
Int. J. Advanced Networking and Applications

Volume: 12 Issue: 02 Pages: 4561-4566(2020) ISSN: 0975-0290

4561

A Study on Cross-Site Request Forgery Attack

and its Prevention Measures
Puneet Kour

M.Tech. Student

Department of Computer Science & IT, University of Jammu, J&K, India

Email: puneetkaur199tap@gmail.com

--ABSTRACT---

Today’s security is the most important factor for online users to secure their confidential data, so identify

vulnerabilities in a web application has been become a big challenge. OWASP (Open Web Application Security

Project) states the ten topmost critical web application security vulnerabilities which affect the security

mechanism of web applications. The main objective of the study is to determine the available solutions to prevent

Cross-Site Request Forgery (CSRF) attacks. In order to test against the exploitation of the CSRF vulnerability

were conducted after implementing the solutions into the web application to check the effectiveness of each of the

solutions. The proposed research also combines the solution that unifies the passing of an unpredictable secret

validation token through a hidden field and validating it on the server-side.

Keywords- Web Vulnerabilities, CSRF Attack, Secret Validation Token.

-- -------------------------

Date of Submission: September 12, 2020 Date of Acceptance: Oct 15, 2020

-- -------------------------

1. INTRODUCTION

The vulnerability is a (flaw) in the design or coding of an

application that can be exploited by an attacker, to perform

unauthorized actions within a computer system. One of the

known web application vulnerabilities is Cross-Site

Request Forgery (CSRF). According to the Open Web

Application Security Project (OWASP), cross-site request

forgery is listed as one of the top 10 web application

vulnerabilities of 2013 leading to a security breach [1] and

is often referred to as the “Sleeping Giant” among the

critical vulnerabilities found in Web application [2]. The

cross-site request forgery attacks was first introduced by

Peter Watkins in a posting to the Bug Traq mailing list,

and then it has been picked by web application developers

[3]. CSRF is also known as XSRF, Sea Surf, Confused

Deputy, One-click Attack, or Session Riding, in this type

of CSRF attack hacker tricks a web browser into executing

an unwanted (unauthorized forged request) action in an

application to which a user is logged in [4]. An untrusted

website can force the user browser to send the

unauthorized valid request to a trusted website and this can

be done without the knowledge of users. So it is a class of

attack on web applications that exploit the trust of

authenticated users. To make it a successful CSRF attack

against the authenticated user, an attacker is able to

instigate an arbitrary HTTP request using the user

credentials to the vulnerable web application. A successful

CSRF attack effectively re-direct the underlying

authentication mechanism and it can compromise the end-

user personal data and operation.

 CSRF attack is when an attacker is able to make

requests on the behalf of a user. The attacker takes

advantage of the fact that the user is already authenticated

to a web application or a particular website. CSRF attack

only targets state-changing requests such as changing

credentials like passwords, transferring funds, modifying

settings, etc also attacker has no way to see the response to

the forged request but with a little help of social

engineering, an attacker changed the parameters of the

script by which the users of a web application into

executing actions of the attacker’s choosing script. If the

victim is a normal user, a successful CSRF attack can

force the user to perform state-changing requests like

transferring funds, changing their email address or

password, and so forth. If the victim works on an

administrative level account than CSRF can compromise

the whole web application which may be harmful to the

victim.

2. CLASSIFICATION OF CSRF
CSRF vulnerability classified in three stages where the

attacker perform an unauthorized activities without any

knowledge of the user. Existing CSRF vulnerability are

classified as:

2.1 Stored CSRF

In stored CSRF, the attacker can use the application itself

and provide the victim to exploit the link into the web

application. Any web application that uses HTML is

vulnerable To CSRF attack. The attacker stores the

malicious code using different tags like IMG, IFRAME,

LINK, and FORM etc. The victim who receives the

malicious content or link is almost certainly currently

authenticated to perform action. Examples of stored CSRF

are shown below:

 <link> tag

 CLICK

HERE TO GET REWARD

 <form> tag

<form action = http://127.0.0.1/hello.php

method = “POST”>

</form>

 <script> tag

<script>

http://127.0.0.1/hello.php
http://127.0.0.1/hello.php

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 02 Pages: 4561-4566(2020) ISSN: 0975-0290

