
Mehran University Research Journal of Engineering and Technology
Vol. 39, No. 2, 413- 431, April 2020
p-ISSN: 0254-7821, e-ISSN: 2413-7219
DOI: 10.22581/muet1982.2002.18

This is an open access article published by Mehran University of Engineering and Technology, Jamshoro under CC BY 4.0
International License.

413

A Study of Software Development Cost Estimation Techniques

and Models

Junaid Rashid1, Muhammad Wasif Nisar2, Toqeer Mahmood3,

Amjad Rehman4, Syed Yasser Arafat5

RECEIVED ON 17.10.2018, ACCEPTED ON 03.05.2019

ABSTRACT

SDCE (Software Development Cost Estimation) has always been an interesting and budding field in Software

Engineering. This study supports the SDCE by exploring its techniques and models and collecting them in one

place. This contribution in the literature will assist future researchers to get maximum knowledge about SDCE

techniques and models from one paper and to save their time. In this paper, we review numerous software

development effort and cost estimation models and techniques, which are divided into different categories.

These categories are parametric models, expertise-based techniques, learning-oriented techniques, dynamics-

based models, regression-based techniques, fuzzy logic-based methods, size-based estimation models, and

composite techniques. Some other techniques which directly do not lie in any specific category are also briefly

explained. We have concluded that no single technique is best for all situations; rather they are applicable in

different nature of projects. All techniques have their own pros and cons and they are challenged by the rapidly

changing software industry. Since no single technique gives a hundred percent accuracy, that is why one

technique and model should not be preferred over all others. We recommend a hybrid approach for SDCE

because in this way the limitations of one model and technique are complemented by the merits of the other

model/technique. We also recommend a model calibration to obtain accurate results because if a model was

developed in a different environment, we cannot expect reliable estimates from it in a completely new

environment.

Keywords: Cost Estimation, Cost Estimation Models, Effort Estimation Techniques, Software

Development Cost Estimation.

1. INTRODUCTION

SDCE is a primary activity in project management to

manage resources in an effective way by predicting the

required amount of effort to fulfill a given task [1]. The

1 Department of Computer Science, Air University Islamabad, Kamra Campus, Pakistan.

 Email: junaidrashid062@gmail.com (Corresponding Author)
2 Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan.

 Email: wasifnisar@gmail.com
3 Department of Computer Science, National Textile University, Faisalabad, Email: toqeer.mahmood@yahoo.com
4 Artificial Intelligence and Data Analytics Lab (AIDA), Prince Sultan University, Riyadh, Saudi Arabia.

 Email: drrehman70@gmail.com
5 Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan.

 Email: syed.yasser.arafat@gmail.com

accurate effort estimates, which have a major impact

on software development management, increase the

chances of accomplishing the required work related to

a software project within time and budget. If the

manager’s estimate is too low, it will cause a

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

414

development team to be under time pressure, leading

to residual errors due to incomplete software

functionality and insufficient testing. Conversely, if

the manager’s estimate is too high, development

resources and personnel will be overly allocated to the

project, making a company failed to secure a contract

due to noncompetitive contract bids. The software

quality is the essential thing for an organization which

depends on customer satisfaction with product and

requirements [2, 3].

The existing software cost estimation models and

techniques are divided into six major categories:

parametric models, learning-oriented techniques,

expertise-based techniques, regression-based models,

dynamics-based models, and composite-bayesian

techniques [4]. Much research has been carried out

that increasing demands of high-quality software

through effective cost estimation. The vital issue

which is closely related to the software projects

financial aspects is the accurate estimation of software

cost. This will help with the management of software

projects budgets. There is a relationship between the

estimation of software and the cost of software, so it is

said that the primary factor for software cost is an

effort. Software estimation supports in fixing the exact

targets in software project completion [5].

Several research studies are carried out for surveying

effort and cost estimation techniques [6]. To the best

of our knowledge, none of them cover all the SDCE

methods. They only discuss popular techniques i.e.

COCOMO (Constructive Cost Model) [7], function

points, SLIM, Delphi, NN (Neural Networks),

regression-based techniques, etc. So, there is a need to

gather a maximum number of classical as well as the

latest techniques in one paper and to provide their

overview. Software models have utilized in model-

driven engineering [8]. These techniques are tabulated

category wise in Table 1. We do regard the two terms

of cost and effort interchangeably in this work.

This study is undertaken to study the utmost number

of SDCE techniques. The main objective of this paper

is to support software development effort estimation

by exploring and collecting SDCE techniques in one

place. This contribution in the literature will assist

future researchers of SDCE to get maximum

knowledge about SDCE techniques from one paper.

The remainder of this paper is organized as follows:

Section 2 describes the parametric models for cost

estimation; the expertise-based techniques are

presented in Section 3, learning-oriented techniques

are discussed in Section 4, dynamics-based models are

given in Section 5, regression-based techniques and

fuzzy logic based methods are presented in Section 6

and 7 respectively, size-based estimation techniques

and composite techniques are discussed in Section 8

and 9 respectively, Section 10 describes some other

techniques, Section 11 contains the discussion, and

Section 12 concludes the paper.

2. PARAMETRIC/ALGORITHMIC

 MODELS

Algorithmic models are those which generate cost

estimates as a function of major cost factors. If E

denotes effort, and CF denotes cost factors, then the

algorithmic model will get the form as in Equation (1).

E = f�CF�, CF	, CF
, ⋯ , CF� � (1)

All the existing algorithmic methods have their own

way of selecting cost factors and the form of the

function f. Parametric models “calibrate” pre-

specified formulas for SDCE from historical data [5].

The estimation is not based on the analysis of tasks,

but they take counts of inputs and then generate

outputs.

2.1 Software Life-Cycle Model (SLIM)

A software lifecycle model also called the putnam

model, is an empirical software effort estimation

model developed [9]. SLIM takes SLOC (Source Line

Number Code) as input to estimate software cost. The

basis of this model was putnam's life cycle analysis

[10]. Since this model assumes that resource

consumption will change over time, it can be modeled

by a well-known Rayleigh distribution of project

personnel levels over time. The PNR (Putnam Norden

Rayleigh) curve formula shows the correlation

between the project's application effort and the

delivery date. Table 1 shows the categories of the

SDCE method.

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

415

TABLE 1．CATEGORIES OF SDCE TECHNIQUES

No. Technique No. Technique Class/Category

1 SLIM 2 COCOMO Parametric models /

Algorithmic models /

Model-based /

Knowledge-based

techniques

3 SEER-SEM 4 Checkpoint

5 ESTIMACS 6 PRICE-S

7 COSYSMO 8 COCOMO-II

9 Delphi technique 10
Wideband Delphi

technique
Expertise-based /

consensus-based

techniques

11
Work Breakdown

Structure
12 Rule-based Systems

13 Planning Poker 14 Top-Down

15 Bottom-Up

16
Case-based

Reasoning
17 Neural Networks

Learning-oriented

techniques / Machine

Learning method /

Evolutionary computing
18

Genetic Algorithms

(GA)
19

Genetic

Programming (GP)

20 System dynamics approach
Dynamics-based

techniques

21
“Standard”

regression
22 “Robust” regression

Regression-based

techniques

23 Fuzzy Systems
Fuzzy logic / Soft

computing based

24 Function Points 25 Full Function Points Size-based estimation

techniques 26 Use Case Points

27 Bayesian approach Composite techniques

28 Price-to-win 29 Parkinson
Other Techniques

30 Proxy-Based Estimating (PROBE)

The Rayleigh manpower equation which is used to

derive the software equation is stated in Equation (2).

