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Abstract. Initial boundary value problems in space-time rectangle [0, T ] × [−l,+l] for
the following linear inhomogeneous degenerate wave equation of the second order

∂2u

∂t2
−

∂

∂x

(
a
∂u

∂x

)
= g

are considered. The degeneracy of the equation means that continuous and piecewise
smooth coefficient function a(x) vanishes in single points of segment [−l,+l].
The well-posedness of the initial boundary value problems is achieved using some appro-
aches to regularization of the equation and the theory of characteristics. The problems for
wave equation are then reduced to problems for hyperbolic balance laws 2× 2 and 3× 3
of partial differential equations of the first order. Weak solutions to the problems are
obtained using proper numerical methods.

Results obtained for some approaches to regularization are presented.
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1. Introduction

“The earth was without form, and void. . . ” Gen 1:2

In July of 2019 Prof. P. I. Kogut involved the author of the current study into
a discussion concerning a degenerate spatially one-dimensional wave equation of
the second order and admissible well-posed initial boundary value problems for
such an equation. Shortly, the degeneracy of the wave equation means vanishing
of the coefficient a(x) of the highest order spatial derivative in some intervals of
spatial variable x, or ‘lacunae’ {x : a(x) = 0}, and changing the type of the wave
equation in the lacunas from hyperbolic to parabolic.

Solutions to admissible well-posed initial boundary value problems for the wave
equation with no degeneracy are known to be composed of two waves running in
the opposite directions, and the local squared velocities of the waves equal to
the local values of the coefficient a(x). Vanishing of the coefficient a(x) no doubt
prevent waves from running inside lacunae. But do the waves running outside
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the lacunae reflect from the lacunae or are the waves damped by the lacunae?
How to pose properly initial boundary value problems in case of lacunae?

Thanks courtesy of Prof. P. I. Kogut, draft copy of his article [4] had been
a part of the discussion. The articles deals with the existence, non-uniqueness and
a priori estimates of the solutions to well-posed initial boundary value problems
for the degenerate wave equation. Unfortunately, none of the solutions was given
in an explicit form. Hence, it was attempted to find solutions using exceptionally
classical direct approaches. The current study stems from those attempts. By
classical approaches we imply here: 1) the theory of characteristics for linear
partial differential equations in two independent variables of the second order,
2) the theory of weak solutions to initial boundary value problems for the former
equations and for hyperbolic systems of linear partial differential equations of
the first order, and 3) numerical methods for obtaining such weak solutions.

The article is arranged as follows.
In section 2 we define exactly what we imply by the degenerate wave equation

and then discuss preliminaries of initial boundary value problems for the equation.
In section 3 we implement characteristic analysis of the degenerate wave equa-

tion to well-pose initial boundary value problems for the equation.
In section 4 we reduce the degenerate wave equation to hyperbolic systems

and balance laws 2 × 2 and 3 × 3 of the first order. As to our opinion, using
first-order partial differential equations in optimization and control problems is
preferable.

In section 5 we shortly discuss numerical methods for obtaining weak solutions
to well-posed initial boundary value problems for the degenerate wave equation
and degenerate hyperbolic systems and balance laws 2× 2 and 3× 3.

In section 6 we present numerical weak solutions to well-posed initial boundary
value problems for the wave equation using regularization.

In section 7 we give in brief our observations on the subject.
The article is a preparatory and preliminary publication when preparing for

solving optimization and control problems for the degenerate wave equation.

2. Pre-formulation of IBVPs for the wave equation

In the current study our concern relates to initial boundary value problems
in space-time rectangle [0, T ] × [−l,+l] for the following linear inhomogeneous
wave equation of the second order

∂2u

∂t2
− ∂

∂x

(
a
∂u

∂x

)
= g , (2.1)

where t, x are the independent variables, u(t, x) is the dependent variable, a(x) is
the only coefficient, g(t, x, u) is a source term playing an essential role in problems
of control, but being equal zero in the current study.

We apply the chain rule for the second term of equation (2.1) to obtain the ex-
panded form of the latter as follows
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∂2u

∂t2
− a ∂

2u

∂x2
= a′

∂u

∂x
+ g =: Φ, (2.2)

where a′ ≡ a′(x), that is the prime as usual means the first derivative of a(x),
and auxiliary quantity Φ is introduced for the sake of convenience.