4562

document.location =

http://127.0.0.1/xyz.php/?password_new=1234x

yz&password_conf=1234xyz&Change=Change

#;

</script>

2.2 Reflected CSRF

A reflected CSRF vulnerability is one where the attacker

performs the attack outside from the system application to

bare the victim to exploit links. For exploitation the hacker

using an email message, a blog, an instant message, or

even an advertisement posted in a public with a URL that

a victim type in. The reflected CSRF will be a failure, as

users may not be currently logged into the target system

when the exploit is tried, if the victim logged into the

target system then the page can be submitted

automatically. Example of such, are shown below:

 Auto Post Forms

<body onload = “document.form[0].submit()”>

<form method = “POST” action=

“http://127.0.0.1/hello.php”>

<input type = “hidden” name = “welcome” value

= “987ads”/>

</form>

3.2. Login CSRF

 In this type of attack, personal data of victims is

collected. In login CSRF attack, both the user and the

attacker are authorized, users. But the hacker will send his

identity to the victim through some link. Thus victim will

now enter using the attacker’s identity. Then all the

information related to the user will get stored in the user

browser, but actually in the attacker identity.

 <form action= https://www.abc.com/

method=POST target=invisibleframe>

<input name=username value=attacker>

 <input name=password value=xyz>

</form>

3. AIM AND OBJECTIVES
The main objective of this study is to find out the

vulnerabilities leading to a CSRF attack in the web

application. The dissertation also aims to study the

mitigation techniques of the attack and propose a solution

for the same.

4. LITERATURE WORK
CSRF attacks occur when a hacker is able to send a crafted

(malicious link), request to an authenticated user where an

attacker changes the necessary parameters in the form to

complete a valid application request without the victim

even realizing it. Many of the hackers created crafted

(fake) web pages which contain the malicious script/data

in order to trap the users by impersonating these pages as

real web sites. Generally, the creating of fake websites is

growing on the internet by which the attacker must focus

on victims to steal their confidential information.

Researchers are also carrying out their studies on this

domain. Some of them are listed as:

 Ramarao R. et.al. [5] presented a client-side proxy

solution that works in the two-stage detection and

prevention stage. In the prevention stage, the HTML

elements are used to access the graphic images of the

webpage. The client-side proxy is able to examine and

alter client requests.

 Adam Barth, Collin Jackson, and Mitchell Stanford [6]

presented a study on CSRF vulnerabilities and provided

three major different solutions of CSRF defense

techniques in which the HTTP Referer header could work

more effective defense solution in their experiment and for

the long term solution, the author proposes the browser the

Origin header, which provides the security benefits of the

Referer header.

 Wasim Akram Shaik and Rajesh Pasupuleti [7]

proposed a technique to prevent CSRF attack using the

TowFish security approach. In which the user can identify

whether the website is vulnerable to CSRF. The Towfish

security approach work in two stages, in the first stage

hash value of URL is calculated and in the second stage

for the respective site image-based authentication is used

to validate the image of the website.

 A. V. Barabanov and A. S. Markov [8] presented a

paper and provided the results of consolidating

information about the attack and protection measures. The

results of the study demonstrated various distribution

types, identified vulnerabilities as per the developer,

security measures used in web-based applications,

vulnerabilities as per the programming languages, also the

number of security measures used in the study of web

applications.

 Emil Semastin, Sami Azam et.al. [9] proposed a

solution that integrated the unpredictable token through a

hidden layer and then validated the tokens on the server-

side with the passing token through URL which can offer

double-layer protection against Cross-Site Request

Forgery attack.

 Sheeghrata Agnihotri and Pawan Patidar [11] proposed

a client-server mutual authentication technique in which

two steps are considered first one is the authentication step

and the second one is and these identification steps and

these two steps are working separately. For the

authentication, the token is provided to each user, and the

token is provided in the form of an image that is encoded

and decode using the base64encoding and decoded

technique.

 Jaya Gupt and Suneeta Gola [12] presented a paper on

CSRF attack in which server-side protection again CSRF

attack is implemented and the approach is named as CSRF

gateway. In this approach, the token is generated when the

HTTP request is generated but the user, it creates a session

and embeds the token to the session using a custom tag

library which provides the secured way to insert token and

the application detects the CSRF attack has been occurred

or not and redirect the user back to the login page.

