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ANALYSIS AND COMPARISON OF LONG SHORT-TERM MEMORY 

NETWORKS SHORT-TERM TRAFFIC PREDICTION 

PERFORMANCE 
 

Summary. Long short-term memory networks (LSTM) produces promising 

results in the prediction of traffic flows. However, LSTM needs large numbers of 

data to produce satisfactory results. Therefore, the effect of LSTM training set 

size on performance and optimum training set size for short-term traffic flow 

prediction problems were investigated in this study. To achieve this, the numbers 

of data in the training set was set between 480 and 2800, and the prediction 

performance of the LSTMs trained using these adjusted training sets was 

measured. In addition, LSTM prediction results were compared with nonlinear 

autoregressive neural networks (NAR) trained using the same training sets. 

Consequently, it was seen that the increase in LSTM's training cluster size 

increased performance to a certain point. However, after this point, the 

performance decreased. Three main results emerged in this study: First, the 

optimum training set size for LSTM significantly improves the prediction 

performance of the model. Second, LSTM makes short-term traffic forecasting 

better than NAR. Third, LSTM predictions fluctuate less than the NAR model 

following instant traffic flow changes. 

Keywords: deep learning, traffic flow, short-term, prediction, LSTM, nonlinear 

autoregressive, training set size 
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1. INTRODUCTION 

 

Nowadays, the number of vehicles and travel demands are increasing rapidly. This 

increase is responsible for delays, fuel loss and high emissions globally. For this reason, the 

efficiency of road capacities should be increased by directing and controlling road traffic with 

intelligent transport systems (ITS). However, ITS needs information about the current status 

of traffic variables and future estimates of this information (for example, volume, speed, 

travel time, etc.). For ITS to be more efficient, it is important that traffic parameters be 

accurately estimated, especially in the short term. Thus, ITS can make fast and accurate 

decisions for future traffic situations. For this reason, studies on predicting the short-term 

future situation of traffic become important. Researchers are working to make these 

predictions more accurate by developing new methods. Especially as deep learning has 

proven itself in many areas, the use of deep learning in short term traffic prediction has 

accelerated. Therefore, there is a need for research that better demonstrates the potentials of 

deep learning in this regard.  

The first study on short-term traffic flow estimation was performed using the Box-

Jenkins method [1]. Time series methods were used to estimate traffic flow in other studies. 

[2-8] However, when artificial intelligence approaches and time series methods were 

compared, it was observed that artificial intelligence predicted short term traffic flow better 

[9]. Therefore, in this study, traffic flow estimation models were developed by using artificial 

intelligence and deep networks approaches and the size of the training sets were discussed 

[10].  

Short-term traffic flow estimation was performed with ANNs in earlier times from deep 

learning approach. For instance, the dynamic wavelet ANN model was used to estimate traffic 

flow [11]. Dynamic traffic flow modelling is another approach to determine the amount of 

traffic flow [12]. ANN and K-NN were used together to estimate traffic flow [13]. In another 

study, multiscale analysis-based intelligent ensemble modelling was used to predict airway 

traffic [14]. The traffic flow was modelled for the city of Istanbul using different time 

resolutions and the results were accurate despite the limited data [15] and some others [15-

18]. Deep learning has recently gained interest in the prediction of various traffic parameters. 

Long short-term memory (LSTM) is in the sub-branch of deep learning. Previous studies on 

LSTM have evidence that deep learning and the performance of other methods were 

compared. For example, LSTM was compared with regression models [19]. As a result, 

LSTM has generally made better predictions, except in some cases. Researchers developed a 

model using LSTM to predict the short-term traffic flow in exceptional traffic conditions. In 

addition, the authors studied the characteristics of traffic data [20]. In another study, LSTM 

and recurrent ANN models were compared with ARIMA models [21]. As a result, researchers 

mentioned that artificial intelligence models work better. In the other study, LSTM and 

recurrent ANN and regression models were compared with LSTM obtaining better results 

[22]. 

LSTM and short-term traffic flow were reviewed in the literature, but so far, there was no 

study on the effect of training set size on LSTM performance.  Therefore, in this study, LSTM 

and nonlinear autoregressive neural networks (NAR) were trained with different training sets 

size and the optimum size was determined for the problem. In addition, two models were 

compared, and their results discussed. Thus, the results of this study will help to determine the 

size of the training set for future studies. 
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This article consists of introduction, methodology and conclusion. The subject and 

importance of this study are discussed, and the related literature is summarised in 

the introduction section of this article. The data used and the estimation of missing data are 

presented in the methodology section. Then, LSTM and NAR approaches were briefly 

explained, and the parameters of the models used in the study were introduced. Thereafter, 

NAR and LSTM estimates were tested by hypothesis testing and the results were discussed. 

