
Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4575

A Comparative Study of Dynamic Software

Testing Techniques
Mubarak Albarka Umar

School of Computer Science and Technology, Changchun University of Science and Technology, Jilin, China

Email: 2018300037@mails.cust.edu.cn

Chen Zhanfang

School of Computer Science and Technology, Changchun University of Science and Technology, Jilin, China

Email: chenzhanfang@cust.edu.cn

---ABSTRACT---

The growing need for quality software makes software testing a crucial stage in Software Development Lifecycle.

There are many techniques of testing software, however, the choice of a technique to test a given software

remains a major problem. Although, it is impossible to find all errors in software, selecting the right testing

technique can determine the success or failure of a software testing project. Knowing these software testing

techniques and their classification is a vital key in selecting the right technique(s). Software testing can broadly be

classified as static or dynamic, this paper presents a broad comparative study of the various dynamic software

testing techniques. An explanation of the dynamic testing techniques, their advantages and disadvantages, as well

as some of the commonly used types of testing under each technique are presented. Finally, a comparison of the

dynamic testing techniques is also made to enable a clear and definite understanding of the techniques for the

betterment of testing and subsequent improvement in software quality.

Keywords -Software Testing, Software Testing Paradigm, Dynamic Testing Techniques,

TestingTypes, Software Quality.

--

Date of Submission: Nov 6, 2020 Date of Acceptance: Nov 23, 2020

--

1. INTRODUCTION

Software testing is defined as the process of evaluating a

software program with the intent of finding fault or errors

in software. Software testing is mainly performed to

achieve the following three aims:

 To ensure that the software program can correctly

perform its intended purpose [1].

 To verify that the software is fit for use [2].

 To achieve and maintain software quality as per a

given standard [3], [4].

In Software Development Life Cycle (SDLC), software is

not considered finished until it has passed its testing

phase[5]. Software testing is very important for various

reasons [6], [7]. The overall purpose of testing software is

not to demonstrate that software is free of errors but to

give confidence that the software is working well before

installation[1]. There are various approaches of testing

software that can be broadly classified as static or dynamic

[2], [7]–[9]. The former involved methods that are used to

determine software quality without reference to actual

execution of the program while the later does the same

thing but with a reference to actual program execution.

This study focuses on the dynamic testing approach.

The dynamic testing comprises of experience-based

testing techniques in addition to the three well-known

techniques of testing software, namely, white box, black

box, and grey box [7]. Precisely, our study is centered on

all the dynamic testing techniques, their explanation,

advantages and disadvantages, as well as an explanation of

some of the commonly used types of testing under each of

the dynamic testing approaches and lastly, a comparison of

the four testing techniques. The study aims to provide a

clear and definite explanation of the techniques for the

betterment of testing and subsequent improvement in

software quality. Some of the contributions of this work

include:

 Thorough explanation of all the dynamic

software testing techniques. Umar[17] is the

closest work to cover most of the dynamic testing

techniques from the available literature.

 A detailed literature review covering significant

papers on software testing techniques, their

common limitations are highlighted and

comparison of the papers is also made.

The remaining part of this work is organized as follows; a

review of the related studies from the literature along with

their common limitation is presented in the next Section.

Section III provides a brief explanation of the two

software testing approaches, their comparisons, and the

various activities and/or techniques under each. A broad

overview of the software testing paradigm is also

presented. Then Section IV provides a thorough

explanation of the four dynamic testing techniques along

with the common testing types under each, their pros and

cons are also identified. A comparison of the testing

techniques is made in Section V and finally, Section VI

concludes the study.

2. LITERATURE REVIEW

Over the years, several works on software testing

techniques were presented in the literature. In this section

we review some of the significant works among them,

specifically focusing on works that provide a detailed

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4576

explanation of all or one of the three main software testing

techniques in chronological order. Their common

limitations are identified, a comparison of the reviewed

literature is summarized in Table 1below.

Jovanovic [10] provides a short description of the two

widely known testing techniques – white and black box

techniques. Furthermore, the author explains broadly the

various and frequently used forms of testing under each of

the two testing techniques. Jovanovic’s work is among the

earliest works on software testing techniques and it

provides the basis of many similar testing research that

follow it, similarly. Khan and Khan [11] performed a

study on the three most prevalent and commonly used

software testing techniques for detecting errors. The three

testing techniques are white-box testing, black-box testing,

and grey-box testing. The authors provide a clear

description of the techniques along with a brief

explanation of some of the important testing types of each

testing technique. They also compared the three testing

techniques. Nidhra and Dondeti[12] conduct a study on

black-box and white-box testing techniques with the aim

of providing a clear explanation of the two different

testing techniques, their advantages, and their usefulness.