Equation (2.2) is known to be of hyperbolic type provided function a(x) is
positive, and the same is true for equation (2.1). A subsegment of segment [−l,+l]
where function a(x) vanishes, produces a band in the space-time rectangle where
both equations lose their hyperbolicity, or degenerate.

We consider a particular case of losing hyperbolicity of equations (2.1) and (2.2)
when function a(x) vanishes in a single point inside segment [−l,+l]. Let a0 be
a constant reference value for continuous and piecewise smooth function a(x) that
vanishes in the mid point of segment [−l,+l] following a power law inside a narrow
subsegment [−δ,+δ] as follows (Fig. 2.1,a)

a(x) =

{
a0 , δ 6 |x| 6 l ,

a1 |x|α, 0 6 |x| 6 δ ,
(2.3)

where 0 < δ < l , α > 0, a1 = a0 δ
−α. Such a function a(x) is easily replaced with

its regular (non-vanishing in any point of segment [−l,+l]) continuous and piece-
wise smooth counterpart (Fig. 2.1,b)

aε(x) =

{
a0 , δ 6 |x| 6 l ,

a2 |x|α + ε , 0 6 |x| 6 δ ,
(2.4)

where a2 = (a0 − ε) δ−α and ε is the regularization parameter, to avoid the de-
generacy of equations (2.1) and (2.2). The choice of regular function aε(x) is
not unique, and replacing singular power curve |x|α with another regular one, for
example, with (|x|+ ε)α, is possible as well.

The formulation of any admissible well-posed initial boundary value prob-
lem for both wave equations (2.1) and (2.2), where the singular coefficient func-
tion a(x) given by (2.3) is replaced with a regular function aε(x) similar to that
given by (2.4), i. e. not leading to degeneracy of equations (2.1) and (2.2), is well
known. But what happens if the regularization parameter ε tends to zero (conse-
quently, aε(x) → a(x)), or it is the same as both wave equations (2.1) and (2.2)
degenerate? To answer this question we refer to the theory of characteristics.

3. Characteristic analysis of IBVPs for the wave equation

In this section we implement the characteristic analysis to wave equation (2.2),
where the coefficient function is given by (2.3) and (2.4), following well known
standard approaches.

First, we consider a general linear (in the highest derivatives) partial differen-
tial equation of the second order in two independent variables



26 Vladimir L. Borsch

Fig. 2.1. The continuous and piecewise smooth coefficient function a(x) of the wave equa-
tion (2.1), (2.2) is defined in segment [−l,+l] = [−1,+1]: vanishing in the mid point x= 0

of segment (2.3) and referred to as singular (a) and non-vanishing in any point of segment due
to the regularization parameter ε (2.4) and referred to as regular (b); the value of exponent α
in power law |x|α inside subsegment [−δ,+δ] (2.3), (2.4) is chosen to be equal to 0,5, 1, 2
(curves marked with 1, 2, and 3 respectively); the constant reference value a0 = 1 is shown
as straight line marked with 0. Subsegment [−δ,+δ] = [−0.5,+0.5] is chosen wide for clarity

a1,1 p1,1 + 2a1,2 p1,2 + a2,2 p2,2 = Ψ (x1, x2, w, p1, p2) , (3.1)

where x1, x2 are the independent variables, w(x1, x2) is the dependent variable,
pκ are the first derivatives of w with respect to xκ, pι,κ are the second derivatives
of w with respect to xι, xκ, aι,κ(x1, x2) are the coefficients of the second derivati-
ves, ι, κ = 1, 2, 3.

Second, we consider the following linear algebraic system with respect to the
second partial derivatives of function u

a1,1 2a1,2 a2,2

dx1 dx2 0

0 dx1 dx2




p1,1

p1,2

p2,2

 =


Ψ

dp1

dp2

, (3.2)

appearing in the theory of characteristics when treating the Cauchy problem
for equation (3.1) along a curve, small segment of which is given by the lon-
gitudinal displacements dx1 and x2.