��
�� = 2Kate���

 (2)

In equation (2), K represents the area under the curve,

the parameter a = (1/2td
2), and tdis the time at which

dy/dt is at peak. As parameter K and parameter td

which affects the value of a can take on multiple

values, as a result, the Raleigh curve gets different

shapes and sizes. Now, putting the value of a = (1/2td
2)

in Equation (2), the Rayleigh equation will get the

form of equation (3)

��
�� = 2K� �

	����te�� �
���� ���

 (3)

After simplification, the above equation may be

expressed as

��
�� = �

��� te
 ��
���� (4)

The basic equation for estimation in the SLM method

is shown in equation (5):

 dt = C"K�
#t�

$
(5)

Equation (5) can also be written as Equation (6) as

 S = PP�E B⁄ ��
#t�

$
(6)

In Equations (4-5), Ck is the state of technology, K is

applied effort, td is total development time (in years),

S is the size of software in SLOC, PP symbolizes

productivity parameter, E represents an effort in

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

416

person-years, B means a skill factor (a function of

software size).

2.2 COCOMO

The COCOMO’81 was developed in 1981, and the

software project effort, cost, schedule estimate

introduced as a software model [10]. COCOMO'81

was derived from the analysis of 63 software projects

completed at TRW Aerospace. There are three levels

(sub-model) in Kokomo: Basic Kokomo, Intermediate

Kokomo, and Detail Kokomo.

Basic COCOMO calculates labor (man months) and

costs as a function of the program size described in

thousands of estimated delivered source instructions

(KDSI). The basic COCOMO Equation (7) describes.

MM = a�KDSI�, (7)

The equation (8) is used to get development time.

t�-. = c�MM�� (8)

In Equations (7-8), MM is man-month / person-month

or staff-month i.e. effort of one person in one month,

KDSI is a measure of size (length measure) i.e. the

number of thousand delivered source instructions (one

SLOC may be several DSI), tdev is development time,

the values of a, b, c, and d are dependent on the mode

of development and can be taken from Table 2.

Intermediate COCOMO considers those cost factors

that were missing in basic COCOMO. It calculates the

effort as a function of program size and the four cost

consist of a subjective assessment of products,

personnel, hardware, and projects, each with several

additional attributes, a total of 15 cost

drivers/attributes [11]. The intermediate COCOMO

equation takes from Equation (9).

MM = a�KDSI�,C (9)

In equation (9), MM is man-month, KDSI is the

number of thousand delivered source instructions, the

coefficient a and exponent b depend upon the mode of

development and their value can be taken from Table

2. The C is effort adjustment factor which is calculated

by multiplying the values of the cost parameter. The

development time tdev is calculated the same way as in

Basic COCOMO.

Detailed COCOMO, along with the assessment of the

impact of each cost factor at each stage of the software

engineering process, fits all the functions of

intermediate COCOMO. In order to calculate detailed

COCOMO man-hour, the entire software project is

divided into different modules and man-hours are

estimated by applying COCOMO to each module [12].

After that, combine the estimated man-hours of each

module to obtain the total man-hour.

2.3 SEER-SEM

System evaluation and resource estimation product

called software estimation model (SEER-SEM). It is a

software project estimation model which is

commercially available and most of its inner details

are proprietary. SEER-SEM began with the Jensen

model and it estimates effort, cost, risk, and schedule

of a project while covering all phases of SDLC. The

effort is calculated using Equation (10) [13].

K = D0.2 × � 45
6�5��.	 (10)

In Equation (10), D is staffing complexity (rating of

the project’s inherent complexity with regard to the

rate at which staff is added to a project), Se represents

effective size which is commenced earlier, Cte

indicates effective technology i.e. a metric which

contains efficiency factors or productivity factors for

carrying out the development process.

2.4 Checkpoint

A checkpoint tool, a knowledge-based software

project estimation tool, was developed by software

productivity research (SPR) [14]. It has its own

proprietary database of thousands of software projects.

Use functional points as the main measure of size.

Checkpoint tool moves beyond the project-level and

phase-level estimation; rather it estimates the effort at

activity-level and task-level.

Checkpoint supports the entire SDLC by focusing on

three major capabilities i.e. estimation, measurement,

and assessment.

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

417

TABLE 2．MODES OF DEVELOPMENT AND VALUES OF COEFFICIENTS FOR BASIC AND

INTERMEDIATE COCOMO

Software

Project

Development

Mode

Project Characteristics

Size

(a)
Innovation

(b)

Deadline/Constraints

(c)

Development

Environment

(d) Basic Intermediate

Organic
Small

(2.4)

Small

(3.2)

Slight

(1.05)

Not tight

(2.5)

Stable

(0.38)

Semi-detached
Average

(3.0)

Average

(3.0)

Average

(1.12)

Average

(2.5)

Average

(0.35)

Embedded
Large

(3.6)

Large

(2.8)

Huge

(1.20)

Tight

(2.5)

Complex

hardware /

customer

interfaces

(0.32)

2.4.1 Estimation

Project, phase, activity, and task are the four levels of

granularity at which checkpoint effort. Other than

effort, estimates of cost, deliverables, resources,

defects, and schedules are also being predicted.

2.4.2 Measurement

Users can execute benchmark analysis, make out best

practices, and develop internal estimation knowledge-

bases by capturing project metrics using the

checkpoint.

2.4.3 Assessment

The comparison of actual performance and estimated

performance to different industry standards contained

in knowledge-base is facilitated by Checkpoint.

Checkpoint also evaluates the strong points and weak

points of the software environment.

2.5 ESTIMACS

Originally developed as QUEST (Quick Estimation

System), it was integrated into the product line of

management and computer Services (MACS) as

ESTIMACS. It focuses on the software development

phase of SDLC. Since ESTIMACS is a proprietary

model, internal details such as expressions being used

cannot be used.

This model consists of five sub-models: system

development effort estimate, staffing and cost

estimate, hardware configuration estimate, risk

estimate, and portfolio analysis. These sub-models are

used sequentially so that the output from one sub-

model is often the input to the next sub-model.

ESTIMACS does not require size measurements about

SLOC as input. Rather, it depends on scales like

function points for size input. There are 25 input-like

parameters in a format resembling questions, which

are partly related to the size and complexity of the

software you develop, and the complexity of

organization and users need to provide answers to

those questions [15].

2.6 PRICES-S

The model PRICE-S (Parametric Review of

Information for Cost Accounting and Evaluation -

Software) was originally developed at Radio

Corporation of America (RCA). Since then, it was

released as a unique model in the 1970s, so its internal

equation was not announced. This model is presented

to the user as a black box because its basic concept is

not known in the public domain. The PRICE-S tool is

currently sold by private company PRICE - Systems.

To estimate the relationship between development

effort distribution and calendar time, this model uses a

2-parameter beta distribution instead of a Rayleigh

curve.

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

418

The PRICE - S model consists of three sub-models, an

acquisition sub-model, a sizing sub-model, and a life

cycle cost sub-model. The acquisition sub-model

predicts the cost and schedule of the software, the

sizing sub-model helps estimate the size of the

software, the life cycle cost sub-model estimates the

cost of the maintenance and support phases and is used

in combination with the acquisition sub-model.