In conducting their studies, the authors carefully retrieved

qualitative data, which mainly focus on testing techniques,

their types, advantages, and case scenarios, from 29

articles and used them in succinctly explaining the testing

techniques as well as the various testing types under those

two testing techniques. Kaur and Singh [13] reviewed

software testing techniques intending to analyze and

compare many types of testing techniques to find out the

best testing typefor finding errors from a software

program. The authors concluded that the current testing

technique knowledge is very limited and is based on

impressions and perceptions. Jamil et al., [14] conducted a

review on software testing techniques with the aims of

discussing as well as improving the existing testing

techniques for the better-quality assurance purposes. They

briefly explain the three testing techniques, in addition to

software release life cycles. The authors also proposed the

use of a tool to enhance the existing testing processes.

Sneha and Malle[15] researchedsoftware testing

techniques and software automation testing tools intending

to explain different testing techniques and types together

with explaining some of the most used automation tools.

Their research also highlighted the important role played

by automation tools in comparison to the manual testing

approach in software testing. Syaikhuddin et al., [16]

conducted a study on conventional software testing with a

specific focus on the white-box testing technique, they

provide a simple explanation and case scenarios of some

white box testing methods. The authors concluded that it

will be necessary to find an experienced tester to conduct

the testing process using White Box Testing method due to

its complexity.Umar[17] presented a comprehensive study

of software testing. The study provides a clear explanation

and shows how the various testing categories, testing

levels, the three testing techniques, and numerous types of

testing relate to each other. The study provided the

advantages and disadvantages of various testing methods

and made some comparisons of different testing levels in

addition to comparing the three testing techniques. The

author also highlighted the role played by verification and

validation in achieving software quality.

Table 1 - Literature Reviewed Summary

S/No. Work

‘Year
Dynamic/Static

Testing

Levels

White

box

Black

box

Grey

box

Experienced-

based
Comparisons

1 [10] ‘09

2 [11] ‘12

3 [12] ‘12

4 [13] ‘14

5 [14] ‘16

6 [15] ‘17

7 [16] ‘18

8 [17] ‘19

9 This work

From the reviewed literature, there exists one common

limitation in all the reviewed papers, it can be seen that

none of the papers discussed the experienced-based testing

technique. Majority of the existing literature mostly

focused on white-box and black-box of dynamic testing

techniques, none of them studied all the dynamic testing

techniques, or provide a clear classification order of the

various testing types under each technique with a detailed

explanation of some of the most used testing types in each

technique. This study aims to cover this gap.

3. SOFTWARE TESTING PARADIGM

There are various testing activities and techniques that are

used in testing software to ensure it performs as expected.

The entire testing activities and techniques can be

classified as either static or dynamic testing [7], [9], they

are both complementary to each other as they tend to find

defects/failures effectively and efficiently. The static

testing is the testing of software or its component at the

specification or implementation level without executing

the software, it is a powerful way of improving the quality

and productivity of software development [7]. About 40%

of software failures estimated to be due to static fault can

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4577

be prevented using static testing [9]. On the contrary,

dynamic testing involves the execution of the software or

its component with a given set of test cases [7]. It's

performed when the software is run and it may begin

before the software is 100% complete such as testing a

particular section of code. Most of the commonly known

types of testing are under dynamic testing; and in most of

the current literature, dynamic testing is referred to as

“testing” while “verification activities” is the term used for

static testing [2], [8]. Table 2 shows a comparison of the

testing approaches, and Figure 1 provides a graphical view

of the software testing paradigm.

Table 2 - Static VS Dynamic Testing [7], [9]

Criteria Static Testing Dynamic Testing

Execution No execution required Required code execution

Test case No test case is used Performed using test cases

Nature Often implicit, like proofreading Very explicit

Test Stub/driver None is required May required either or both

Verification/validation Involves verification process Involves validation process

Active/passive A form of Passive testing Active testing

Manual/automated Usually performed manually Performed mostly using automation tools

Main goal Seeks to find defects in software Aimed at finding software failures

Cost Low cost of finding and fixing defects High cost of finding and fixing failures

Execution time Can be performed before compilation

Begin before completion of the software,

usually on the smallest executable code

section of a software.

Target component

Can be performed on software source

code, design documents and models,

functional and requirement specifications,

and any other documents.

Only performable on software source

code.

The dynamic testing involves any type of testing activity

which requires running the software program or code [9].