Finally, the conclusions of the study were recalled in the conclusion section and 

recommendations were made for future studies. 

 

 

1. METHODOLOGY 

 

1.1. Data collection and missing data 

 

Traffic flow data were collected from the D200 highway. This highway connects the 

major cities of Turkey. The main road traffic is not interrupted 20 km forward and backward 

from the counted section. Therefore, there are uninterrupted conditions in the counting 

section. Data collection was performed with NC-350 traffic counters [23]. The counting was 

conducted with traffic counting devices placed separately for the left and right lanes. The 

devices were set to record data every 15 minutes. Devices were counted for 47 days and 4,512 

traffic flow data were collected. 

In the counting process, data cannot be recorded at some time intervals and this is very 

common. This data is called missing data. This is often the result of faults in the device or the 

limitations of the counting device. After counting operations, it was found that approximately 

1% of the total data was missing. Autocorrelation reveals the degree of relationship of time 

series points with each other. The points with high autocorrelation are used in making future 

predictions. To complete the missing data, traffic data with high autocorrelation were used 

with missing data. The results of the autocorrelation calculation result are given in Fig. 1. 

Autocorrelation was high at point 672. Each counting operation has 15 min intervals. In other 

words, every point in the time series is related to the point 7 days (672 / (24 * 4) previous. 

This is a very common pattern in traffic flows.  

 

 
 

Fig. 1. Completion of missing data 
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In this case, the missing data can be completed with the value at the point 672 interval 

before the missing point. Let X ∊ ℤ be traffic data with missing values and xt ∊ X indicates 

the traffic flow data at time t. Also, let ∊ ℤ denote the missing data in the series and at time 

t. According to these definitions, the missing data is completed as in Equation 1.  

 

  (1) 

 

After completing the missing data, the data set was standardised with Equation 2 before 

training the models.  

 

  (2) 

 

where, 

xstd  standardised data, 

x  raw data, 

  mean of the dataset, 

sx  standard deviation of the dataset. 

 

1.2. Long short-term memory  

 

Long short-term memory network (LSTM) is an advanced type of recurrent neural 

networks (RNNs) that can overcome the long-term dependence problem. RNNs produced 

successful results in sequence prediction tasks. However, it is often difficult for RNNs to 

learn long-term patterns [24]. LSTM can understand short- or long-term dependencies with 

the help of units that learn when to forget and when to update the information.  

Let xt be the input vector, ht be the output of the LSTM unit and Ct be the cell state at time 

t.  In the first step, how much of the information in the Ct-1 will be forgotten is determined by 

forget gate. The forget gate is a layer that uses sigmoid function and uses ht-1 and xt to 

generate values between “0” and “1”. Therefore, ft in Fig. 2 can be written as: 

 

   (3) 

 

The next step is to identify new information that will be stored in the cell state. This step 

consists of two sub-steps: The first step is the input gate, which determines what information 

to update. The second step determines the vector containing the candidate values. In Fig. 2, 

the output value of the input gate is represented by it, while the output value of the second 

section is indicated by . The it and  can be written as: 

 

  and   (4) 

 

After these steps, the old state vector (Ct-1) is updated to reveal the new state vector (Ct). 

The update process can be written as: 

 

  (5) 

 



Analysis and comparison of long short-term memory… 23. 

 

 
 

Fig. 2. Long short-term memory network unit 

 

The last step is to determine the hidden state (ht): 

 

   (6) 

 

The output gate (ot) is the process that determines which parts of the cell state will be in 

the output and can be written as: 

 

   (7) 

 

where σ() is the sigmoid function, W(f,i,c,o) matrices are the network parameters, b(f,i,c,o) is the 

bias matrices. And ⊙ denotes the product operation. LSTM can successfully overcome the 

exploding/vanishing gradients problem with these processes and gates [25]. 

 

1.3. Nonlinear auto-regressive neural networks 
 

Nonlinear autoregressive neural networks (NAR) are a customised neural network (ANN) 

model for time series. NAR predicts the future value by using the past data of the time series. 

NAR needs a training set like other ANNs. Let X ∊ ℤ be the traffic flow data and xt ∊ X 

denotes the traffic flow value at time t. In this case, the future traffic flow value will be: 

x ̂_(t+1)=f(x_t,x_(t-1),…x_(t-d)). Where, x ̂_(t+1) is the prediction value of the NAR, f(x) 

expresses the NAR black-box function and the d is the delay value. Backpropagation 

algorithm [26] and Levenberg-Marquardt method [28,29] were used for training.  