2.7 COSYSMO

The constructive system engineering cost model

(COSYSMO) is a parametric model [16]. COSYSMO

is the newest member of the COCOMO family of

software cost estimation models [17]. It estimates the

effort and time required to perform system engineering

tasks. This model contains 14 effort multipliers and 4

size factors, a total of 18 parameters. For sizing, it uses

those metrics which are at a level of the system,

incorporating both software and hardware.

The COSYSMO went through three main iterations

i.e. Strawman COSYSMO, COSYSMO-IP, and

COSYSMO. Strawman COSYSMO was the first

major version of COSYSMO having 16 cost drivers;

half of them were labeled as team factors and the

remaining half were labeled application factors.

Function points and use cases were the functional size

measure. COSYSMO-IP is known as the second spiral

of COSYSMO derivation containing a revised set of

cost drivers. A general form of the model, mentioned

in equation 11, was proposed which contains three

parameters of different types i.e. additive, exponential,

and multiplicative.

PM = A × �Size�: × �EM� (11)

In Equation (11), PM is effort in person-months, A

represents calibration factor, Size (additive parameter)

denotes the measure(s) of functional size of a system

having an additive effect on systems engineering

effort, E (exponential parameter) is scale factor(s) that

has an exponential / nonlinear effect on systems

engineering effort, and EM (multiplicative parameter)

indicates effort multipliers which influence systems

engineering effort.

The third spiral of COSYSMO derivation is referred

to simply as COSYSMO. Using a Delphi exercise by

a group of experts, size drivers and cost drivers were

determined. The current operational COSYSMO

model (central cost estimating relationship or CER) is

of the regression equation form, shown as under [18]:

PM;4 = A ∙ �Size�: ∙ ∏ EM>�>?� (12)

In Equation (12), PMNS is effort in Person Months

(Nominal Schedule), A represents calibration constant

(derived from historical project data), Size is

determined by computing the weighted sum of the 4

size drivers, E denotes economy/diseconomy of scale

(by default it is 1.0), n is a number of cost drivers i.e.

14, and EMI is an effort multiplier for the ith cost

driver.

Modification to the COSYSMO estimating

relationship was proposed to remedy some limitations

with the current implementation of the cost drivers, by

adding two new cost drivers i.e. Risk and opportunity

resolution and the second is schedule compression. It

has increased the total number of cost drivers from 14

to 16, though this research is continuing [19].

2.8 COCOMO-II

Initially, COCOMO-II was published in Annals of

Software Engineering in 1995 [20]. It has three sub-

models for estimation of software projects:

Applications Composition sub-model, early design

sub-model, and post-architecture sub-model.

These projects are simple enough to be rapidly

developed from components like applications

composition sub-model suitable for computerized

aided software engineering (CASE) tools for rapid

application development (RAD). Modern GUI

builders, and database managers, etc. The applications

composition model is based on new Object Points

[21].

Early design sub-model is a high-level model that is

used to get estimates of the cost and duration of a

project, using several new cost factors and new

estimate formulas. This sub-model is applicable before

the entire architecture of the project is determined.

Based on the set of unadjusted functional points or

KSLOC, seven effort multiplier (EM) and five scale

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

419

factors (SF) when available. Early design model

requires cost estimation at a general level.

Post-building sub-model is used after the entire

construction project has been developed and

established. It is closest to intermediate COCOMO

'81. It is based on a set of SLOC and FP and 5 SF and

17 EM. The post architecture model provides more

accurate cost estimates. COCOMO II's man-hour

estimation model is summarized in equation 13 used

for both early design and post architecture model for

man-hour estimation.

PM = A × Size: × ∏ EM>�>?� (13)

In Equation (13), PM is the effort in person-months,

the inputs are a constant, A, the Size of software, an

exponent, E, and a number of effort multipliers (EM)

which depends on the model.

3. EXPERTISE-BASED/CONSENSUS-

BASED TECHNIQUES

Expert estimation techniques are based on the ability

of one or more people, called experts in software

development, to work to estimate software

development efforts. Expertise-based techniques are

useful if there are restrictions on retrieving quantified

empirical data or requirements collection. The various

techniques are the following:

3.1 Delphi Technique

Delphi's method [22] is a famous expert method

developed in the late 1940s as a prediction method for

predicting future events. It is used to guide groups of

people to a consensus on certain issues by combining

opinions from experts and by preventing bias. In

Delphi's method, special meetings are held among

project specialists to obtain true information. The

procedure is as follows.

• Participants will be asked to receive the quote

from the coordinator and individually evaluate

specific issues.

• Each expert presents his / her estimate evaluation

without consulting with other participants

participating in the exercise.

• The coordinator collects all forms. The results of

the first round are summarized in a table, and then

the form is returned to each participant for the

second round.

• In the second round, the participant will be

informed of what other participants did in the last

round and will be asked again to evaluate the same

issue.

• These steps are repeated until approval is obtained

for the concerned problem.

3.2 Wideband Delphi Technique

The Delphi methods are improved, and its name is

changed into Wideband Delphi. Compared to the

original Delphi way to avoid interaction and

communication between participants, the Wideband

Delphi method includes a group discussion between

evaluation rounds. This is a consensus-based approach

that gains agreement on the estimate of effort by a

group of experts and functions [23].

• Product specifications and estimate forms are

distributed to experts by moderators.

• Group meetings are invoked by moderators,

among which experts discuss probable problems.

• Each expert fills out an estimate anonymously.

• The moderator gathers estimates, summarizes

them, and distributes a summary of estimates.

• Another meeting will be held focusing on

discussing the points where the expert estimates

are largely different.

• The expert anonymously fills out the quote form

and the moderator gathers estimates and

summarizes them. This process is repeated until

convergence to the estimate is achieved.

3.3 Work Breakdown Structure

Work breakdown structure (WBS) is a way to arrange

project elements in a hierarchy. This is based on

decomposing the work performed by the project team

into smaller subsystems to identify the individual

tasks. The software WBS method generates two kinds

of hierarchies. One represents a software product and

the other represents the activities necessary to build

the product. The product hierarchy shows the basic

structure of the software, i.e., how different software

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

420

components characterize the entire system and the

activity hierarchy specifies the activities associated

with a software component.

For each task, an estimate is made on the amount of

work required to complete the task. If the probability

is assigned to the cost associated with each element of

the hierarchy, the overall estimate of the system can be

achieved from the bottom up process of the total

development cost of the project. A general algorithm

for generating WBS [24]. As project WBS changes

over time as requirements and constraints change, it is

necessary to avoid confusion using configuration

management techniques [25].

3.4 Rule-Based Systems

Rule-based systems utilize knowledge of human

experts to solve those real-world problems which

require human brainpower. Rule-based systems are

built around a set of rules that exist in working

memory and are activated by facts that activate and

assert new facts. Allow one rule to trigger another rule,

so chaining is done in this way [26].

Instead of representing knowledge in a static way, a

group of things that are true, the rule-based system

uses the IF-THEN statement. In a rule-based system,

expertise is represented by a set of rules that describe

what to do or what can be concluded in a situation. Fig.

1 shows the general structure of Rule-based Systems.