White-box, black-box, and grey-box are three well-known

forms of testing that require code execution, along with

experienced-based testing they formed the four main

dynamic testing techniques [7]. Any type of testing that

requires code execution can be categorized in any of the

aforementioned techniques. Each of the types of testing

techniques determines the strategy that can be used in

developing test cases for conducting the testing and in

analyzing test results to achieve more effective testing[2].

They help identify test conditions that are otherwise

difficult to recognize. There are several kinds of testing

under each technique with each covering different aspects

of software to reveal its quality. Utilizing all the testing

techniques in testing a given software is not possible, but a

tester can select and use more than one technique

depending on the testing requirements, software type,

budget, and time constraint. The higher the number of

testing technique types combine, the better the testing

result, coverage, and quality [10]. This study thoroughly

discusses all the dynamic testing techniques, the various

types of testing under each, their advantages and

disadvantages, and a comparison of the techniques on

many grounds is performed.

Figure 1 - Software Testing Paradigm [7], [17]

4. DYNAMIC TESTING TECHNIQUES
In software engineering, dynamic testing is a form of

testing the dynamic behavior of code to examine the

physical response from the software to variables that are

not constant and change with time. In dynamic testing, the

software must be compiled and run to check how it will

perform in a run-time environment. It involves giving

input values to the software and checking if the output is

as expected by executing specific test cases which can be

done manually or with the use of an automated

process[18]. All the testing levels utilize dynamic testing

and most of the testing activities in software testing are

based on a dynamic testing approach. Specification-based,

Structured-based, Translucent, and Experienced-based

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4578

testing are the four major testing techniques [9], [17].

Table 3 shows the advantages and disadvantages of the

dynamic testing approach.

Table 3 - Pros and Cons of Dynamic Testing

Advantages Disadvantages

Can identify weak area in

the runtime environment

Very time consuming

because of the need to

execute the software

program often

Supports application

analysis even if the tester

does not have an actual

code

Hard to find trained

dynamic test professionals

Can verify the correctness

of static testing as well as

find vulnerabilities that

are difficult to find with

static testing.

Hard to track down the

vulnerabilities in the code,

and it takes longer to fix

the problem. Therefore,

fixing bugs becomes

expensive

4.1. Structured-Based Testing

This is a dynamic testing technique in which internal

structure and implementation of software under test are

known to the tester. Structured-based testing required full

knowledge of source code because test cases selection is

grounded on the implementation of software entity,

specifically the internal view of the system and tester’s

programming skills are used to design test cases [12].

Tester selects inputs to exercise program paths and

compare the output with the expected output, the test

oracle. Structured-based testing, although usually done at

the unit level, is also performed at integration and system

levels of the software testing process. Structured-based

testing is also calledWhite Box, Transparent Box, Glass

Box, Clear Box, Logic Driven, Open Box Testing.

Figure 2 - Structured-Based Testing

Table 4 – Pros and Cons of Structure-Based Testing

Advantages Disadvantages

Code optimization can

be performed

Specialized tools are

required such as debugging

tools and code analyzers.

Easy to identify data

and cover more test

cases due to tester’s

knowledge of the code.

It’s often expensive and

difficult to maintain

Errors in hidden codes

are revealed

Impossible to find and test

all the hidden error and

deal with them without

going out of time

Structured-Based Testing Types

Some structured-based testing types include Control Flow,

Data flow, Branch, Loop, Path Testing [19]. Some

commonly used structured-based testing types are

discussed below.

Figure 3 - Structured-Based Testing Types

4.1.1. Control-Flow Testing

Control flow testing is a type of structured-based testing

that essentially checks the flow of control and order of

executionof software using a control flow graph (CFG). It

selects paths, nodes, and conditions from the CFG, and

test cases are designed for executing these paths,with each

path, node, or statements being traversed at least once

during the testing process. Studying the control structure

of the software is important in selecting and designing test

cases [20]. Typically,a test case is anentire path from entry

to exit nodes of the CFG. The selected set of paths are

used to achieve a certain degree of testing thoroughness.

Control-flow testing is most applicable at the unit level of

software [21].

A typical CFG of a program comprises a set of nodes and

edges, with each node representing a set of statements.

There are five types of CFG nodes, viz.: unique entry and

exit nodes, decision node (containing a conditional

statement that can havea minimum of 2 control branches

(such as a switch or if statements)), then merge node

(which mostly represent a point where multiple control

branches merge), and statement node having a sequence of

statements. The control must flow from the first statement

and exit from the last statement, and the CFG may have an

additional edge between nodes for the reverse order flow

of control (i.e. from the last to the first statement) [22].

There are several conventions for CFG models with subtle

differences (e.g., hierarchical CFGs, concurrent CFGs).

