

matrix satisfies the following theorem. 

Eigenvalues theorem 

For independent-identical-distributed (i.i.d) input 

noise samples, the ZF detector does not increase the 

noise power at its output if and only if the summation 

of the average eigenvalues of the matrix 

[𝑯−1. (𝑯−1)𝐻] is smaller than or equal to the rank of 

the channel matrix. 

 

𝑃̅𝑛𝑦 ≤ 𝑃̅𝑛𝑥   ⇔    ∑ 𝐸[𝜆𝒏]𝑁
𝑛=1 ≤ 𝑁       (7) 

 

𝑃̅𝑛𝑥 and 𝑃̅𝑛𝑦 are the average noise power at the input 

and the output of the ZF detector, respectively. 𝜆𝒏 is 

the nth eigenvalue of the matrix [𝑯−1. (𝑯−1)𝐻].   

Theorem proof 

When a vector x of N random variables is linearly 

mapped with a full rank square complex matrix A, the 

covariance matrix of the output vector y is equal to: 

 

𝑐𝑜𝑣(𝒚) = 𝑨 𝑐𝑜𝑣(𝒙)𝑨𝐻                (8) 

 

( )𝐻 is the Hermitian transpose of the matrix. The 

output vector y contains N correlated random 

variables. If the elements of vector x are i.i.d random 

variables with zero mean and 𝜎𝑥
2  variance, the 

covariance matrix of vector x is the unity matrix 

multiplied by the variance 𝜎𝑥
2. Hence, the covariance 

matrix of vector y is equal to:  

 

𝑐𝑜𝑣(𝒚) = 𝜎𝑥
2𝑨 𝑨𝐻                              (9) 

 

The variance 𝜎𝑥
2  represents the average power of 

each random variable in vector x. The total average 

power in vector x is equal to N× 𝜎𝑥
2 . The 

matrix [𝑨 𝑨𝐻] has N independent eigenvalues since 

matrix A is full rank. From Eq. (9), the eigenvalues 

of matrix [𝑐𝑜𝑣(𝒚)] are equal to the eigenvalues of 

matrix [𝑨 𝑨𝐻]  multiplied with the variance 𝜎𝑥
2 . 

Therefore, the eigenvalues of matrix [𝑨 𝑨𝐻] 
represent the power gain of the linear mapping 

process in the directions of its eigenvectors. 

Moreover, the eigenvalues of matrix [𝑐𝑜𝑣(𝒚)] 
represent the average power of the random variables 

in vector y in the directions of its eigenvectors. The 

total average power at the output of the linear 

mapping matrix A is the sum of the eigenvalues of 

matrix [𝑐𝑜𝑣(𝒚)] . Since the random variables in 

vector x have the same average power (𝜎𝑥
2), the total 

average power 𝑃̅𝑇𝑦  at the output of the linear 

mapping matrix A is:  

 

𝑃̅𝑇𝑦 = 𝜎𝑥
2 ∑ 𝜆𝑛𝑛                         (10) 

 

Here, 𝜆𝑛 is the nth eigenvalue of matrix [𝑨 𝑨𝐻]. If the 

sum of the eigenvalues of matrix [𝑨 𝑨𝐻] is equal to 

N, the total average power at the output of the linear 

mapping system will be the same as the total average 

power at its input. Moreover, if the sum of the 

eigenvalues of matrix [𝑨 𝑨𝐻] is less than N, the total 

average power at the output of the linear mapping 

system will be smaller than the total average power 

at its input. Therefore, for a vector x of i.i.d random 

variables, the total average power in the output of a 

linear mapping system to vector x is smaller than or 

equal to the total average power in vector x, if and 

only if the sum of the eigenvalues of the product of 

the mapping matrix with its Hermitian transposed is 

smaller than or equal to the rank of the mapping 

matrix.  