FIG.1. GENERAL STRUCTURE OF RULE-BASED SYSTEMS

3.5 Planning Poker

Planning poker is an expert judgment-based effort

estimation method which was first defined by James

Grenning in 2002. This technique creates an effort

estimate by combining the opinion of multiple experts

[27]. Members of planning poker are all the developers

on the team i.e. programmers, analysts, testers,

product owner, etc., given that the product owner only

participates in the process but does not make an

estimate.

Firstly, a user story is presented in a planning poker

session, and if the story needs more explanation, it is

being discussed. A deck of cards is given to each team

member with one of the valid estimates written on

every card, and then each estimator privately selects a

card from those available cards that represent his

estimate. All the team members turn over their card

simultaneously and everyone can see each estimate.

To be in the ideal state, if the same estimate is selected

by everyone then that will be chosen as the official

estimate. If estimates differ significantly, members

explain and discuss their presented estimates. After the

discussion, another round is played. If the estimates do

not converge by the second round, the process is

repeated until consensus is reached. To be in the worst

case, if no consensus is achieved, the story can be

deferred for later estimation.

3.6 Top-Down Approach

The design of the Top-Down approach was promoted

by IBM researchers Harlan Mills and Niklaus Wirth in

1970s. In the top-down estimation approach, the

project total cost estimate is derived from the global

property of the software product, using either

algorithmic or non-algorithmic approaches. After that

the project is partitioned into different components and

subcomponents; that is why, in some cases, this

approach is also known as a synonym of

decomposition. Once a total cost of the project is

estimated, a proportion of that cost is assigned to each

component. To estimate the project cost accurately,

the top-down estimating method requires a history and

knowledge of project pricing.

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

421

3.7 Bottom-Up Approach

In the Bottom-Up estimating approach, the cost

estimation process starts with the lowest level

components of the software system. The cost of each

component is estimated separately by the people who

will be responsible for developing the component.

After that these individual estimated costs are

aggregated and rolled up to the highest level to

determine an estimate for the overall software product.

The prerequisite for this approach is that an initial

design of the system must be in place which clearly

specifies the decomposition of system components

and the work is generally represented by a Work

Breakdown Structure. This approach looks at the costs

from a more granular viewpoint that is why the

estimates are normally more accurate than the other

methods.

4. LEARNING-ORIENTED

TECHNIQUES

Learning-oriented technology uses prior knowledge as

well as current information to develop software cost,

estimation models. These techniques learn from

previous experiences and build a model to automate

the estimation process.

4.1 Case-Based Reasoning

The CBR (Case-based reasoning) model assumes that

similar cases have similar solutions. The system

continuously learns without depending on experts, the

learning process accumulates the resolved case

(solution) in the database and makes it accessible to

solve new problems in the future [28]. Candidate

issues are resolved by finding similar cases from

databases containing past projects and applying

solutions to finding cases to it. The CBR method is

described with the following description.

• Retrieve the most similar case(s) from the

memory which is composed of a problem, its

solution, and, normally, footnotes regarding how

the solution was achieved.

• Reuse the knowledge contained in the retrieved

case to solve the target problem and adapt the

solution as per the need to fit the new situation.

• Revise the new solution if necessary, after testing

it in the real world or a simulation.

• Retain the resultant experience as a new case in

the memory, which can be used later while

solving any other new problem(s) in the future.

The CBR system includes a preprocessor that

organizes the input data for processing, a similarity

function to search for similar cases, a predictor to

generate a prediction, a predictor for estimating the

output value of the subject case, and an update and has

a memory updater [29].

4.2 Neural Networks

Neural networks (NN) traces its origins to Warren

McCulloch and Walter Pitts' research which created a

neural networks calculation model [30]. These

estimation models are trained using historical data and

automatically adjust their algorithm parameter values

to reduce prediction error. Most of the models

developed using NN often use a back-propagation

training feedforward network called a

backpropagation network. In the context of software

estimates, backpropagation networks are the most

common form of neural networks. To develop a neural

model, follow the following steps.

• Define the number of layers in the neuron.

• Define the number of neurons in each layer.

• Determine how all of them are connected.

• Determine the weighted estimation function

between the nodes.

• Determine the specific training algorithm to use.

• Once the network is built, the model is trained by

giving a series of historical project data as the

input project and the corresponding actual cost

value.

• The model repeats its learning algorithm and the

parameter values of its estimation function are

adjusted automatically.

• The estimate of the model and the actual

cost/schedule value must be specified to prevent

the model from being over-trained theoretically

until the iteration is in a predefined delta I will.

• When the training is complete and the proper

weight of the arc of the neural network is

determined, a new input is provided to the

network to predict the corresponding estimate.

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

422

4.3 Genetic Algorithm

The genetic algorithm (GA) was invented by John

Henry Holland in the 1970s based on the theory of

"survival of fittest". The general elements of GA are

chromosome populations, selection by fitness, crosses

to make new descendants, and random mutations of

new offspring [31]. The solutions to the candidate

problem are represented by fixed-length binary strings

called chromosomes. It is also possible to measure the

suitability of any solution and a more appropriate

solution is closer to the optimal solution.

Different manipulations, such as selection, crossing,

and mutation, are performed on those selected

chromosomes when a selection of chromosomes with

higher fitness values is made. As a result, a new

population is generated, and the process leads to an

optimal solution. Due to some potential fluctuations,

the basic process of GA is as follows.

• Generate a population of chromosomes, i.e. a

group of solutions randomly.

• Apply the genetic operator to the most suitable

chromosome or the most suitable chromosome

pair to generate a new population from the

previous chromosome.

• Step 2 is repeated until the best solution

compatibility is satisfied or a specific generation

number is generated.

The best solution of the previous generation is

considered as an optimal best approximation for a

given problem.

4.4 Genetic Programming

Genetic programming (GP) is an extension of GA and

does not limit chromosomes to fixed-length binary

strings. The first statement of the modern GP based on

tree structure was given by Nichael L. Cramer in 1985

[32], after which this study was greatly extended by

John R. Koza, an important supporter of genetic

programming. In GP, chromosomes are programs that

are run to obtain the necessary results. All solutions

are easily evaluable algebraic expressions. Crossover,

reproductive, and mutation are part of the genetic

operation. The crossing operator randomly selects a

node from the first chromosome called intersection 1

and the branch to that selected node is disconnected.

Next, another node called intersection 2 is randomly

chosen from the second chromosome and the branch

to that selected node is broken. Thereafter, the two

subtrees generated under these cuts are exchanged,

and this operation creates a new child. The

regeneration operation is a replication of the top n

percent of the solution from one generation to the next

generation of the genetic algorithm chromosome

population as measured by fitness. In a mutation,

clauses chosen from chromosomes are altered to

maintain genetic diversity from one generation to the

next.

5. DYNAMICS-BASED TECHNIQUES

Compared with many other techniques, dynamics-

based techniques consider effort and cost factors to be

inherently dynamic as they vary over the period of the

system development process. Changes in factors such

as design requirements, budget, due date, project time

training needs, etc. will change the productivity of

project personnel.

5.1 System Dynamics Approach

The system dynamic approach was devised to analyze

and understand the dynamic behavior of complex

systems by Massachusetts Institute of Technology's

Jay Forrester in 1961. This is a simulation modeling

methodology that displays results and behavior as a

graph of information that varies over time. In the

system dynamics approach, the model is represented

as a modified network with positive and negative

feedback loops. The system dynamics simulation

model is represented by the set of first-order

differential equations [33]as shown in Equation (14).

xA�t� = f�x, p� (14)

In Equation (14), x is a vector that describes states in

the model, t is time, f is a vector function, which is

nonlinear, and p is a set of model parameters.