Control-flow testing supports the following test coverage

criteria [22]:

 Statement/Node Coverage:Executes each statement in

the program at least once

 Edge Coverage: Executes each statement in the

program at least once using all possible outcomes at

least once on every decision in the program.

 Condition Coverage: Executes each statement in the

program at least once using all possible outcomes at

least once on every condition in each decision.

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4579

Path Coverage: Executes each complete path in the

program at least once. Except for loops, which usually has

an infinite number of complete paths.

Table 5 – Pros and Cons of Control-Flow Testing

Advantages Disadvantages

Catches 50% of all bugs

caught during unit testing

[21]

Cannot detect

specification errors as

well as Interface

mismatches and

mistakes

Very effective testing

method for code that follows

unstructured programming

Cannot catch all

initialization mistakes

Enable experienced testers to

bypass drawing CFG by

doing path selection on the

source

Time-consuming and

required

programming

knowledge

4.1.2. Data-Flow Testing

Data-flow testing is a type ofstructured-based testing in

which Control flow graph (CFG) paths are used to detect

inappropriate definition or usage of data in predicates,

computations, and termination (killing). It examines

patterns in which a piece of data is used to identifies

potential bugs [20]. Data flow testing searches for

unreasonable things that can happen to data. Data flow

anomalies are identified based on the associations between

variables and values (unused initialized variables or

uninitialized used variables). Data flow testing focuses on

variables definition, use occurrence, and both predicate

and computational use at different points within the

program. There are two main data flow testingforms:(1)

define/use testing which uses some simple rules and test

coverage metrics, and (2) program slices that use segments

of a program [23]. Data flow testing use the following test

coverage criteria in creating test cases for the test [20]:

 All-defs (AD) coverage: which has a path from every

definition to at least one use of that definition

 All-uses (AU) coverage: in which for every use of

variable, there is at least one path from the definition

to its use.

 All-c-uses (ACU) coverage: in which for every

variable, there is a path from each of its definition to

each of its c-use,any defined variable with no

subsequent c-use is dropped from contention.

 All-c-uses/some-p-uses (ACU+P) coverage: in which

for every variable, there is a path from each of its

definition to each of its c-use. p-use is considered if

there is any defined variable with no c-use following

it.

 All-p-uses (APU) coverage: in which for every

variable, there is a path from each of its definition to

each of its p-use, any defined variable with no

subsequent p-use is dropped from contention.

 All-p-uses/some-c-uses (APU+C) coverage: in which

for every variable, there is a path from each of its

definition to each of its p-use. c-use is considered if

there is any defined variable with no p-use following

it.

All-du-paths (ADUP) coverage: which covers all paths

between definitions and uses for each def-use pair. It is

thesuperset of all other data flow testing strategies and the

strongest data-flow testing strategy. Moreover, this

strategy requires the greatest number of paths for testing.

Table 6 – Pros and Cons of Data-Flow Testing

Advantage Disadvantage

Can define intermediary

Control flow analysis

criteria between all-nodes

and all-paths testing

Unscalable Data-Flow

Analysis algorithm for

large real-world programs

Handles variable definition

and usage

Test case design

difficulties compared with

control flow testing.

It spans the gap between all

paths and branch testing

Infeasible test objectives

which might lead to

wastage of time on testing

in vain [24].

Identify multiple variable

declarations

Can have an infinite

number of paths due to

loops

4.2. Specification-Based Testing

This is a dynamic testing technique in which the internal

structure and implementation of software under test are

not known to the tester, and it can be functional (such as

integration testing) or non-functional (such as performance

testing), though usually functional. It is called

specification-based because test cases are built around

requirement specifications and user stories. The

specification-based testing emphasizes evaluating the

fundamental aspects of software using thorough test cases,

and generally, on maintaining the integrity of external

information [19]. For a given test case, the tester verifies

proper acceptance of inputs and correct production of

outputs against its test oracle. Specification-based

testingcan be applied at all levels of software testing

processes such as Unit, Integration, System and

Acceptance Testing levels, although done mostly on

System testing and Integration testing.This testing is also

called Opaque, Functional, Black-box, Close-box,

Behavioral, and Input-Output testing.

Figure 4 - Specification-Based Testing

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4580

Table 7 – Pros and Cons of Black-box Testing

Advantages Disadvantages

Code knowledge is not

required, tester’s

perception is very

simple

Limited coverage, few test

scenarios are

designed/performed.

User’s and developer’s

view are separate

Some parts of the backend are

not tested at all.

Access to code is

unrequired, quicker

test case development

Inefficient testing due to the

limited knowledge of code

possesses by a tester.