If the mapping matrix A is a random matrix, the 

covariance matrix in Eq. (9) is random too. The 

average covariance matrix 𝜱̅𝒚 of vector y is equal to: 

 

𝜱̅𝒚 = 𝐸[𝑐𝑜𝑣(𝒚)] = 𝜎𝑥
2𝐸[𝑨 𝑨𝐻]        (11) 
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𝐸[𝑨 𝑨𝐻]  is the correlation matrix of the random 

mapping matrix A. The eigenvalues of the correlation 

matrix 𝐸[𝑨 𝑨𝐻] represent the average power gains of 

the random mapping system A in the directions of its 

eigenvectors. In this case, the total average power at 

the output of the mapping system A is: 

 

𝑃̅𝑇𝑦 = 𝜎𝑥
2 ∑ 𝜆̀𝑛                      𝑛    (12) 

 

𝜆̀𝑛  is the nth eigenvalue of the correlation matrix 

𝐸[𝑨 𝑨𝐻]. Since the trace of the correlation matrix 

𝐸[𝑨 𝑨𝐻] is equal to the average of the trace of the 

random matrix [𝑨 𝑨𝐻], the sum of the eigenvalues of 

the correlation matrix 𝐸[𝑨 𝑨𝐻] is equal to the sum of 

the average of the random eigenvalues of matrix 

[𝑨 𝑨𝐻]. Eq. (13) shows the mathematical proof of the 

previous statement.  

 

𝑡𝑟[𝐸[𝑨 𝑨𝐻]] = ∑ 𝐸[𝑫𝑨,𝑛]𝑛 = 𝐸[∑ 𝑫𝑨,𝑛𝑛 ] =

𝐸[∑ 𝜆𝑛𝑛 ] = ∑ 𝐸[𝜆𝑛]𝑛              (13) 

 

𝑫𝑨,𝑛 is the nth diagonal element of the matrix [𝑨 𝑨𝐻]. 
Therefore, Eq. (12) can be rewritten as shown in Eq. 

(14).  

 

𝑃̅𝑇𝑦 = 𝜎𝑥
2 ∑ 𝐸[𝜆𝑛]𝑛                   (14) 

 

Eq. (14) says that the total average power at the 

output of a random linear system is equal to the 

summation of the average eigenvalues of the random 

matrix [𝑨 𝑨𝐻]  multiplied with the variance 𝜎𝑥
2 . 

Hence, the average power 𝑃̅𝑇𝑦  at the output of a 

linear mapping process is smaller than or equal to the 

average power at its input 𝑃̅𝑇𝑥 if the summation of the 

averages of the eigenvalues of the random 

matrix [𝑨 𝑨𝐻] is smaller than the rank of the A. This 

completes the proof of the eigenvalues’ theorem. ☐ 

Now, the eigenvalues theorem is applied on the ZF 

detector. The ZF detector uses the inverse channel 

matrix 𝑯−1 to map the noise vector 𝒏𝑚  into the 

correlated noise vector [𝑯−1. 𝒏𝑚] . Since the 

elements of the noise vector 𝒏𝑚 are independent, the 

covariance matrix of the correlated noise vector at the 

output of the ZF detector is equal to: 

 

𝑐𝑜𝑣(𝑯−1. 𝒏𝑚) = 𝜎𝑤
2 𝑯−1. (𝑯−1)𝐻         (15) 

 

The channel matrix H is a random matrix, and it 

changes each symbol period according to the 

previous channel assumption model. Therefore, the 

covariance matrix of the noise at the output of the ZF 

detector is random. The average of the covariance 

matrix in Eq. (15) is shown in Eq. (16). 

𝜱̅𝒛𝒇 = 𝐸[𝑐𝑜𝑣(𝑯−𝟏. 𝒏𝑚)] = 𝜎𝑤
2 𝑸        (16) 

 

𝑸 = 𝐸[𝑯−1. (𝑯−1)𝐻]                   (17) 

 

𝑸  is the correlation matrix of the inverse channel 

matrix 𝑯−1 . The correlation matrix Q has N 

independent eigenvalues since the channel matrix H 

is full rank and there are N×N independent paths from 

the transmitting antennas to the receiving antennas. 

The eigenvalues of 𝐸[𝑯. 𝑯𝐻] represent the average 

power gains of the channel matrix in the directions of 

its eigenvectors, however, the eigenvalues of the Q 

matrix represent the average power gains of the ZF 

detector in the directions of its eigenvectors.  

The total average power in the noise vector at the 

output of the ZF detector is smaller than or equal to 

the total average power in the noise vector at the input 

of the ZF detector if the rule in Eq. (18) is achieved. 