The connections of the NAR with the hidden and the output layers are shown in Fig. 3. 

The model uses a delay parameter  to estimate the traffic flow  at time t + 1. In 

this study, in the hidden layer tangent hyperbolic and in the output layer linear function were 

used as activation functions. To determine the appropriate NAR architecture, the number of 
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hidden layer neurons was tested from 5 to 35. Then, the RMSE of different NAR architectures 

were analysed and it was decided that 3-10-1 was the appropriate NAR architecture. 

In this section, we first introduced the creation of training and test sets. Then, the effect of 

the size of the training sets on the predictions of NAR and LSTM was examined and finally, 

the prediction results of the two methods were evaluated by statistical tests. 

 

 
 

Fig. 3. Nonlinear autoregressive neural network architecture 

 

Traffic flow vector (X) consists of 47 daily traffic flow data. The data sets to be used for 

training were selected in six different sizes from 5 to 30 days. Let ej ⊂ X be a training set 

vector and the number of data in ej will be  

 and j=1,2,…,6. The last 17 days of the X 

vector were selected for testing the models. Let tm ⊂ X be a test set vector and m=1,2,…,17.  

The pseudo-code for the creation of training and test sets with these representations is as 

follows: 

 

1. Start 

2. Let, n := |X|, r :=|tm|, p :=|ej|, 

3. m = 1, 

4. j = 1, 

5. ej = {xt | (t>(n-(j*r+p) ⋀ t≤(n-j*R)} 

6. tm={{xt | (t>(n-(j*r) ⋀ t≤(n-(( j-1)*r)), 

7. If j < p and m<r Then, 

j = j + 1 and turn back to Step 4 

If j = p and m<r Then, 

m= m + 1 and turn back to Step 4 

If j = p and m = r Then, Stop. 

 

The delay parameter  or lag value was kept equal in the LSTM and NAR models, 

and this value was set to   . Thus, regardless of parameter d, the effect of data set size on 

performance was compared. 

NAR and LSTM models with training set size 480  were named NAR5 and 

LSTM5 and the test results were given in Fig. 4 using box-plot. In Figs. 4 and 5, the outliers 

were shown with the (+) sign. If these (+) signs are counted from Figs. 4 and 5, it is 
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understood that while LSTM produces ten outliers, the NAR has four outliers. This result 

indicates that LSTM predictions are rarely more than expected.  When the median values 

were examined, it was seen that the value of NAR5 was higher than the value of LSTM5. In 

addition, it was observed that the range of LSTM5 was smaller than NAR5 with the 

examination of the upper/lower whiskers. Simply put, the LSTM approach was able to 

produce better results than the NAR with the smallest training set size examined.  

 

 
 

Fig. 4. Comparison of errors for trained models with different-sized training sets 

 

Fig. 5 shows the RMSE values produced by the models as a result of the use of training 

set sizes between 10 and 30 days. It can be read from the median lines depicted in Fig. 5 that 

the LSTM produces lower RMSE for all training set sizes. It was observed that NAR error 

values were oscillated by increasing the size of the training set, but no clear decrease was 

observed. Furthermore, it is understood from Fig. 5 that the LSTM error values tend to 

decrease clearly for the same training set size increase. Thus, following examination of the 

average RMSE values of the models, it was found that the lowest error was in 

 for NAR and LSTM. Based on this, the error values of the models due to 

their training with , training set size were examined more closely. Fig. 5 shows 

that the maximum RMSE value of NAR25 is 17 veh. However, the maximum prediction error 

value of LSTM25 was about 13 veh. 

 
 

Fig. 5. Comparison of errors for trained models with different-sized training sets 
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To observe the prediction of the models in more detail, the 17th test day was examined in 

Fig. 6. And to observe the estimations of the models in more detail, the 17th test day was 

examined in Fig. 6. The results of the remaining test days are presented in Appendix 1 for the 

reader's review. The coefficients of estimation of the two models were calculated and it was 

determined that both models produced high R2 values. The calculated R2 values for the 

remaining days can be examined in Appx 2 and 3. Like the RMSE values examined in the 

previous figures, LSTM predictions produced R2 values higher than NAR predictions for all 

test days. A remarkable situation was seen during the comparison of the models on the line 

graph. In Fig. 6, the prediction line of NAR makes high fluctuations to approach the actual 

value. On the other hand, the fluctuation of LSTM was less than NAR. The same examination 

was performed for the other test days and the same result was reached. In the light of these 

results, it was concluded that LSTM was less affected by instant traffic flow changes than 

NAR model.  