Within the past decade, system dynamics has been

successfully implemented for software engineering

estimation models [34]. It is difficult to coordinate

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

423

these technologies, but it is suitable for planning and

management.

6. REGRESSION-BASED

TECHNIQUES

Regression-based methods are very popular in model

building and are used in combination with model-

based methods. They provide mathematical

algorithms that estimate software costs as a function

of key cost factors.

6.1 Standard Regression

Standard regression is based on the ordinary least

squares method (OLS) using the linear regression

model for estimating unknown parameters. This

technique is popular because it is simple and easily

accessible from many statistical software packages.

The model using the OLS method can be written as in

Equation (15).

y� = β� + β	x�	 + ⋯ + β"x�" + e� (15)

In Equation (15), yt represents the response variable

for the tth observation, β1 depicts an intercept

parameter, β2. . . βk are response coefficients, xt2. . . xtk

are predictor (or regressor) variables for the tth

observation, and the error term, et is a random variable

with a probability distribution. In general, the software

estimation model is evaluated by error, and this

method minimizes the sum of the squared absolute

defect, so the problem of this method does not match

the evaluation criteria.

6.2 Robust Regression

Robust regression is an enhancement of the OLS

approach and problems with outliers in observed

software engineering data are mitigated by this

approach. Due to the definition of software metrics,

various software development processes, and lack of

agreement on the availability of qualitative data and

quantitative data, there are many outliers in the

software development dataset. Robust regression has

been applied in [35] to screen outliers for software

metric models.

Many parametric cost estimation models have adopted

some form of regression-based approach due to their

simplicity and being widely accepted. The problem

with this technique is that you can eliminate outliers

without direct reasoning.

6.3 Fuzzy Logic-Based Methods

The term fuzzy logic was introduced in 1965 of fuzzy

set theory [36]. In contrast to Boolean logic where the

truth value of a variable is an integer value of 0 or 1,

fuzzy logic deals with the concept of partial truth. That

is, the truth value of a variable is any real number

between 0 and 1.

6.4 Fuzzy Systems

A fuzzy system is a mapping between semantic terms,

for instance, "huge", connected to factors. The input

and output of the fuzzy framework are either

numerical or etymological. A fuzzy framework has

three center parts: enrollment works, a standard base,

and a yield joining capacity. Fuzzy frameworks have

been utilized and for programming improvement

models [37]. The upside of fuzzy frameworks is that a

very instinctive model can be delivered by utilizing

semantic mappings which can be comprehended by

anybody without the requirement for any preparation.

The impediment of fuzzy frameworks is the trouble in

indicating a framework with high precision while

keeping up a dimension of significance. More

exactness requires more principles, more guidelines

lead to progressively complex frameworks, and

increasingly complex frameworks are less

interpretable.

7. SIZE-BASED ESTIMATION

 TECHNIQUES

In this section, those software estimation techniques

are discussed which are used to predict the software

size for software development projects.

7.1 Function Points

Function point (FPs) were presented by Allan Albrecht

in 1979 which gauge work hours by assessing the

number of capacities [38]. This strategy processes a

practical size estimation of programming and the

expense is determined from past activities. FPs are

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

424

increasingly appropriate for the MIS space however

risky in the continuous programming area. FPs are not

relative qualities, rather they are supreme qualities.

Totally a complete number of capacity focuses, it is

obligatory to check client capacities, which are of

following five sorts. External input (EI) type is

information or control client input types and the

information crosses the limit from outside to inside in

this procedure. External yield (EO) type is the yield

information types to the client and the determined

information goes over the limit from inside to outside

in this procedure. External Inquiry (EQ) type is

intelligent data sources, which require a reaction.

Internal sensible record (ILF) type is a gathering of

consistently related information, which is utilized and

shared inside the framework limit. External interface

document (EIF) type is a gathering of consistently

related information, which is utilized for reference

reason as it were. The EIF is an ILF for another

application. ILF and EIF are data function types and

EI, EO, and EQ are transactional function types. To

determine function points, Albrecht uses the average

weights through Equation (16).

FPs = �Inp × 4� + �Out × 5� + �Eq × 4�

 +�MF × 10� (16)

In Equation (16), Inp is a number of inputs, Out depicts

a number of outputs, Equation represents the number

of inquiries, and MF is for master files (interfaces).

7.2 Full Function Points

Full Function Points (FFPs) measure is especially

custom fitted to constant and installed programming

spaces. FFP is an expansion of the standard Function

Point Analysis (FPA) strategy. It presents two extra

control information work types and four new control

value-based capacity types [39].

7.3 Use Case Points

Use Case Points (UCPs) system was created by Gustav

Karner in 1993 and it depends on comparative

standards as the FP estimation procedure. It was

intended for the specific arranged frameworks and

framework prerequisites being composed utilizing use

cases, which is a piece of the Unified Modeling

Language (UML) systems. Based on components of

the framework use cases, the UCP is determined to

quantify the product measure, which is then used to

evaluate the task exertion. The UCP condition is

comprised of three factors, for example, Unadjusted

Use Case Points (UUCP), Technical Complexity

Factor (TCF), and Environment Complexity Factor

(ECF). On the off chance that the Productivity Factor

(PF) as a coefficient is incorporated into it, the

condition in half can be utilized to evaluate the number

of worker hours required to finish a task [40] in

Equation (17).

UCP = UUCP×TCF×ECF×PF (17)

8. COMPOSITE TECHNIQUES

It can be said vide Table 3, Table 4, and Table 5 that

none of the techniques is perfect for every situation;

rather they have their own merits and demerits.

Composite methods settle this issue as they

incorporate at least two procedures to define the most

reasonable useful frame for estimation through which

the cons of a strategy can be concealed by the geniuses

of an alternate one.

8.1 Bayesian Approach

Bayesian examination [41] is a keen evaluating

approach which was utilized for the advancement of

COCOMO II show. This composite strategy joins skill

based and demonstrate based (COCOMO II)

procedures. The Bayesian methodology has every one

of the benefits of "Standard" relapse, however, it

incorporates earlier learning of specialists. It enables

the examiner to utilize both example (verifiable task

information) and earlier (master judgment) data which

is changed to post-information or back perspectives.

The two data sources can be joined utilizing Bayes'

hypothesis as pursues in Equation (18).

f�β Y⁄ � = R�S T⁄ �R�T�
R�S� (18)

In condition Equation (18), β is the parameter of the

vector about which concerned, Y speaks to the vector

of test perceptions from the joint thickness work f

(β/Y), f (β/Y) means the back thickness work for β

which outlines all the data about β, f(Y/β) speaks to

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

425

the example data, and f (β) is for the earlier data that

abridges the master judgment data about β.

9. OTHER TECHNIQUES

Apart from the estimation techniques discussed above,

many techniques have been proposed to date because

the research is going on in this hot field. All of them

cannot be covered to the fullest, though some other

techniques are briefly discussed in this section.