The above system has non-trivial and non-unique solutions iff the rank of
the matrix of the system equals the rank of the extended matrix of the system,
that is the following condition holds
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rank


a1,1 2a1,2 a2,2 Ψ

dx1 dx2 0 dp1

0 dx1 dx2 dp2

= rank


a1,1 2a1,2 a2,2

dx1 dx2 0

0 dx1 dx2

. (3.3)

The above condition determines the characteristic curve of equation (3.1).
For wave equation (2.2) we have: x1 = t, x2 = x, a1,1 = 1, a1,2 = 0, a2,2 = −a,

p1 =
∂u

∂t
, p2 =

∂u

∂x
, Ψ = Φ = a′v3 + g, and condition (3.3) reads

rank


1 0 −a Φ

dt dx 0 dp1

0 dt dx dp2

= 2 , (3.4)

where by a it is meant function a(x) (2.3) or function aε(x) (2.4).

∆0 = det

∣∣∣∣∣∣∣∣∣
1 0 −a

dt dx 0

0 dt dx

∣∣∣∣∣∣∣∣∣ = dx dx− a dt dt = 0 ,

∆1 = det

∣∣∣∣∣∣∣∣∣
0 −a Φ

dx 0 dp1

dt dx dp2

∣∣∣∣∣∣∣∣∣ = Φ dx dx− adt dp1 + a dx dp2 = 0 ,

∆2 = det

∣∣∣∣∣∣∣∣∣
1 −a Φ

dt 0 dp1

0 dx dp2

∣∣∣∣∣∣∣∣∣ = Φ dt dx− dx dp1 + adt dp2 = 0 ,

∆3 = det

∣∣∣∣∣∣∣∣∣
1 0 Φ

dt dx dp1

0 dt dp2

∣∣∣∣∣∣∣∣∣ = Φ dt dt− dt dp1 + dx dp2 = 0 .

Determinant ∆0 gives the equation of characteristic curves which splits into
the equations of two independent branches

dx = ∓
√
a dt , (3.5)

usually referred to as the equations of the ∓ - (families of) characteristics.
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Replacing dx in determinants ∆1, ∆2, and ∆3 with ∓
√
a dt (3.5) we find that

the following two equalities hold

Φ dt− dp1 ±
√
a dp2 = 0 , (3.6)

usually referred to as the relations along the ∓ - (families of) characteristics.
We assign three different values of the exponent α in (2.3) and (2.4) and find

the characteristic curves of both families passing through given points (∓δ, t0).
1) Let α = 0,5, then integration of differential equations (3.5) gives both

families as (case I0)

t = t0 ∓
4

3
√
a1

(
δ

3
4 − |x|

3
4

)
, x ∈ (0, δ] . (3.7)

If the regularization parameter ε is not equal to zero, then integration of
differential equations (3.6) of both families gives (case Iε)

t = t0 ±
4

3 a2
2

[√
a2

√
δ + ε

(
a2

√
δ − 2ε

)
−
√
a2

√
|x|+ ε

(
a2

√
|x| − 2ε

)]
, (3.8)

where x ∈ [0, δ].
Characteristic curves (3.7) and (3.8) are shown in Fig. 3.2, 1, a and Fig. 3.2, 1, b

respectively.
2) Let α = 1, then integration of differential equations (3.5) gives both families

as (case II0)

t = t0 ∓
2√
a1

[√
δ −

√
|x|
]
, |x| ∈ (0, δ] . (3.9)

If the regularization parameter ε is not equal to zero, then integration of
differential equations (3.6) of both families gives (case IIε)

t = t0 ±
2

a2

[√
a2 δ + ε−

√
a2 |x|+ ε

]
, |x| ∈ [0, δ] . (3.10)

The characteristic curves (3.9) and (3.10) are shown in Fig. 3.2, 2, a and
Fig. 3.2, 2, b respectively.

3) Let α = 2, then then integration of differential equations (3.5) gives both
families as (case III0)

t = t0 ∓
1√
a1

[
ln δ − ln |x|

]
, |x| ∈ (0, δ] . (3.11)

If the regularization parameter ε is not equal to zero, then integration of
differential equations (3.6) of both families gives (case IIIε)

t = t0 ±
1

a2

[
ln

(√
a2 δ

2 + ε +
√
a2 δ

2

)
− ln

(√
a2 x

2 + ε +
√
a2 x

2

)]
, (3.12)
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where |x| ∈ [0, δ].
The characteristic curves (3.11) and (3.12) are shown in Fig. 3.2, (3) a and

Fig. 3.2, (3) b respectively.