Efficient and suitable

for large parts of code

Test cases are difficult to

design without clear

specification

Specification-Based Testing Types

Some specification-based testing types include

equivalence Partitioning, Cause-Effect Graph, Fuzzing,

Boundary Value Analysis, Decision Table, State

Transition, Orthogonal Array, and All Pair Testing [11].

Some common specification-based testing types are

discussed below.

Figure 5 - Specification-Based Testing Types

4.2.1. Equivalence Partitioning Testing (EP)

This is a specification-based testing technique that

dividesthe input domain into different equivalence classes

to reduce the number of test cases andselects one element

from each equivalence class (EC) as a test case. It is used

to avoid test redundancy and give a sense of complete

testingsince exhaustive testing is not possible. EC Testing

can be either weak or strong. In Weak Equivalence Class

Testing (WECT), some test cases are defined by choosing

one variable value from each equivalence class and then

taking the maximum value from the chosen variables,

while test cases in Strong Equivalence Class Testing

(SECT) are defined based on the cartesian product of

partition class, i.e., testing all interactions of all

equivalence classes [25].

Table 8 – Pros and Cons of Equivalence Partitioning

Testing

Advantages Disadvantages

Provide a sense of complete

testing and eradicates the

need for exhaustive testing

Suitable only for range-

wise and discrete values

input data

Enables large domain of

inputs or outputs coverage

with a smaller subset

selected from an

equivalence class

Assumes that the data in

the same equivalence class

is processed in the same

way by the system

Avoid test redundancy by

selecting a subset of test

inputs from each class.

Can’t handle boundary

value errors. Need to be

supplemented by boundary

value analysis

4.2.2. Boundary Value Analysis Testing (BVA)

This is a specification-based testing technique that aims at

finding software errors at the boundaries of equivalence

classes. Unlike the Equivalence Partitioning technique that

uses only the input domainin creating test cases, the BVA

uses both input and output domains. The BVA

complements EPtesting such that while EP tests program

with test cases from within equivalence classes, the BVA

focuses on testingthe program using test cases at and near

the boundaries of equivalence classes [25]. Furthermore,

test cases derived using either of the two techniques may

overlap.

Table 9 – Pros and Cons of Boundary Value Analysis

Testing

Advantages Disadvantages

Complements Equivalence

Partitioning testing by

handling equivalence class

boundary errors.

Generate a high number

of test cases

Works well with variables

that represent bounded

physical quantities

Can’t be used for

Boolean and logical

variables

Can be used at unit,

integration, system and

acceptance test levels

Function nature and

variable meaning are not

considered

Computationally less costly in

creating test cases

Not that useful for

strongly-typed languages

4.3. Translucent Testing

Translucent testing also known asGrey Box testing, is

another dynamic testing technique that takes the

straightforward technique approach of specification-based

testing and combines it with the code-targeted oriented

testing approach of structured-based testing. Some

knowledge, usually of the part to be tested, of the internal

working of the software is required in designing test cases

at a specification-based level. More understanding of the

internal implementation of software is required in grey-

box testing than in specification-based testing, but less

compared to structured-based testing [19]. Grey box

testing is much more effective in integration testing and is

the best approach for functional or domain testing, it is

also a perfect fit for testing web-based applications [26].

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4581

Figure 6 - Translucent Testing

Table 10 – Pros and Cons of Grey-box Testing

Advantages Disadvantages

Provides combined

benefits of both white-box

and black-box testing

Complete white-box

testing cannot be done

due to inaccessible

source code/binaries

Can handle design of

complex test scenario

more intelligently

Defect association is

difficult in distributed

systems.

Maintain boundary

between independent

testers and developers

Not suitable for

algorithm testing.

Translucent Testing Types

Some grey-box testing types include Orthogonal Array,

Regression, Pattern, and Matrix Testing. Some of these

testing types are discussed.

Figure 7 - Translucent Testing Types

4.3.1. Regression Testing

Regression testing is a grey-box testing strategy that is

performed every time changes are made to the software to

ensure that the changes behave as intended and that the

unchanged part of the software is not negatively affected

by the changes. Errors that occurred at unchanged parts of

the software are called regression errors. Regression

testing starts with a (possibly modified) specification, a

modified program, and an old test plan (which requires

updating) [27].

Table 11 – Pros and Cons of Regression Testing

Advantages Disadvantages

Tests can be automated

thereby saving time and

improving the quality of

software.

Tedious and time-

consuming if done

without automated tools

It ensures that a fix doesn't

adversely affect working

functionality.

Testing is required even

on making slight changes

to the program

Improves and maintain

software quality

One of the main causes

of software maintenance

expensiveness.