9.1 Cost-to-Win

Cost to-win is a method in which the expense of

programming is evaluated to be the best cost to win the

task. Rather than the product usefulness, the

fundamental focal point of this estimation is the

client's financial plan [42]. For example, if the client

can bear the cost of 80 man-months, however the

sensible cost estimation for a venture is 120 man-

months, at that point by utilizing the cost to-win

procedure, by and large, the estimator is requested to

alter the exertion estimation to fit 80-man-months to

win the task. The upside of this system is that you win

the agreement. The hindrance of this training is that

possibly it causes a terrible postponement in

conveyance or powers the improvement group to stay

at work past 40 hours for example time and cash run

out before the activity is finished.

9.2 Parkinson

Utilizing Parkinson's Law "work grows to fill the

accessible volume" [43], the task cost is controlled by

whatever assets are accessible rather than target

evaluation. For instance, if a venture must be

conveyed in 10 months and 5 individuals are

accessible to chip away at it, at that point the exertion

is assessed to be 50 men per months. The advantage of

this technique is that it provides a good estimation and

there is no overspend on the project. The disadvantage

of this method is that it gives unrealistic estimates and

does not promote good software engineering practices.

9.3 PROXY-Based Estimating

PROXY-based estimating (PROBE) for personal

software process (PSP) was introduced by Watts

Humphrey[44] to estimate size and effort. PROBE is

based on the idea that similar projects will take about

the same effort. PROBE utilized the KLOC with LOC

to measure the size of effort but can be easily

customized for FPs, or other levels of granularity as

per need. The advantage of this process is that it works

better at the individual small effort level. The

limitation is that it does not scale well to larger efforts.

9.4 Delphi Technique

Delphi technique effort technique that involves the

experts from the estimation. The team consists of the

4-8 members with the moderator [45]. The estimation

process starts from kickoff meeting, creates wbs,

discussion about the list of assumptions, effort

estimation for each task, achieve consensus. The

Delphi model is the Looping process which is used to

filter the judgments of experts by using a series of

questionnaires.

9.10 Effort Estimation using the Machine

Learning Algorithm

The approach for the deploying and duration of the

effort. Three algorithms of machine learning SVM,

MLP and GLM are used with cross-validation [46].

Their results indicate the good accuracy and suitability

for the deployment.

9.11 Cost Estimation using an Artificial Neural

Network

Cost estimation is the most challenging task for

software project management. The results are

generated from the multilayer neural system [46].

They create the quantitate measure in the proposed

model.

9.12 Hybrid Model of Input Selection

Procedure

Software effort estimation is the predicting of

development effort and development time required to

develop any software project. It is the main step of the

software development process and at the same time

measured to be the key task as correct calculations of

growing of the current project. Software cost

estimation is done by the input selection procedure to

find the cost drivers relevant leave the irrelevant

attributes [47].

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

426

10. DISCUSSION

In this section, all the techniques discussed above are

summarized in tabular form. Tables 3-6 overview the

learning-oriented techniques, parametric/ algorithmic

models, the expertise-based/ consensus-based

techniques, and size-based estimation techniques for

ready reference, respectively.

The tables in this section clearly describe the several

techniques advantages and disadvantages. Some of the

drawbacks are insignificant and can be tolerated, but

some of the pitfalls are crucial enough and cannot be

ignored.

11. CONCLUSION

This study discusses various software development

cost estimation models and techniques along with their

pros and cons. Software development effort and cost

estimation is an interesting area in software

development. The reliable effort estimation technique

which provides accurate estimates for a software

engineer in software development is needed. The

study tells that none of the techniques is best for all

situations in software development; rather they are

applicable in different nature of projects and are

challenged by the rapidly changing software industry.

Since no single technique gives a hundred percent

accuracy, that is why one technique is not chosen.

12. RECOMMENDATIONS

In our opinion, it is recommended to use a hybrid

model for estimating the cost of software project

development. Through a hybrid approach, one

technique will complement the other; and already built

famous models can be improved in this way.

Secondly, we should calibrate those models which

provide calibration support because if a model was

developed in a different environment, we cannot

expect it to perform very well in a new environment,

so recalibration helps in such situations. The

achievement of this study is that various techniques

are discussed in this study and it helps in software cost

estimation during the development of software.

E 3．SUMMARY OF LEARNING-ORIENTED TECHNIQUES

Methods Proposed by Year Strengths Limitations

CBR

Roger Schank

and his

students at

Yale

University

The

1980s

• Simplified procedure for knowledge

acquisition.

• Improves eventually as case base grows

• The learning ability of CBR systems helps in

maintaining knowledge

• High user acceptance.

• Does not tackle categorical /

nominal data.

• Intolerant of irrelevant features

and noise.

• Large storage space can be

taken for all cases.

• Adaptation is often required for

retrieved cases which may be

quite difficult or impossible in

many domains.

Neural

Network

Warren

McCulloch

and Walter

Pitts

1943

• Can solve complex problems

• Requires less formal statistical training.

• Can detect any complex relationships

between dependent and independent

variables.

• Difficult to design

• Needs training to operate.

• High processing time is required

for large NNs.

• Too much of a black box nature.

GA
John Henry

Holland

The

1970s

• Easy to understand concepts

• More chances of getting the optimal solution

• Intrinsically parallel

• Does not depend on specific knowledge of

the problem.

• Chromosomes representing

individuals have to be a fixed

length binary string.

• Not a silver bullet to solve a

problem.

• Low usability if the algorithm is

not trained long enough.

• More complex to implement.

GP
Nichael L.

Cramer
1985

• Eliminates the constraint that the

chromosomes representing individuals have

to be a fixed length binary string.

• Provides better accuracy.

• Every solution can be evaluated as it is an

algebraic expression.

• Little specific domain knowledge is

required.

• More exertion in setting up and

preparing is required.

• The inescapable tradeoff

between exactness from

unpredictability and simplicity

of elucidation.

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

427

TABLE 4．SUMMARY OF PARAMETRIC / ALGORITHMIC MODELS

Methods
Proposed by /

Owner
Year Size Input

Estimates

What

Activities

covered

(MBASE/RUP

or ISO/IEC

15288 phases)

Limitations
Tools (if any) /

Cost

SLIM L. H. Putnam 1978 SLOC Effort, Time

Inception,

Elaboration,

Construction,

Transition and

maintenance

Uncertainty about LOC

(software size) in the early

stages may lead to

inaccurate estimates.

Not suitable for small

projects.

Only considers time and

size, not all other aspects of

SDLC.

A SLIM suite of

tools /

Commercial

COCOMO B. W. Boehm 1981 KDSI
The effort,

Cost, Time

Plan and

requirement,

preliminary

design, detailed

design, code,

Integration &

Testing

Hard to accurately estimate

KDSI early on in the

project.

Achievement depends to a

great extent on adjustment

utilizing recorded

information which isn't

constantly accessible.

Unsuitable for large

projects as much data is

required.

Vulnerable to

misclassification of

development mode.

Lack of factors root limited

accuracy.

Assumes the requirements

to be stable and predefined.

Costar 7.0 /

Commercial

SEER-SEM Galorath Inc.
1983 and

The 1990s

SLOC, FPs,

UCs

Effort, Cost,

Risk,

Duration

Inception,

Elaboration,

Construction,

Transition and

maintenance

It takes many parameters as

input which increases the

complexity and uncertainty.

The exact size of the

project is a key concern in

this model.