Fig. 3.2. ∓ - families of characteristics for the wave equation (2.1), (2.2) depending on the value of
exponent α in power law |x|α inside subsegment [−δ,+δ] = [−0.5,+0.5] (2.3), (2.4): α = 0.5 (1),
α = 1 (2), α = 2 (3), without regularization (a) and with regularization (b)

From Fig. 3.2 it is evident that:
1. On straight line x = 0, wave equation (2.2) degenerates into the following
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partial differential equation of parabolic type

∂2u

∂t2
= a′

∂u

∂x
+ g, (3.13)

in cases I0 (0 < α < 1) and II0 (α = 1) and into the following ordinary differential
equation

∂2u

∂t2
= g (3.14)

in case III0 (α > 1).
In case I0 on straight line x = 0 function a(x) vanishes, whereas its first de-

rivative a′(x) becomes unbounded. This means that if wave equation (2.2) has
a bounded solution, then the first term on its right-hand side is also bounded,
and the following estimates hold

a′
∂u

∂x
∼ O(1) ,

∂u

∂x
∼ 1

a′
∼ O(

√
x) , u(x) ∼ O(x3/2) .

2. In cases I0, II0, III0 no characteristic of wave equation (2.2) crosses straight
line x = 0 from the left to the right and vice versa, and this means that the
solutions of the equation in left and right subregions of space-time rectangle can
be found quite independently of each other.

3. In cases I0,ε, II0,ε and IIIε at each point of straight line x = 0 there are one
characteristic incoming from the left and one incoming from the right, as well as
one characteristic outgoing to the left and one outgoing to the right. From this we
conclude that on straight line x = 0 one boundary condition needs to be posed.

4. In case III0 at each point of straight line x = 0 there is no characteristic
incoming from the left and incoming from the right, as well as no characteristic
outgoing to the left and outgoing to the right. From this we conclude that on
straight line x = 0 no boundary condition needs to be posed, and value u(t, 0)
can be obtained directly from second order ordinary differential equation (3.14).

4. Pre-formulation of IBVPs for the derived hyperbolic systems

In the current section we reduce wave equations (2.1) and (2.2) to systems of
linear partial differential equations of the first order.

We start our reducing wave equation (2.2) from the following evident operator
identity

∂2

∂t2
− a ∂2

∂x2
=

(
∂

∂t
−
√
a
∂

∂x

)(
∂

∂t
+
√
a
∂

∂x

)
+

1

2
a′
∂

∂x
=

=

(
∂

∂t
+
√
a
∂

∂x

)(
∂

∂t
−
√
a
∂

∂x

)
+

1

2
a′
∂

∂x
,

and then easily rewrite the wave equation as the following two systems
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
∂u1

∂t
+
√
a
∂u1

∂x
− u2 = 0 ,

∂u2

∂t
− a′

2

∂u1

∂x
−
√
a
∂u2

∂x
= g ,

(4.1)


∂v1

∂t
−
√
a
∂v1

∂x
− v2 = 0 ,

∂v2

∂t
− a′

2

∂v1

∂x
+
√
a
∂v2

∂x
= g ,

(4.2)

where u1(t, x)= v1(t, x)=u(t, x), whereas functions u2(t, x) and v2(t, x) are fully
determined by the first equations of the above systems.