4.3.2. Orthogonal Array Testing (OAT)

This is a grey-box testing type that usesindependent pair-

wise combinations of data or entities as test input

parameters to increase the testing scope. OAT is handy

when maximum coverage is required with minimum test

cases and a huge number of test data having many

permutations and combinations. It’s extremely valuable

for testing complex applications and e-comm products

[28].

Table 12 – Pros and Cons of Orthogonal Array Testing

(OAT)

Advantages Disadvantages

Test pair-wise combinations of all

the selected variables

Increase in Test

case complexity as

input data

increases

Creates fewer Test cases which

cover the testing of all the

combination of all variables.

Tedious and time-

consuming if done

manually.

Improves productivity because of

reduced test cycles and testing

times.

4.4. Experienced-Based Testing

This is atechnique of testing software with the help of

experience gained through several years of working. The

working experience here can be from testing or

development experience, dealing with similar software or

previous release of the same software, as well as

experience in the respective domain. The knowledge of

tester is very useful in designing the test cases.

Experience-based testing is usually performed on software

with fewer risks [29].

Table 13 - Pros and Cons of Experienced-Based Testing

Advantages Disadvantages

Very crucial in the absence

of requirements and

specifications

Not ideal for high-risk

software

Performable with limited

knowledge of software

Required highly skilled

and experienced testers

Doable when there is

restricted time for testing

Software may still require

a more formal and

thorough testing

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4582

Experienced-Based Testing Types
Generally, there are four types of testing techniques where

the experience of a tester plays a major role. These are

Error Guessing, Checklist-based testing, Attack testing,

and Exploratory testing. Some of these testing types are

discussed.

Figure 8 - Experienced-Based Testing Types

4.4.1. Error Guessing

This is a testing technique in which an experienced tester

applies his/her skills, gained knowledge, and experience to

identify the vulnerable areas of the software that are likely

to be affected by potential defects. Thereafter, tester marks

each area according to its prone to defects with low-risk,

medium-risk,or high-risk, and prepares the test cases to

locate the possible existence of defects. This technique

may be considered as a risk analysis method and it has no

explicit testing rules; test cases can be designed depending

on the situation, either drawing from functional documents

or when an unexpected/undocumented error is found

during testing operations [30].

Table 14 - Pros and Cons of Error Guessing

Advantages Disadvantages

Very effective when used

with other formal testing

techniques

Person dependent and thus

the experience of the tester

controls the quality of test

cases.

Uncovers defects which

will otherwise be

impossible to find using

formal testing.

Not for newbie testers, only

experienced testers can

perform this testing.

Tester’s experience saves a

lot of time and effort.

Provides no guarantee to

the achievable level of

quality

4.4.2. Exploratory Testing

This a form of software testing that is concisely described

as simultaneous learning, test design, and test execution. It

is formal testing where a skilled tester uses his/her skill

and experience to investigate bugs or errors in software

without any preparation or a particular schedule. The tester

identifies the proper working ofthe functionality of the

software or otherwise, and consequently applies his/her

skill and ability for exploring the application and set the

test scenarios for the higher execution as well. The tester’s

knowledge of the software and that of testing approaches

determines the quality and effectiveness of the testing

result. It provides work flexibility and freedom to the

tester. Exploratory testing is a progressive learning

approach that helps in performing maximum testing with

minimal planning. It is ideal when there are inadequate

specifications or requirements and severely limited time

[31].

Table 15 - Pros and Cons of Exploratory Testing

Advantages Disadvantages

Require less preparation

and/or no schedule

Testing cannot be

reviewed

Critical defects are found

very quickly and reveal

bugs typically overlooked

by other testing methods.

It is difficult to keep

track of which tests

have been run.

More intellectually

stimulating than the

execution of scripted tests at

run time

Dependable on the skill

and knowledge of the

tester.

5. COMPARISON OF DYNAMIC SOFTWARE

TESTING TECHNIQUES
It is important to note that there is no particular testing

technique that is always better, however, depending on

testing requirements, needs, budget, among others, one

technique can have advantages over others.

Furthermore, in testing any software, exploring and

combining many testing techniques can help better in

eliminating more bugs thereby increasing the overall

quality of the software than sticking to one technique.

Table 16below presents comparisons of the four

discussed testing techniques based oncertain criteria.

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4583

Table 16 – Comparison of Testing Techniques

Criteria Structured-based Specification-based Translucent Experienced-based

Required

knowledge

Full knowledge of

internal working of

software.

Knowledge of

internal working of

software is not

required.

Limited knowledge

of the internal

workings of software.

Require thorough

knowledge of

testing and domain

Performed

by

Usually testers and

developers.