SEER for Software

/ Commercial

Checkpoint Capers Jones 1997 FPs

Effort, Cost,

Schedule,

Defect

Inception,

Elaboration,

Construction,

Transition and

maintenance

Estimation is bit complex

since it is done at activity-

level and task-level.

Checkpoint/

Commercial

ESTIMACS
Howard

Rubin
The 1970s

Function-Point-

like

Effort, Cost,

Risk

Inception,

Elaboration,

Construction

Each stage does not clearly

translate the effort.

The results of the package

are not totally explainable.

Estimacs /

Commercial

PRICE-S RCA 1970s
SLOC, FPs,

POPs, UCCP

Cost,

Schedule

Inception,

Elaboration,

Construction,

Transition and

maintenance

Model is presented as a

black box to the users

because its core concepts

and ideas are not publicly

defined.

TruePlanning/

Commercial

COSYSMO
Ricardo

Valerdi
2002

Requirement,

Interfaces,

Algorithms,

Operational,

Scenarios

Effort, Time

Conceptualize,

Develop,

Activity, Test,

and Evaluation,

Change to

Operation,

Work Maintain

or Enhance, and

Supplant

It overlaps with the

COCOMO II model

causing needless double-

counting of effort; as in

most organizations,

software engineering and

systems engineering are

highly coupled.

SystemStar /

Commercial

COCOMO II
B. W. Boehm

et al.

Research

started in

1994,

published in

1995

KSLOC, FPs,

Application

Points

Cost, Effort,

Schedule

Inception,

Elaboration,

Construction,

Transition and

maintenance

Its 'heart' is still based on a

waterfall process model.

Duration calculation for

small projects is not

reasonable.

USC COCOMO

II / Free

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

428

TABLE 5．SUMMARY OF EXPERTISE-BASED / CONSENSUS-BASED TECHNIQUES

Methods Proposed by Year Strengths Limitations

Delphi
Olaf Helmer

et al.
The 1940s

• Simple to manage

• Easy to use

• Quick to derive an estimate

• Useful when in-house experts of the

organization cannot come out with a quick

estimate

• Results can be much accurate if experts are

chosen carefully

• Avoid group discussions

• Too simplistic

• Hard to locate appropriate experts

• The derived estimate is not verifiable

Wideband

Delphi
B. W. Boehm 1981

• Supports group discussion among

assessment rounds

• Time is needed and several experts take part

in the process.

WBS

The concept

developed by

US DoD

Developed by

the US Navy in

1957.

Published in

June 1962 by

DoD, NASA, &

aerospace

industry.

• Good for planning

• Good for control

• Has detailed steps

• Development of WBS is not so easy

• Step by step approach is a heck of a job

• Difficult to find the most accurate level of

details

Rule-based

Systems
AI researchers ?

• Uses IF-THEN statements and does not

follow a static way to represent knowledge

• Simplicity - the natural format of rules

• Uniformity – the same structure of all rules

• If not specially crafted, infinite loops can

occur

• The computational cost can be very high as

rules require pattern matching

• Rules cannot modify themselves

Planning

Poker

James

Grenning
2002

• Enjoyable method for estimation

• No first-estimate bias because of the

confidential individual estimate

• Discussion leads to better estimates

• Time-consuming

• Export-dependent

• Less accurate results if the team have no

prior experience with similar tasks

Top-Down

IBM researcher

Harlan Mills

and Niklaus

Wirth

Promoted in the

1970s

• System-level focus - captures system-level

effort like component integration, users’

manual, and change management

• Requires minimum project details

• Easier to manipulate

• Lacks a thorough breakdown of sub-

components

• Does not discover tricky low-level technical

problems which are liable to increase costs

• Provide little detail on cost justification

Bottom-Up ? ?

• Sustains project tracking

• Based on an exhaustive analysis

• Transparency – potential errors can be

investigated plus their impact can be tested

because of the detailed cost data

• Much estimation effort is needed.

• Chances of over-estimate are there as each

level folds in another level

• Hard to make estimates early in the lifecycle

A question mark (?) shows that authors were not capable to find information from the related work.

TABLE 6．SUMMARY OF SIZE-BASED ESTIMATION TECHNIQUES

Methods Proposed by Year Strengths Limitations

FP
Allan

Albrecht
1979

• Make estimation possible early in the

project lifecycle.

• Independent of how the requirements of

the software were expressed.

• Does not depend on a specific

technology or programming language.

• Not capable of dealing with

hybrid systems.

• No availability of enough

research data as compared to

LOC.

• Time-consuming method.

FFP

Denis St-

Pierre et al.

1997

• Can cope with real-time software

domain.

• Can cope with embedded software.

• Retains the actual FPA quality

characteristics.

• Restricted range of software

(specifications) that can be

sized is covered.

• Time-consuming method.

UCP
Gustav

Karner
1993

• The process can be automated.

• Can be measured early in the project

lifecycle.

• Easy to use.

• When estimation is performed by

skilled people, estimates would be close

to the actuals.

• Only applicable for those

software projects whose

specification can be expressed

by use cases.

• UCP is less useful in iteration

tasks in the team.

ACKNOWLEDGMENT

This research work is supported by the Air University

Islamabad, Kamra Campus, Pakistan, COMSATS

University Islamabad, Wah Campus, Pakistan,

National Textile University, Faisalabad, Pakistan,

Prince Sultan University, Riyadh, Saudi Arabia and

University of Engineering and Technology Taxila,

Pakistan. The authors are very thankful to all these

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

429

universities for providing the required resources to

perform this research.

REFERENCES

[1] Mendes, E., Watson, I., Triggs, C., Mosley,

N., & Counsell, S., "A comparative study of

cost estimation models for web hypermedia

applications", Empirical Software

Engineering, Vol. 8, No. 2,pp 163-196, 2003

[2] Rashid, J. and Nisar, M.W., "How to Improve

a Software Quality Assurance In Software

Development-A Survey". International

Journal of Computer Science and

Information Security, Vol. 14, No 8, pp.99-

108, 2016.

[3] Musawwer, K, Rashid, J. and Nisar, M.W., "A

CMMI Complaint Requirement

Development Life Cycle", International

Journal of Computer Science and

Information Security, Vol. 14, No 9,pp. 1000-

1009, 2016.

[4] Tamrakar, R. and Jørgensen, M., "Does the

use of Fibonacci numbers in Planning Poker

affect effort estimates?", 16th International

Conference on Evaluation\& Assessment in

Software Engineering, pp. 228-232, 2012.

[5] Kumar, S., Rastogi, R. and Nag,

R.,"Limitations of Function Point Analysis in

Multimedia Software/Application

Estimation", In Software Engineering,

Springer, pp. 383-392, 2019.

[6] Wen, J., Li, S., Lin, Z., Hu, Y. and Huang, C.,

"Systematic literature review of machine

learning based software development effort

estimation models", Information and

Software Technology, Vol. 54, No 1, pp.41-

59, 2012.

[7] Hani, S.U., Alam, A.T. and Shaikh, A.B.,

"Tuning COCOMO-II for software process

improvement: A tool based

approach", Mehran University Research

Journal Of Engineering & Technology, Vol.

35, No 4, pp.505-522, 2016.

[8] Rashid, J., Mehmood, W. and Nisar, M.W.,

"A Survey of Model Comparison Strategies

and Techniques in Model Driven

Engineering", International Journal of

Software Engineering and Technology,

Vol. 1,No 3, pp.165-176, 2016.