 

∑ 𝐸[𝜆𝑄𝑛]𝑁
𝑛=1 ≤ 𝑁                      (18) 

 

𝜆𝑄𝑛  is the nth eigenvalue of the random matrix 

[𝑯−1. (𝑯−1)𝐻]. Therefore, the ZF detector will not 

increase the noise power at its output as long as the 

condition in Eq. (18) is accomplished. For the used 

SDM system, the channel matrix achieves the 

condition in Eq. (18) if the variances of the channel 

gains from the transmitting antennas to the receiving 

antennas are greater than a certain threshold. This 

threshold depends on the random model of the 

channel. In the simulation section, this threshold is 

estimated for different Rayleigh channel matrices 

with different ranks.  

4. The proposed algorithm to control channel 

matrix eigenvalues 

At first glance, it appears that the channel gains 

cannot be controlled in the wireless channel, because 

the channel gains in wireless channel depend on the 

geographic distribution of the area between the 

transmitter and receiver. Moreover, the heights and 

the densities of the obstacles in the path of wave 

propagation affect the received signal amplitude and 

phase. However, if smart transmitting and receiving 

antennas are included in the channel model, the 

channel gains in the wireless channel can be 

controlled. Smart antennas are antenna arrays with 

smart signal processing algorithms used to identify 

spatial signal signatures such as the Direction of 

Arrival (DOA) of the signal and the antenna gain. 

Smart antennas use beamforming algorithm to create 

the radiation pattern of the antenna array by adding 

constructively the phases of the signals in the 
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direction of the desired receiver antenna and nulling 

the pattern in the direction of the undesired antennas. 

This can be done with a simple Finite Impulse 

Response (FIR) tapped delay line filter. The weights 

of the FIR filter may also be changed adaptively and 

used to provide optimal beamforming, in the sense 

that it reduces the Minimum Mean Square Error 

between the desired and actual beampattern formed.  

In the used SDM system, the signal power at the 

inputs of the transmitting antennas is normalized. The 

radiation pattern of each transmitting antenna is tuned 

to have different gains in the direction of the 

receiving antennas. By the same way, the radiation 

pattern of each receiving antenna is tuned to have 

different gains in the direction of the transmitting 

antennas. According to the required eigenvalues for 

the inverse channel matrix, the gains of the 

transmitting antennas and the receiving antennas are 

adjusted to satisfy the condition in equation (18). 

Three scenarios may be used to adjust the gains of the 

transmitting and receiving antennas. In the first one, 

it is assumed that there is a robust feedback channel 

from the receiver to the transmitter, and the CSI is 

sent from the receiver to the transmitter through this 

channel. According to the CSI, the transmitter can 

change the gains of the transmitting antennas to 

minimize the cost function 𝒞 in Eq. (19). 

 

𝒞 = 𝑚𝑖𝑛
𝐺𝑡

|∑ 𝐸[𝜆𝑄𝑛]𝑁
𝑛=1 − (𝑁 − 𝜖)|

2
      (19) 

 

𝐺𝑡 is the vector of transmitting antennas gains. 𝜖 is an 

arbitrary-small positive number. The vector 𝐺𝑡 of the 

transmitting antenna gains affects the values of the 

elements in the channel matrix H in Eq. (17), which 

will also affect the eigenvalues 𝜆𝑄𝑛  of the inverse 

channel matrix. The gains of the transmitting 

antennas are adjusted to make the summation of the 

average eigenvalues of the inverse channel matrix 

smaller than or equal to the rank of the channel matrix. 

In the second scenario, it is assumed that the 

transmitting antennas gains are different and fixed 

and the receiver will adjust the radiation gains of the 

receiving antennas to minimize the cost function 𝒞 in 

Eq. (20). 

 

𝒞 = 𝑚𝑖𝑛
𝐺𝑟

|∑ 𝐸[𝜆𝑄𝑛]𝑁
𝑛=1 − (𝑁 − 𝜖)|

2
       (20) 

 

𝐺𝑟  is the vector of receiving antennas gains. The 

gains vector 𝐺𝑟  will also affect the elements of the 

channel matrix H and the eigenvalues of the inverse 

channel matrix. By adjusting the gains of the 

receiving antennas according to Eq. (20), the sum of 

the average eigenvalues of the inverse channel matrix 

will be smaller than the rank of the channel matrix. 

In the last scenario, the gains of the transmitting 

antennas and the receiving antennas are adjusted 

together to minimize the cost function in Eq. (21). 