End-users,

developers, and

testers

End-users,

developers, and

testers

Experienced testers

and end-users

Testing

focus

Internal workings,

coding structure, and

flow of data and control.

Evaluating

fundamental aspects

of the software

High-level database

diagrams and data

flow diagrams.

Not very structured,

depends on tester’s

instincts.

Granularity High Low Medium Low

Time

consumption

Very exhaustive and high

time-consuming

Exhaustive and low

time-consuming.

Partly time-

consuming and

exhaustive.

Random and the

least time-

consuming

Data

domain

testing

Data domains and

internal boundaries can

be better tested.

Can be performed

through trial-and-

error method.

Can be done on

identified Data

domains and internal

boundaries

Less emphasis is

given to data

domain compared to

internal coding

Algorithm

testing

Suitable for testing

algorithms.

Unsuitable for

testing algorithm.

Inappropriate for

testing algorithms.

Less suitable for

testing algorithm

Also known

as

White-box, Transparent-

box, Open-box, Logic-

driven, or code-based

testing.

Closed-box, data-

driven, functional,

or Black-box

testing.

Grey-box testing N/A

6. CONCLUSION
Delivering quality software is the main goal of any

software project. Software Testing has been widely used

and remains a truly effective means of assuring the quality

of software. In this paper, the most important and most

applied dynamic software testing techniques, their

advantages and disadvantages are discussed, their

comparisons are also presented. Learning about and

effective usage of these dynamic software testing

techniques in software development will help testers to

carry out a successful software testing thereby improving

software quality.

REFERENCES

[1] G. J. Myers, C. Sandler, and T. Badgett, The Art of

Software Testing 3rd Edition, 3rd Ed. Canada:

John Wiley & Sons, Inc., 2012.

[2] L. Luo, ‘A Report on Software Testing

Techniques’, Pittsburgh, USA, 2001.

[3] E. Miller, Software testing & validation

techniques. [Washington D.C.]: IEEE Computer

Society Press, 1981.

[4] D. R. Graham, ‘TESTING, VERIFICATION

AND VALIDATION’, Int. J., vol. XVI, pp. 1069–
1101, 1979.

[5] A. Dennis, B. H. Wixom, and R. M. Roth, Systems

Analysis and Design 5th Edition, 5th Editio. USA:

John Wiley & Sons, Inc., 2012.

[6] M. A. Umar and C. Zhanfang, ‘A Study of

Automated Software Testing : Automation Tools

and Frameworks’, Int. J. Comput. Sci. Eng., vol. 8,

no. 06, pp. 217–225, 2019. DOI:

https://doi.org/10.5281/zenodo.3924795

[7] D. Graham, E. Van Veenendaal, I. Evans, and R.

Black, Foundations of Software Testing: ISTQB

Certification. 2008.

[8] P. Ammann and J. Offutt, Introduction to Software

Testing. Cambridge University Press, 2008.

[9] W. L. Oberkampf and C. J. Roy, Verification and

validation in scientific computing. Cambridge

University Press, 2010.

[10] I. Jovanovic, ‘Software Testing Methods and

Techniques’, IPSI BgD Trans. Internet Res., vol.

5, no. 1, pp. 30–41, 2009.

[11] M. E. Khan and F. Khan, ‘A Comparative Study

of White Box , Black Box and Grey Box Testing

Techniques’, Int. J. Adv. Comput. Sci. Appl., vol.

3, no. 6, pp. 12–15, 2012.

[12] S. Nidhra and J. Dondeti, ‘Black Box and White

Box Testing Techniques’, Int. J. Embed. Syst.

Appl., vol. 2, no. 2, pp. 29–50, 2012.

[13] M. Kaur and R. Singh, ‘A Review of Software

Testing Techniques’, Int. J. Electron. Electr. Eng.,

vol. 7, no. 5, pp. 463–474, 2014.

[14] M. A. Jamil, M. Arif, N. Sham, A. Abubakar, and

A. Ahmad, ‘Software Testing Techniques : A
Literature Review’, in 2016 6th International

Conference on Information and Communication

Technology for The Muslim World Software, 2016,

pp. 177–182.

[15] K. Sneha and G. M. Malle, ‘Research on software

testing techniques and software automation testing

tools’, in 2017 International Conference on

Energy, Communication, Data Analytics and Soft

Computing, ICECDS 2017, 2017, pp. 77–81.

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 03 Pages: 4575-4584(2020) ISSN: 0975-0290

4584

[16] M. M. Syaikhuddin, C. Anam, A. R. Rinaldi, and

M. E. B. Conoras, ‘Conventional Software Testing

Using White Box Method’, Kinetik, vol. 3, no. 1,

p. 67, 2018.