5. EXPERIMENTAL SETUP
In this study, a banking website in PHP has been

developed and hosted on the localhost (XAMPP sever).

The experiments to exploit CSRF vulnerability on the

website have been performed to steal user’s credentials.

To test the vulnerability in the web application is trace out

using an online acunetix tool and there are many other

http://127.0.0.1/xyz.php/?password_new=1234xyz&password_conf=1234xyz&Change=Change
http://127.0.0.1/xyz.php/?password_new=1234xyz&password_conf=1234xyz&Change=Change
http://127.0.0.1/xyz.php/?password_new=1234xyz&password_conf=1234xyz&Change=Change
http://127.0.0.1/hello.php
https://www.abc.com/

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 02 Pages: 4561-4566(2020) ISSN: 0975-0290

4563

tools that are available online to check the vulnerabilities

on the website before make the website dynamic (online).

The study is focused on persevering and reflected attacks

on the website that maintains the user’s authentication

state. Modern browsers like Google Chrome, IE, Firefox,

and UC Browser have been used to carry out these

experiments. The Fig.1 shows the architecture of CSRF

for carrying out CSRF attacks on the target web

application on the localhost.

 Victim Website
 1. Victim logs into bank account

 2. Bank return login response

 3. Attacker 5. Forged

 sends forged request is

 request to executed

 victim

 Attacker
 4. Victim unknowingly forward request to

Targeted website

Fig.1: Architecture of CSRF attack

The above Fig. 1 shows the working of the CSRF attack,

in which a user sends a login request to the bank website

then the bank sends a login response to the user after that

user becomes an authenticated to the bank website. When

all this process are done now attacker parts come where

attacker manage all the basic details of the victim with the

help of social engineering. When the attacker gets all the

basic details of the victim, he sends a forged request to the

victim via. through email, from another website, or by

instant message, etc where the malicious link is hidden in

the backend (hidden information will be the victim’s

account number, set how much amount to be transferred)

and the victim does not know about these changes. If the

victim clicked on the malicious link the query is executed

and the CSRF attack takes place without any knowledge of

the victim because it is all hidden in the backend of the

malicious link.

6. EXPERIMENTAL WORK
In this study, a banking website in PHP

(http://localhost/banksite/insert.php) is developed and

hosted on the localhost (XAMPP server). For attacking

purposes (http://localhost/attackerblog/attck.php) is also

developed and implemented on the virtual host (XAMPP

server). The vulnerabilities in a web application are traced

out using acunetix tool and to perform a CSRF attack by

injecting a malicious link which is a completely different

website and the experiment the possible CSRF attack that

can lead to transfer funds from the user’s account to the

attacker’s account. Firstly, the experiments are carried out

without implementing any preventive measures on the

website. The attacker attempted to inject malicious links to

transfer all funds from the victim’s account. The steps

involved in transfer funds from a victim’s account by

sending a malicious link to the victim’s browser and these

steps are explained as follows:

STEP 1: The authenticated user first login into the website

to check his account details, but for some reason, the user

forgets to logout from the website.

Fig.2: User Login with Session id with current balance

STEP 2: Then the attacker sends a forged request (i.e.

malicious link) to the victim’s browser to comment on this

blog, if the user posts a comment on attacker blog then the

malicious link is executed and the attacker steals the funds

from the victim’s account.

Fig.3: User Respond on Attaker’s Malicious link

STEP 3: If the victim clicks on a malicious link or

comment on the attacker’s blog and at the same time the

malicious link or script is executed which is harmful to the

victim, it transfers all the funds from the victim’s account

to the attacker’s account and the above all this process is

done without the victim’s knowledge.

Targeted

Website

http://localhost/banksite/insert.php
http://localhost/attackerblog/attck.php

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 02 Pages: 4561-4566(2020) ISSN: 0975-0290

4564

Fig.4: Attacker transfer the money from victim’s account

STEP 4: When the victim clicked on the malicious link

the parameters changed in the form by the attacker is

executed and then the amount set by the attacker in the

form parameters is transferred to the attacker's account

without any knowledge of the victim.