 

𝒞 = 𝑚𝑖𝑛
𝐺𝑡,𝐺𝑟

|∑ 𝐸[𝜆𝑄𝑛]𝑁
𝑛=1 − (𝑁 − 𝜖)|

2
        (21) 

 

After adjusting the gains of the transmitting and 

receiving antennas according to one of the previous 

three scenarios, the eigenvalues of the inverse 

channel matrix will be very close to the condition Eq. 

(18) of the eigenvalues’ theory. In this case, the ZF 

detector will not enhance the received noise power 

and its performance will converge close to the ML 

detector performance. 

5. Simulations 

In this section, the results of the simulations and 

the implementation of the reviewed idea are 

presented. This section is divided into three parts. The 

simulations of the eigenvalues theorem are presented 

in the first part. However, a complete SDM system is 

simulated in the second part. The simulated SDM 

receiver uses the ZF detector to remove the 

interference among the received symbols. In the last 

part, a real-time SDM system is implemented and 

tested. The real-time SDM system is implemented 

using Xilinx FPGA kit. The ZF detector is also used 

in the receiver of the implemented SDM system. 

The linear mapping of random vectors is 

simulated and assessed using Matlab m-files. In the 

first simulation, a vector x of five Gaussian random 

variables is generated. The random variables in 

vector x have zero means. They are independent and 

have the same variances. The variances of the random 

variables in x are changed from 6.98 dB to 37 dB. 

Four different 5×5 full rank matrices are used to map 

the input vector x to the output vector y. The sums of 

the eigenvalues of the correlation matrices of the first 

and second systems are 1.707 and 0.4822, 

respectively. However, the sums of the eigenvalues 

of the correlation matrices of the third and fourth 

systems are 14.3965 and 26.2839, respectively. For 

each system, the average power of the output vector 

y is calculated using 105 sample vectors of vector x. 

Fig. (2) shows the relation between the average 

power of the input vector x and the average power of 

the output vector y for the used four systems. 

From Fig. (2), it is observed that the first and the 

second linear systems reduce the power of the input 

vector since the eigenvalues sums of their correlation 

matrices are smaller than five (the rank of the used  
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Figure. 2 The input/output average power relation for four linear systems with different correlation matrices 

 

linear systems). However, the third and the fourth 

linear systems increase the power of the input vector 

since the eigenvalues sums of their correlation 

matrices are greater than five. This observation 

confirms the contribution of the eigenvalues’ 

theorem. According to Eq. (10), the power gain of the 

linear system is equal to the trace of its correlation 

matrix divided by its rank. The power gains of the 

first and second systems are -4.6674 dB and -10.1571 

dB, respectively. On the other hand, the power gains 

of the third and fourth systems are 4.5929 dB and 

7.2072 dB, respectively. 

In the next simulation, the performance of a 

random linear system is evaluated. Two different 

input vectors x1 and x2 are used in this simulation. 

Each vector consists of five independent Gaussian 

random variables with zero means. The average 

power of x1 is 0 dB and the average power of x2 is 10 

dB. The random system is a 5×5 zero-mean Rayleigh 

random matrix (A). 105 different input vectors of x1 

and x2 are used in the simulation. The system matrix 

A is randomly changed with each input vector. There 

are 105 random Rayleigh matrices affect the elements 

of the input vectors at each time the simulation is 

done. The vectors y1 and y2 are the output vectors 

from the random system A due to the input vector x1 

and x2, respectively. The average powers of y1 and y2 

are calculated for each input of x1 and x2. According 

to the eigenvalues’ theorem and Eqs. (11) and (14), 

the average eigenvalue (AEV) of the five random 

eigenvalues of the correlation matrix 𝐸[𝐀 𝐀𝐻]  is 

calculated. Moreover, the sum of the five average 

eigenvalues (SAEVs) of the correlation matrix 

𝐸[𝐀 𝐀𝐻] is calculated at each time the simulation is 

done. The previous simulation and calculations are 

repeated 30 times. In each time, the variances of the 

elements of matrix A are changed to have different 

values of the AEV of the correlation matrix 𝐸[𝐀 𝐀𝐻]. 
The 105 Rayleigh random matrices, which affect the 

input vectors, are also changed each time the 

simulation is repeated. Fig. 3 shows the relation 

between the SAEVs of the correlation matrix 

𝐸[𝐀 𝐀𝐻] versus its AEV. The average power of the 

output vectors from the random system A is 

calculated and displayed in Fig. 3. According to Eq. 