Both systems can be presented in matrix form, for example the former system
reads

∂U

∂t
+ A

∂U

∂x
+ A?U = Go , (4.3)

where U(t, x) and Go(t, x,U) are respectively the state and the right hand side
matrix-columns, A(x) and A? are quadratic coefficient matrices as follows

U =

u1

u2

, Go =

 g

0

, A =

 +
√
a 0

−1
2 a
′ −
√
a

, A? =

 0 −1

0 0

.
Matrix A has two real and distinct eigenvalues λ1,2 = ∓

√
a and a complete

set of right (in columns of matrix R) and left (in rows of matrix L) eigenvectors

R = L−1 =

 0 1

1 −1
2 (
√
a )′

, L = R−1 =

 +1
2 (
√
a )′ 1

1 0

,
hence, system (4.3) is strictly hyperbolic. Matrices R and L diagonalize matrix A

Λ = L A R =

 −
√
a 0

0 +
√
a

= diag
(
−
√
a,+
√
a
)
,

and produce splitting matrix A into sum

A = A− + A+ (4.4)

of non-positive and non-negative definite matrices

A− = R Λ− L =

 0 0

−1
4 a
′ −
√
a

, A+ = R Λ+ L =

 +
√
a 0

−1
4 a
′ 0

, (4.5)
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where

Λ− = diag
(
−
√
a, 0
)
, Λ+ = diag

(
0,+
√
a
)
, Λ− + Λ+ = Λ .

To make weak solutions of hyperbolic system (4.3) admissible we rewrite
the former as a vector balance law

∂U

∂t
+
∂F

∂x
= G , (4.6)

where the state U(t, x) is the same as in (4.3), whereas flux F(x,U) = A(x) U(t, x)
and source term G(t, x,U) are

F =


√
a u1

−1
2 a
′u1 −

√
a u2

, G = Go+AoU, Ao= A′−A? =

+(
√
a )′ 1

−1
2 a
′′ −(

√
a )′

,
matrix A being the Jacobian of the flux. Splitting (4.4), (4.5) of Jacobian A
produces evident splitting of the flux as

F = AU = A−U + A+U = F− + F+. (4.7)

Another way to reduce wave equation (2.2) is introducing new dependent

variables u1 =u , u2 =
∂u

∂t
, u3 =

∂u

∂x
, then the wave equation is rewritten as the

following system

∂U

∂t
+ A

∂U

∂x
+ A?U = Go , (4.8)

where U(t, x) and Go(t, x,U) are respectively the state and the right hand side
matrix-columns, A(x) and A?(x) are quadratic coefficient matrices as follows

U =


u1

u2

u3

, A =


0 0 0

0 0 −a

0 −1 0

, A? =


0 −1 0

0 0 −a′

0 0 0

, G =


0

g

0

.
Matrix A has three real and distinct eigenvalues λ1,2,3 =−

√
a , 0 ,+

√
a , and

a complete set of right and left eigenvectors

R =


0 1 0

+
√
a 0 −

√
a

1 0 1


, L = R−1 =


0 +

1

2
√
a

1

2

1 0 0

0 − 1

2
√
a

1

2


,
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hence, system (4.8) is strictly hyperbolic.
System (4.8) is easily rewritten to a vector balance law

∂U

∂t
+
∂F

∂x
= G , (4.9)

where the state U(t, x) is the same as in (4.8), whereas flux F(x,U) = A(x) U(t, x)
and source term G(t, x,U) are

F =


0

−a u3

−u2

, G = Go + AoU , Ao = A′ − A? =


0 1 0

0 0 0

0 0 0

.
Matrices R and L diagonalize matrix A

Λ = L A R =


−
√
a 0 0

0 0 0

0 0 +
√
a

 = diag
(
−
√
a, 0,+

√
a
)
,

and produce splitting matrix A

A = A− + A+ (4.10)

and splitting flux

F = AU = A−U + A+U = F− + F+, (4.11)

where

A∓ = R Λ∓ L =



0 0 0

0 ∓ 1

2
√
a
−1

2
a

0 −1

2
∓1

2
a


, (4.12)

Λ = Λ− + Λ+ = diag
(
−
√
a, 0, 0

)
+ diag

(
0, 0,+

√
a
)
,

F∓ = A∓U = ∓1

2

√
a
(
u2 ±

√
a u3

)


0

√
a

±1

. (4.13)
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Flux splitting (4.4), (4.5), (4.7), and (4.10), (4.11), (4.12), (4.13) is used in
section 5, where discrete models of wave propagation are considered.