[17] M. A. Umar, ‘Comprehensive study of software

testing : Categories , levels , techniques , and

types’, Int. J. Adv. Res. Ideas Innov. Technol., vol.

5, no. 6, pp. 32–40, 2019. DOI:

10.36227/techrxiv.12578714

[18] G. J. Myers, The art of software testing, Second

Edition, 2nd Ed. Hoboken, New Jersey: John

Wiley & Sons, Inc., 2004.

[19] E. Khan, ‘Different Forms of Software Testing

Techniques for Finding Errors’, Int. J. Comput.

Sci. Issues, vol. 7, no. 3, pp. 11–16, 2010.

[20] J. Badlaney, R. Ghatol, and R. Jadhwani, ‘An

Introduction to Data-Flow Testing’, Control, pp.

1–8, 2006.

[21] S. Mancoridis, ‘CS576 Dependable Software

Systems - Topics in Control-Flow Testing’.
[Online]. Available:

https://www.cs.drexel.edu/~spiros/teaching/CS576

/slides/2.control-testing.pdf. [Accessed: 05-May-

2019].

[22] N.-W. Lin, ‘Software Testing (CS5812) - Control

Flow Testing’. [Online]. Available:

https://www.cs.ccu.edu.tw/~naiwei/cs5812/st4.pdf

.

[23] M. New, ‘Data Flow Testing Swansea University

UK’.
[24] T. Su et al., A Survey on Data-Flow Testing, vol.

50, no. 1. 2017.

[25] L. Briand, ‘Software Verification and Validation -

WBT’, 2010. [Online]. Available:

https://www.uio.no/studier/emner/matnat/ifi/nedla

gte-

emner/INF4290/v10/undervisningsmateriale/INF4

290-WBT.pdf. [Accessed: 03-May-2019].

[26] ‘Software Testing Class - Grey box’. [Online].

Available:

https://www.softwaretestingclass.com/gray-box-

testing/.

[27] L. Briand, ‘Software Verification and Validation

(INF4290) - Regression Testing’, 2010. [Online].

Available:

https://www.uio.no/studier/emner/matnat/ifi/nedla

gte-

emner/INF4290/v10/undervisningsmateriale/INF4

290-RegTest.pdf.

[28] Alex Samurin, ‘Explore the World of Gray Box

Testing’, 2003. [Online]. Available:

http://extremesoftwaretesting.com/Articles/World

ofGrayBoxTesting.html. [Accessed: 19-May-

2019].

[29] G. Bath and J. McKay, The Software Test

Engineer’s Handbook : A Study Guide for the
ISTQB Test Analyst and Technical Test Analyst

Advanced Level Certificates, 1st ed. Rocky Nook,

2008.

[30] B. Homès, Fundamentals of Software Testing.

John Wiley and Sons, 2013.

[31] C. Kaner, ‘A Tutorial in Exploratory Testing.

Software Engineering’, 2008.

Authors Biographies

MUBARAK ALBARKA UMAR was

born in Dutsinma, Katsina State,

Nigeria. He received the BSc. (Honors)

Degree in Software Engineering from

the University of East London in 2015,

and MEng. Degree in Computer

Applied Technology from the

Changchun University of Science and

Technology, China in 2020.

He is a staff of Katsina State Institute of Technology and

Management (KSITM), Katsina, Nigeria. He previously

did a one-year national service at Usmanu Danfodiyo

University, Sokoto (UDUS), Nigeria from 2015 to 2016.

He has published 7 articles in peer-review international

journals. His research interests include data mining, soft

computing, software engineering, network security and

fuzzy logic.

ZHANFANG CHEN, Ph.D.,

Associate Professor of School of

Computer Science and Technology in

Changchun University of Science and

Technology, China. His research

interests include network engineering,

software engineering, computer

architecture, data mining, soft

computing, and software engineering.

He is currently a teacher of Changchun University of

Science and Technology and has worked for 15 years. He's

worked on over 20 projects and published 20 articles in

peer-review international journals.

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. SOFTWARE TESTING PARADIGM
	4. DYNAMIC TESTING TECHNIQUES
	4.1. Structured-Based Testing
	Structured-Based Testing Types

	4.2. Specification-Based Testing
	Specification-Based Testing Types
	4.2.1. Equivalence Partitioning Testing (EP)
	4.2.2. Boundary Value Analysis Testing (BVA)

	5. COMPARISON OF DYNAMIC SOFTWARE TESTING TECHNIQUES
	6. CONCLUSION
	REFERENCES