(14), the rank threshold of the sum of the eigenvalues 

averages of the correlation matrix 𝐸[𝐀 𝐀𝐻] is 6.9897 

dB. It is also shown in Fig. 3. 

In Fig. 3, the threshold boundary is specified. It is 

the vertical line at the intersection point between the 

rank threshold line and the line of the SAEVs of the 

correlation matrix 𝐸[𝐀 𝐀𝐻]. It is observed that the 

average power of the output vectors from the random 

system A on the left-hand side of the threshold 

boundary is smaller than the average power of the 

input vectors. However, on the right-hand side of the 

boundary, the average power of the output vectors is 

greater than the average power of the input vectors. 

In other words, the average power of the output 

vector from the random system A is smaller than the 

average power of its input vector as long as the 

SAEVs of the correlation matrix 𝐸[𝐀 𝐀𝐻] is smaller 

than the rank threshold (6.9897 dB), and vice versa. 

This observation confirms the contribution of the 

eigenvalues’ theorem. In the last simulation of this 

part, the performance of the ZF detector is evaluated 

individually with noise vectors. In the ZF detector, 

the linear mapping is done using the inverse of the 

channel matrix. Since the channel matrix is often a 

Rayleigh matrix, the linear mapping in the ZF 

detector is done using the inverse of a Rayleigh 

matrix. 

The parameters of the previous simulations are 

repeated in this simulation except that the mapping 

process is done using the inverse matrix A-1. The 

average powers of the output vectors and the SAEVs 

of the correlation matrix 𝐸[𝐀−1(𝐀−1)𝐻]  are 

calculated and represented in Fig. 4. The calculated  
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Figure. 3 The input/output average power relation for a random linear system with two different input vectors x1 and x2 

 

 
Figure. 4 The input/output average power relation for the ZF detector with two different input vectors x1 and x2 

 

parameters are shown versus the AEV of the 

correlation matrix 𝐸[𝐀𝐀𝐻]. 
From Fig. 4, it is observed that the average output 

powers and the SAEVs of the correlation matrix 

𝐸[𝐀−1(𝐀−1)𝐻]  are inversely proportional with the 

AEV of the channel correlation matrix 𝐸[𝐀𝐀𝐻]. This 

is opposite of what happened in the previous 

simulation because the mapping process in the ZF 

detector is done using the inverse of the random 

Rayleigh matrix A. The threshold boundary is also 

specified in Fig. 4. It is observed that the average 

power of the output vectors from the ZF detector on 

the right-hand side of the threshold boundary is 

smaller than the average power of its input vectors. 

However, on the left-hand side of the boundary, the 

average power of the output vectors is greater than 

the average power of the input vectors. Hence, the 

average power of the output of ZF detector is smaller 

than the average power of its input as long as the 

SAEVs of the correlation matrix 𝐸[𝐀−1(𝐀−1)𝐻] is 

smaller than the rank threshold (6.9897 dB), and vice 

versa. 

From Fig. 4, a very important conclusion is noted. 

As long as the AEV of the correlation matrix 𝐸[𝐀𝐀𝐻] 

of the used Rayleigh matrix is greater than 17.6 dB, 

the ZF detector will not increase the power of the 

input noise vector. This conclusion does not depend 

on the power of the noise vector. It depends only on 

the eigenvalues of the correlation matrix 𝐸[𝐀𝐀𝐻] . 

The AEV of the correlation matrix of the Rayleigh 

channel in real communications systems is always 

less than the AEV of the rank threshold boundary. 

This is the reason behind the bad impression of the 

ZF detector performance. To get benefits from the 

previous contribution, the channel parameters, which 

merely affects the desired signal, should be changed 

to increase the AEV of the channel correlation matrix. 

For example, the gains of the transmitting antennas 

or the receiving antennas are adjusted to make the 

AEV of the correlation matrix of the Rayleigh 

channel greater than the AEV of the threshold 

boundary. Table 1 lists the estimations of the AEV of 

the threshold boundary for different Rayleigh 

channel matrices with different ranks. 