Presenting wave equations (2.2) and (2.1) as hyperbolic systems and balance
laws makes it possible to well-pose initial boundary value problems using the the-
ory of characteristics in a quite formal notation of Chakravarthy [2]

L1

∂U

∂t
+ L2 A

∂U

∂x
+ L2 A?U = L2 Go , (4.14)

L1

∂U

∂t
+ L2

∂F

∂x
= L2 G , (4.15)

where matrices L1 and L2 are derived from matrix L of the left eigenvectors and
proper boundary conditions. Since matrix L1 is non-degenerate, the above coupled
systems can be rewritten as

∂U

∂t
+ L3 A

∂U

∂x
+ L3 A?U = L3 Go , (4.16)

∂U

∂t
+ L3

∂F

∂x
= L3 G , (4.17)

where L3 = L−1
1 L2.

We also note that balance law (4.6) allows two running waves, while balance
law (4.9) allows two running and one standing waves.

5. Discrete formulation of the former problems

In order to develop discrete models of problems posed in sections 2, 3, and 4,
we introduce a uniform structured grid in space-time rectangle [0, T ] × [−l,+l],
as shown in Fig. 5.3.

Then we apply the Green theorem to balance laws (4.6) and (4.9) over the boun-
dary (irregular) and the interior (regular) cells ωnk of the grid

‰
γnk

U dx− F dt =

¨
ωnk

G dt dx , (5.1)

where integration along the boundaries γnk of the cells is performed counterclock-
wise as shown in Fig. 5.4.

Evaluating the line integrals over the lateral interfaces of the cells ωnk (i. e.
over the vertical segments x = xk∓h, t

n 6 t 6 tn+1, 1 < k < K, 1 6 n < N ,
of the boundaries γnk ) using the values of the fluxes at the lower time levels n
yields to the following explicit approximation of balance law (4.6)
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Fig. 5.3. A structured grid in space-time rectangle [0, T ] × [−l,+l] is composed of N × K
nodes with coordinates xnk . Using the nodes, the rectangle is divided into the grid cells,
the boundary and the interior ones (an interior and two boundary ones are shown in gray
color, see Fig. 5.4)

Fig. 5.4. Enlarged view of the boundary (a, c) and interior (b) cells, shown in Fig. 5.3 in gray
color: each cell is a region ωnk with the boundary γnk composed of four straight segments;
integration along the boundaries γnk of the cells ωnk in the Green theorem (5.1) is performed
counterclockwise

(
Un+1
k −Un

k

) ∆x

2
+
(
Fn
k+h − Fn

k

)
∆t = Gn

k ∆t
∆x

2
, 1 = k ,(

Un+1
k −Un

k

)
∆x +

(
Fn
k+h − Fn

k−h

)
∆t = Gn

k ∆t∆x , 1 < k < K ,(
Un+1
k −Un

k

) ∆x

2
+
(
Fn
k − Fn

k−h

)
∆t = Gn

k ∆t
∆x

2
, k = K ,

where notation h := 1
2 is used for simple referring to the cell interfaces. A more

familiar form of the above explicit approximation is as follows
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

Un+1
k −Un

k

∆t
+

Fn
k+h − Fn

k

∆x/2
= Gn

k , 1 = k ,

Un+1
k −Un

k

∆t
+

Fn
k+h − Fn

k−h
∆x

= Gn
k , 1 < k < K ,

Un+1
k −Un

k

∆t
+

Fn
k − Fn

k−h
∆x/2

= Gn
k , k = K ,

(5.2)

where the fluxes through the cell interfaces are evaluated using: 1) Jacobian A
splitting (4.4), (4.5), (4.10), (4.12)

Fk∓h = F+
(
U−k∓h

)
+ F−

(
U+
k∓h
)

= A+
k∓hU

−
k∓h + A−k∓hU

+
k∓h (5.3)

and 2) a limited reconstruction of the states U∓k∓h at the cell interfaces after Kol-
gan [5,8] and after van Leer [6,7] (the latter usually being referred to as MUSCL
approach), to achieve the second order in space variable x. The proper boundary
formulations (4.17) are approximated similarly to (5.2) as

Un+1
k −Un

k

∆t
+ L n3,k

Fn
k+h − Fn

k

∆x/2
= L n3,k Gn

k , k = 1 ,

Un+1
k −Un

k

∆t
+ L n3,k

Fn
k − Fn

k−h
∆x/2

= L n3,k Gn
k , k = K ,

(5.4)

and replace the respective approximations in (5.2) not coupled with the boundary
conditions.