[9] Putnam, L.H., "A general empirical solution

to the macro software sizing and estimating

problem", IEEE transactions on Software

Engineering, Vol. 4, No 4, pp.345-361,1978

[10] Boehm, B.W., "Software engineering

economics ", IEEE Transations on Software

Engineering,Vol. 10, No 1, pp.4-21, 1984.

[11] Kemerer, C.F.," An empirical validation of

software cost estimation

models", Communications of the ACM, Vol.

30, No 5, pp.416-429,1987.

[12] Leung, H. and Fan, Z., "Software cost

estimation", In Handbook of Software

Engineering and Knowledge Engineering,

Vol. 2, pp. 307-324, 2002.

[13] Fischman, L., McRitchie, K. and

Galorath,"Inside seer-sem", CrossTalk,

p.146,2005.
[14] Capers, J.," Applied software measurement",

McGraw-Hill, 1996

[15] Heemstra, F.J., "Software cost

estimation", Information and software

technology, Vol. 34, No 10, pp.627-639,

1992.

[16] Boehm, B., Clark, B., Horowitz, E.,

Westland, C., Madachy, R. and Selby, R.,

"Cost models for future software life cycle

processes: COCOMO 2.0", Annals of

software engineering, Vol. 1, No 1, pp.57-

94,1995.

[17] Valerdi, R. and Boehm, B.W., "COSYSMO:

A systems engineering cost model",2010

[18] Valerdi, R., Boehm, B.W. and Reifer, D.J.,

"COSYSMO: A Constructive Systems

Engineering Cost Model Coming of Age",

In INCOSE International Symposium , Vol.

13, No 1, pp. 70-82,2003.

[19] Wang, G., Boehm, B., Valerdi, R. and

Shernoff, A., 2008,"Proposed Modification

to COSYSMO Estimating Relationship",

In INCOSE International Symposium, Vol.

18, No. 1, pp. 249-262,2008.

[20] Boehm, B., Clark, B., Horowitz, E.,

Westland, C., Madachy, R. and Selby, R.,

"Cost models for future software life cycle

processes: COCOMO 2.0", Annals of

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

430

software engineering,Vol. 1, No 1, pp.57-

94,1995.

[21] Banker, R.D., Kauffman, R.J. and Kumar, R.,

"An empirical test of object-based output

measurement metrics in a computer aided

software engineering (CASE)

environment", Journal of Management

Information Systems,Vol. 8, No 3, pp.127-

150,1991.

[22] Dalkey, N., "An experimental study of group

opinion: the Delphi method", Futures, Vol. 1,

No 5, pp.408-426,1969.

[23] Clark, B.K.,"The effects of software process

maturity on software development

effort",1997.

[24] Tausworthe, R.C.,"The work breakdown

structure in software project

management", Journal of Systems and

Software, Vol. 1, pp.181-186,1979

[25] Globerson,S.,"Impact of various work-

breakdown structures on project

conceptualization", International Journal of

Project Management, Vol. 12, No 3, pp.165-

171,1994.

[26] Gray, A. and MacDonell, S.G., "A

comparison of techniques for developing

predictive models of software metrics",1997.

[27] Molokken-Ostvold, K. and Haugen, N.C.,

"Combining estimates with planning poker--

an empirical study", ASWEC, pp. 349-358,

2007.

[28] Zima, K., "The Case-Based Reasoning model

of cost estimation at the preliminary stage of

a construction project", Procedia

Engineering, Volume 122, pp.57-64,2015.

[29] Aha, D.W., "Case-based learning

algorithms", DARPA Case-Based Reasoning

Workshop , Vol. 1, pp. 147-158,1991.

[30] McCulloch, W.S. and Pitts, W., "A logical

calculus of the ideas immanent in nervous

activity", Bulletin of mathematical

biology, Vol. 52, No 1, pp.99-115,1990.

[31] Mitchell, M., "An introduction to genetic

algorithms", MIT press,1998.

[32] Cramer, N.L.,"A representation for the

adaptive generation of simple sequential

programs", In Proceedings of the first

international conference on genetic

algorithms , pp. 183-187,1985.

[33] Madachy, R.J. and Khoshnevis, B.,"A

software project dynamics model for process

cost, schedule and risk assessment",1994.

[34] Abdel-Hamid, T.K., "The dynamics of

software project staffing: a system dynamics

based simulation approach", IEEE

Transactions on Software engineering, Vol.

15, No 2, pp.109-119,1989.

[35] Miyazaki, Y., Terakado, M., Ozaki, K. and

Nozaki, H., "Robust regression for

developing software estimation

models", Journal of Systems and Software,

Vol. 27, No 1, pp.3-16,1994.

[36] Yager, R.R., "Connectives and quantifiers in

fuzzy sets", Fuzzy sets and systems, Vol. 40,

No 1, pp.39-75,1965.
[37] Bastani, F.B., DiMarco, G. and Pasquini, A.,

"Experimental evaluation of a fuzzy-set

based measure of software correctness using

program mutation", 15th international

conference on Software Engineering, pp. 45-

54,1993.

[38] Albrecht, A.J. and Gaffney, J.E., "Software

function, source lines of code, and

development effort prediction: a software

science validation", IEEE transactions on

software engineering, Vol. 6, pp.639-

648,1983.

[39] St-Pierre, D., Maya, M., Abran, A.,

Desharnais, J.M. and Bourque, P., "Full

function points: Counting practices

manual", Software Engineering Management

Research Laboratory and Software

Engineering Laboratory in Applied

Metrics,1997.

[40] Clemmons, R.K., "Project estimation with

use case points", The Journal of Defense

Software Engineering, Volume 19, No 2,

pp.18-22,2006.

[41] Chulani, S., Boehm, B. and Steece, B.,

"Calibrating software cost models using

bayesian analysis", IEEE Transactions on

Software Engineering,1999.

[42] Nasir, M., "A survey of software estimation

techniques and project planning practices",

In Software Engineering, Artificial

Intelligence, Networking, and

A Study of Software Development Cost Estimation Techniques and Models

Mehran University Research Journal of Engineering and Technology, Vol. 39, No. 2, April 2020 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]

431

Parallel/Distributed Computing,pp. 305-

310,2006.

[43] Gutierrez, G.J. and Kouvelis, P., "Parkinson's

law and its implications for project

management", Management

Science, Volume 37, No 8, pp.990-

1001,1991.

[44] Humphrey, W.S., "A discipline for software

engineering", Addison-Wesley Longman

Publishing ,1995.

[45] Rai, A., Gupta, G.P. and Kumar, P.,

"Estimation of software development efforts

using improved delphi technique: A novel

approach",Int. J. Appl. Eng. Res., Volume 12,

No 12, pp.3228-3236,2017.

[46] Pospieszny, P., Czarnacka-Chrobot, B. and

Kobylinski, A., " An effective approach for

software project effort and duration

estimation with machine learning

algorithms", Journal of Systems and

Software, Volume 137, pp.184-196.2018

[47] Wani, Z.H. and Quadri, S.M.K., "Software

Cost Estimation Based on the Hybrid Model

of Input Selection Procedure and Artificial

Neural Network", Artificial Intelligent

Systems and Machine Learning,Volume 10,

No 1, pp.18-24, 2018.