The values of the AEV in Table 1 are determined 

from the simulations with an estimation error around 

±1 dB. They may be used as a rough guide in 

designing SDM systems with ZF detectors.  For  
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Table 1. The estimations of the AEV of the threshold 

boundary for rayleigh channel correlation matrix at 

different matrix ranks 

The rank of Rayleigh 

channel matrix 

The average eigenvalue of the 

threshold boundary 

2 13 dB 

3 15.1 dB 

4 16.2 dB 

5 17.6 dB 

6 18.5 dB 

7 19 dB 

8 19.3 dB 

 

Table 2. The AEV of the correlation matrices of the 

simulated rayleigh channels and the SAEVs of the 

correlation matrices of their inverse 

Channel 

matrix 

The AEV of the 

channel correlation 

matrix 

The SAEVs of the 

inverse channel 

correlation matrix 

Group 1 4 dB 18.87 dB 

Group 2 17 dB 6.13 dB 

Group 3 30 dB -7.42 dB 

 

accurate calculations of the AEV values, the 

probability density function (pdf) of the eigenvalues 

of the channel correlation matrix 𝐸[𝐀𝐀𝐻] and the pdf 

of the SAEVs of the correlation matrix 

𝐸[𝐀−1(𝐀−1)𝐻] need to be determined. This is not an 

easy task. This problem may be studied in detail in 

aseparate work to reduce prolongation in this article. 

In the second part of the simulations, the 

performance of an SDM receiver with ZF detector is 

evaluated. The simulated SDM system uses 4 

transmitting antennas and 4 receiving antennas. The 

used modulation scheme is 16-QAM (Quadrature 

Amplitude Modulation). The coherence bandwidth of 

the Rayleigh channel is 6 MHz. The bandwidth of the 

transmitted signal is 5 MHz. The transmission bit rate 

in the simulated SDM system is 40 Mbit/s. However, 

the transmission bit rate in the corresponding non-

multiplexing system is 10 Mbit/s. The receiver uses a 

ZF detector to remove interference among the 

received symbols. The AEV of the channel 

correlation matrix and the SAEVs of the inverse 

channel correlation matrix are calculated. The AEV  

 
 

 
Figure. 5 The BER performance of SDM receiver with ZF detector at different matrices of rayleigh flat fading channels 

 

 
Figure. 6 A comparison between the SNR before and after ZF detector in SDM receiver at different matrices of rayleigh 

flat fading channels 
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represents the average power gain of the channel. 

However, the SAEVs of the inverse channel 

correlation matrix divided by the rank of the channel 

matrix (N) represents the total power gain of the ZF 

detector. According to the used channel model, the 

channel matrix changes randomly every symbol 

period Ts. Table 2 shows the values of AEV and 

SAEVs for three different groups of channels 

matrices. 

The simulation is repeated three times for the 

three different channels groups in Table 2. The signal 

to interference ratio (SIR) at each receiving antenna 

is -4.77 dB. SIR is the ratio between signal power and 

interference power. The average received SNR is 

changed from 10 dB to 40 dB. SNR is the ratio 

between signal power and noise power. Fig. 5 shows 

the Bit-Error-Rate (BER) performance of the 

simulated SDM system at each value of the average 

received SNR. The BER is the ratio between the 

number of bit errors in the received data and the total 

number of received bits. The calculated BER is 

compared with the theoretical probability of error of 

the 16-QAM system in Rayleigh flat fading channel. 

According to the introduced eigenvalues theorems, 

the rank of the channel matrix is 6 dB. 

From Fig. 5, it is observed that the optimum 

performance of the simulated SDM receiver is 

achieved when the SAEVs of the inverse channel 

correlation matrix is equal to the rank of the channel 

matrix (6 dB). In this case, the total average power 

gain of the ZF detector is approximately 0 dB. This 

happens with the second group of channel matrices, 

at which the average power gain of the channel is 

approximately 17 dB. Since the real flat fading 

channel is passive, the channel gain is achieved in 

real systems by increasing the power amplifiers gains 

in the transmitter or changing the gains of the 

transmitting antennas and the receiving antennas. 