Approximation (5.2), (5.3), (5.4) is nothing but numerical method of Beam
and Warming [11], whereas applying splitting (4.4), (4.5), (4.10), (4.12) to hyper-
bolic systems (4.3) and (4.8) leads to the split coefficient matrix method of Chak-
ravarthy et. al. [1].

Approximation (5.2), (5.4) being of the first order in time is easily transformed
to the second order one. For this purpose we apply the approximation sequentially
two times: first to find state Un+1 using state Un+1 and second to find state Un+1

using state Un+1, then the required state Un+1 is obtained by averaging

Un+1
k =

1

2

(
Un
k + Un+1

k

)
, 1 6 k 6 K , (5.5)

similarly to the predictor-corrector method of MacCormack [9, 10].
Applying the Green theorem to wave equation (2.1) over the double deck

interior cells (such cells are obtained by coupling cells ωnk and ωn+1
k ) gives the well

known three time level approximation for the interior nodes

un+1
k − 2unk + un−1

k

(∆t)2
=

ak+h

unk+1 − u
n
k

∆x
− ak−h

unk − u
n
k−1

∆x

∆x
+ gnk . (5.6)
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6. Numerical solutions to test cases

In the current section we present the solutions to initial boundary value prob-
lems for wave equation (2.1) where coefficient a is given by regular function
aε(x) (2.4). The initial piece-wise constant conditions are chosen as follows

u(0, x) =

{
0 ,

∣∣x+ 1
2

∣∣ > 1
2 hx ,

hy ,
∣∣x+ 1

2

∣∣ 6 1
2 hx ,

x ∈ [−l, 0] ,

u(0, x) =

{
0 ,

∣∣x− 1
2

∣∣ > 1
2 hx ,

hy ,
∣∣x− 1

2

∣∣ 6 1
2 hx ,

x ∈ [0,+l] ,

∂u(0, x)

∂t
= 0 , x ∈ [−l,+l] ,

(6.1)

where hx = 0.2, hy = 0.5, δ = 0.1. The boundary conditions are set as

u(t,−l) = u(t,+l) = 0 . (6.2)

Four different values 0, 0.5, 1, and 2 are assigned to exponent α in power
law (2.3), and the regularization parameter is set to be 0.05. Time segment [0, T ]
is taken as [0, 3]. The number of spatial nodes K = 2001.

Weak numerical solutions to the problems were obtained using: 1) directly
wave equation (2.1); 2) hyperbolic balance law 2×2 (4.6) and 3) hyperbolic balance
law 3×3 (4.9). Comparing the solutions to these initial boundary value problems
obtained in three different ways will be given elsewhere, and results obtained for
wave equation (2.1) using approximation (5.6) are presented below in Figs 8.5 –
8.9, where solutions for different values of α can be easily recognized, since the
are marked the same way as in Figs. 2.1 and 3.2. Spatial-time band [0, 3]× [0,+1]
is shown in gray color.

The results obtained prove that the value of the exponent in power law (2.4)
affects the solutions of wave equation (2.1) in a non-trivial way.

7. Conclusions

The solutions to four initial boundary value problems for wave equation (2.1)
obtained in the current study give a preliminary evidence in what way the value of
exponent in power law (2.4) affects the solutions. Results obtained for degenerate
wave equation (2.1) will be given elsewhere.
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Fig. 8.5. Numerical solutions to four initial boundary value problems for wave equation (2.1)
using approximation (5.6)
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Fig. 8.6. Numerical solutions to four initial boundary value problems for wave equation (2.1)
using approximation (5.6) (continuation)
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Fig. 8.7. Numerical solutions to four initial boundary value problems for wave equation (2.1)
using approximation (5.6) (continuation)
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Fig. 8.8. Numerical solutions to four initial boundary value problems for wave equation (2.1)
using approximation (5.6) (continuation)
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Fig. 8.9. Numerical solutions to four initial boundary value problems for wave equation (2.1)
using approximation (5.6) (completion)
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