Although the LSTM was found to be more accurate than NAR, the statistical significance 

of this result was tested by t-test. The established hypothesis statements were established as 

follows: 

 

H0: If LSTM is used instead of NAR, the mean RMSE does not change. (μLSTM =μNAR) 

H1: If LSTM is used instead of NAR, the mean RMSE is decreased. (μNAR> μLSTM) 

 

where, μNAR and μLSTM represent the mean of the estimation errors of NAR and LSTM, 

respectively. 

 

 
 

Fig. 6. Comparison of NAR25 and LSTM25 short-term traffic flow predictions with real 

values. (t-1) of the 15 min 

 

The results of the paired t-test are summarised in Tab. 1. Tab. 1 shows that the mean 

difference values (μ) of the two models are positive for all ej's. This indicates that the LSTM 
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as less mean prediction errors than NAR. The confidence level of the hypothesis test was 95% 

(α = 0.05). The p-value was examined from the table and it was seen that p <0.05 was found 

for the other training set sizes except for the 5-day training set. In the light of these results, 

except for 5-day training set, H0 was rejected and H1 was accepted. 

 

Tab. 1 

Paired t-test results (α = 0.05) 

 

Training set size 

Number of data/ 

Number of days 

|ej| 

μ σ σx̅ Lower Upper t df p-value Result 

480 / 5 days 4,21 13,48 3,27 -2,73 11,14 1,29 16 0,217 Ho Accept 

960 / 10 days 1,46 0,70 0,17 1,10 1,82 8,56 16 0,000 Ho Reject 

1440 / 15 days 2,71 4,38 1,06 0,46 4,97 2,55 16 0,021 Ho Reject 

1920 / 20 days 1,74 1,05 0,25 1,20 2,28 6,85 16 0,000 Ho Reject 

2400 / 25 days 1,73 1,01 0,24 1,21 2,25 7,08 16 0,000 Ho Reject 

2880 / 30 days 1,58 0,73 0,18 1,20 1,95 8,92 16 0,000 Ho Reject 

 

The statistical analysis confirmed that the LSTM model usually predicted traffic flow 

more accurately than the NAR model for 15-min data. In addition, the improvement in the 

predictive performance of the NAR model was not observed by increasing the size of the 

training set. However, the improvement in the predictive performance of the LSTM model 

was clearly observed by increasing the size of the training set. However, it was determined 

that the increase in the size of the training set should be at certain levels. For this study, it was 

found that this size should have 2400 data (25 days) number for both models. 

 

 

3. CONCLUSION 

 

Accurate short-term traffic forecasts will improve the decision-making capabilities of 

traffic control systems. Thus, traffic flow and traffic safety will reach better levels. In this 

study, training sets of different sizes were created. Then, the effects of these clusters on the 

predictive performance of LSTM and NAR models were examined. In terms of short-term 

traffic estimation, it was understood from the analysis results and statistical tests that LSTM 

models have better predictions than NAR models.  

The conclusions of this study are as follows: 

 This study showed that a large amount of training set does not increase performance. For 

this reason, the optimum training set size of the new deep learning approaches should be 

determined. 

 The larger training set size does not always mean better performance for LSTM and NAR. 

 Improvement in LSTM estimation performance is observed towards optimum training set 

size. However, the same feature cannot be mentioned for NAR. 

 LSTM is less affected by instant traffic flow changes than the NAR model. Therefore, 

LSTM produces stable results from NAR for short-term traffic prediction. 

 Statistically, the LSTM approach performs better than that of NAR when the training set 

size is greater than 480. 

 It was observed that LSTM produced more outliers than NAR. Therefore, in rare cases, 
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LSTM is likely to make high errors. 

 In this study, the size of the LSTM training set was discussed in the context of the 

prediction of traffic flow. The effects of other parameters of LSTM will be investigated in 

future studies. For this study, tests were performed for a time interval of 15 minutes, which 

is commonly used in the literature. In addition, smaller time intervals can be investigated in 

future studies. Another limitation of this study is the use of only one data set. Future 

studies will be enriched with different data sets from different regions. 

 

ITS will be an indispensable tool in the future traffic control of cities. This will make 

future traffic flow forecasts much more important. Therefore, it can easily be foreseen that the 

studies will continue for more effective use of deep learning in road traffic prediction. 
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Appendix 1. Comparison of LSTM and NAR models with actual values 
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Appendix 1 (contd). Comparison of LSTM and NAR models with actual values 
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