When the average channel gain increases more 

than 17 dB, the BER performance of the ZF detector 

is enhanced because the SAEVs of the inverse 

channel correlation matrix is smaller than the rank of 

the channel matrix. This enhancement does not 

depend on the received SNR. This is observed in the 

simulation with the third group of channels. The  

 

 
Figure. 7 The BER performance of the SDM receiver with ZF detector versus the received SNIR at different matrices 

of rayleigh flat fading channels 

 

 
Figure. 8 A comparison between the SNIR before ZF detector and SNR after ZF detector in SDM receiver at different 

matrices of rayleigh flat fading channels 
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Table 3. Synthesis results of the implemented SDM system 

Resource Available Transmitter Receiver Utilization % 

LUT 303600 55324 125179 59.45 

FF 607200 82331 180844 43.34 

IO 700 24 24 6.8 

BUFG 32 5 7 37.5 

Worst negative slack 0.832 ns 0.087 ns 
 

Worst hold slack 0.042 ns 0.035 ns 

 

SAEVs is approximately 13.5 dB lower than the rank 

threshold. The BER performance of the SDM system 

with the third channel group is 13 dB better than the 

theoretical probability of error of 16-QAM systems, 

whatever the received SNR is. 

This performance enhancement is not due to the 

increase in the received SNR since the BER is 

calculated at the same values of the SNRs used with 

the second group of channels. However, the 

performance enhancement is due to that the ZF 

detector will reduce noise power at its output to be 

smaller than the noise power at its input when the 

SAEVs is smaller than the rank.  

Finally, when the first group of the channel matrix is 

used in the simulation, it gives the worst BER  

 
 

 
Figure. 9 The BER performance of real-time SDM system with ZF detector versus the received SNIR at different 

matrices of rayleigh flat fading channels 

 

 
Figure. 10 A comparison between the SNIR before ZF detector and SNR after ZF detector in real-time SDM receiver at 

different matrices of rayleigh flat fading channel 
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performance because the SAEVs is bigger than the 

rank threshold of the channel matrix. In this case, the 

ZF detector enhances the noise power at its outputs. 

The SNR at the input of the baseband detector is 

smaller than the SNR at the input of the baseband 

detector of the previous two cases. This is the reason 

for the bad BER performance of the ZF detector when 

the first group of the channel matrix is used. 

Fig. 6 displays the average SNR at the output of the 

ZF detector versus the average SNR at its input for 

the previous three channels groups. The figure 

confirms the aforementioned contributions. The 

average SNR at the output of the ZF detector changes 

for the same SNR at its input according to the used 

channel group. The average SNR at the output of the 

ZF detector is bigger than the average SNR at its 

input as long as the SAEVs of the inverse channel 

correlation matrix is smaller than the rank threshold. 

This is the reason why the BER performance is better 

in the case of the third channel group than the other 

cases.  

The previous simulation is repeated but the 

average BER is displayed versus the average received 

Signal to Noise and Interference Ratio (SNIR) at each 

receiving antenna. Fig. 7 shows the average BER 

versus the average SNIR and Fig. 8 shows the 

average SNR at the output of the ZF detector versus 

the average SNIR at its input. The same observations 

are contributions are achieved for this simulation. 

Therefore, the BER performance of the ZF 

detector neither depends on the received noise power 

nor the received interference power, but it depends on 

the eigenvalues of the correlation matrix of the 

inverse channel matrix. 

In the last part of this section, a real-time 

implementation of the simulated SDM system is 

tested with a practical Rayleigh channel. Xilinx 

FPGA kit is used to implement the SDM transmitter 

and receiver. The used FPGA platform is Virtex-7 

VC707. Table 2. lists the synthesis results of the 

implemented SDM system. 

A file of 1 G bits is transmitted with a rate of 30 

M bits/s. The carrier frequency of the transmitted 

signal is 5 GHz. 3 transmitting antennas and 3 

receiving antennas are used in the implemented 

system. The spacing between the antennas is 30 cm. 

According to the eigenvalues’ theorems, the rank 

threshold of the channel matrix is 4.77 dB. From 

Table 2, the average channel gain should be greater 

than 15.1 dB to use ZF detector in the receiver 

without any noise enhancement. The power 

amplifiers and the gains of the transmitting antennas 

and receiving antennas are considered as a part of the 

channel matrix. The gains of the power amplifiers, 

the transmitting antennas, and receiving antennas are 

adjusted to get two different channel matrices with 

AEV of 10.78 dB and 20.78 dB. The received average 

SNIR is changed from 20 dB to 35 dB. The average 

BER is calculated and displayed in Fig. 9 using the 

previous two channels. 

Form Fig. 9, it is observed that the average BER 

is changed for the same received SNIR according to 

the value of the AEV of the channel matrix. When the 

AEV is bigger than 15.1 dB, the average BER is 

smaller than the BER when the AEV is smaller 

than15.1 dB. The SAEVs in the second case is 

smaller than the rank threshold of 4.77 dB. However, 

the SAEVs in the first case is bigger than the rank 

threshold. 

Therefore, the performance of the ZF detector is 

not affected with the received SNIR but it is affected 

with the AEV of the channel correlation matrix and 

the SAEVs of the inverse channel correlation matrix. 

The AEV of the channel correlation matrix can be 

controlled by the power amplifiers gains in the 

transmitter, the gains of the transmitting antennas and 

the gains of the receiving antennas. Fig. 10 display 

the average SNR at the output of the ZF detector 

versus the average SNIR at its input. The average 

SNR at the output of the ZF detector is smaller than 

the Average SNR at its input as long as the SAEVs of 

the correlation matrix of the ZF detector mapping 

matrix is smaller than the rank threshold, and vice 

versa. 

6. Conclusions 

SDM system increases the data transmission rate 

by sending the modulated symbols parallel using 

different transmitting antennas. SDM system sends 

the modulated symbols in the same bandwidth, which 

is used by the non-multiplexing system. The 

bandwidth efficiency of the SDM system is greater 

than the bandwidth efficiency of any other 

multiplexing system. The channel model of the SDM 

system is conserved as a flat fading channel to 

prevent ISI among the received symbols. This is 

accomplished by reducing the transmission rate of 

each transmitting antenna to get a transmission 

bandwidth smaller than the coherence bandwidth of 

the channel. In the same time, the number of the 

transmitting antennas is increased to achieve the 

required high transmission rate. 

In the used SDM receiver, ZF detector is used 

after the matched filters to remove interferences 

among the multiplexed symbols because its 

complexity changes linearly with the number of the 

interfering symbols. The random variables in the 

noise vector after the matched filters in the SDM 

receiver are independent and have the same 
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probability distribution functions. The noise 

performance of the ZF detector does not depend on 

the received SNR. The eigenvalues of the correlation 

matrix of the ZF detector-mapping matrix and the 

rank of this mapping matrix are the parameters, 

which control the performance of the ZF detector. 

The channel noise power at the outputs of the ZF 

detector increases or decreases according to the 

relation between the sum of the eigenvalues of the 

correlation matrix of the ZF detector and the rank of 

its mapping matrix. If the sum of these eigenvalues is 

greater than the rank of the mapping matrix, the ZF 

detector will enhance the channel noise power at its 

output and the BER will increase at the output of the 

baseband detector. However, if the sum of these 

eigenvalues is equal to the mapping matrix rank, the 

ZF detector will not enhance the noise power at its 

output and the BER performance of the ZF detector 

will be closed to the BER performance of the ML 

detector. Moreover, the ZF detector will reduce the 

channel noise power at its output if the sum of these 

eigenvalues is smaller than the mapping matrix rank. 

Since the mapping matrix of the ZF detector is the 

inverse of the channel matrix, there is a relation 

between the average eigenvalue of the channel 

correlation matrix and the sum of the eigenvalues of 

the correlation matrix of the ZF detector-mapping 

matrix. Simulation results show that the ZF detector 

will not increase the noise power at its outputs if the 

average eigenvalue of the channel correlation matrix 

is greater than a certain threshold. The results of the 

simulations give estimations for this threshold for 

different ranks of channel matrices. According to the 

used mathematical model, the elements of the 

channel matrix depend on the transmitting antennas 

gains and the receiving antennas gains. By adjusting 

these gains, the average eigenvalue of the channel 

matrix can be greater than the estimated threshold. In 

this case, the ZF detector reduces the power of the 

channel noise whatever its input SNR is high or low. 

The noise performance of the ZF detector does not 

depend on the received SNR, but it depends on the 

average eigenvalue of the channel correlation matrix. 

The output SNR at the output of the ZF detectors 

changes according to the average eigenvalue of the 

correlation matrix at the same input SNR. 

In future work, the probability distribution of the 

average eigenvalue of the channel correlation matrix 

and the probability distribution of the sum of the 

eigenvalues of the ZF detector correlation matrix will 

be determined. A mathematical equation, which 

gives the estimation of the average eigenvalue 

threshold of the channel matrix, will also be specified. 
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