Fig.5: Malicious scr ipt send to vict im browser

Also to test or exploit the vulnerabilities of CSRF attack,

online platforms DVWA (Damm Vulnerable Website

Application) [13] is used. DVWA is a PHP/SQL web

application that is damm vulnerable. Its main goals to

provide aid for professionals and ethical hackers to test

their skills and tools in a legal environment. It also helps

web developers to better understand the processes of

securing web applications in a safe environment

Fig.6: Exploitation of CSRF and Password

change Query is generated

script>

document. location="http: / / localhost/dvwa/

vulnerabil it ies/csrf/?password_new=abcd12

& password_conf = abcd12345 &

Change=Change#";

</script>

Fig.7: Password Change Query Script

7. PROPOSED SOLUTION
Most of the CSRF attacks are working on state-changing

requests where the attacker has no idea to see the response

to the forged request but with the help of the social

engineering site attacker changes the parameters of the

form which is hidden in the backend of the form and sends

the crafted script to the victim through different websites.

The proposed technique will present an effective solution,

which can provide secret validation token protection

against CSRF attack. The proposed solution work as firstly

the user can enter their login credentials, if the user has an

account, the application simply accepts the request

otherwise application rejects the request and sends a

message to register or login first. If the user is

authenticated to the application, he/she enters the

dashboard of his/her account, where the user gets the

currently going session id which is every time unique

whenever user logged into the website. During the time of

any transaction (user session id and tokes are matched) if

they are matched then only the transfer query is executed

otherwise application again rejects the request and sent a

message to register first.

 But at the same time, the attacker sends a forged

request to the victim browser if the victim clicked on

crafted link than the application rejects the request because

the attacker is never aware of hidden tokens in the form to

execute the query. The Fig. 8 shows the generated CSRF

tokens and the attacker is unaware of these hash tokens. If

the tokens and session-id are not matched with the current

going session-id and CSRF tokens of victims and here the

attacker's tricks are going to fail for stealing money from

the victim’s account. Then we can say the proposed

solution work against CSRF attack and work effectively.

The Fig. 9 shows the flowchart of the proposed solution

and the working of the general progression of the

algorithm.

 Fig.8: CSRF Tokens are generated automatically

<form action= “” method= “POST”>

<input type= “hidden” name= “account

no.” value= “708347235806”>

<input type= “hidden” name= “amount”

value= “35000”>

<input type= “hidden” name= “ t ransfer”

value= “ transfer”>

</form>

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 02 Pages: 4561-4566(2020) ISSN: 0975-0290

4565

 No

 Yes

 No Yes

Fig.9: Flowchart of Proposed Solution

8. RESULTS AND DISCUSSION
By performing these experiments, it was found that secret

validation tokens mitigate CSRF attack. The experiment

involving the study of the behaviour of browsers for CSRF

attacks in different browsers has been carried out

successfully. Apart from these experiments, the proposed

solution has been implemented on the web application to

check the effectiveness of the solution.

 The web pages with CSRF attacks have been checked

by applying the proposed solution which is secret

validation tokens with the user session-id. The results of

which have been shown in Fig.10, Fig.11, Fig.12:

Fig.10: Malicious script not execute due to secrect tokens

in Chrome

Fig.11: Malicious script not execute due proposed solution

in Internet Explorer

Fig.12: Malicious script not execute due to proposed

solution on Firefox

The results have shown that the proposed solution for the

CSRF attack successfully prevents the attack. The

proposed solution has been successfully implemented in

different browsers like Chrome, Internet Explorer, Firefox,

UC browser.

Start

Input login Credentials

Is user

Exist ?

User get session id

User

must

login

first

Is Session id

& Tokens

matched?

During any transaction (User session

id & Tokens are matched)

Proposed

Solution

works

against

CSRF

User

must

login

first

END

Int. J. Advanced Networking and Applications

Volume: 12 Issue: 02 Pages: 4561-4566(2020) ISSN: 0975-0290

4566

9. CONCLUSION
Cross-Site Request Forgery is one such vulnerability and

these attacks can be easily executed by the attackers by

simply changing form parameters (mostly in hidden form

parameters are stored) and take advantage of it. But

passing secret validation tokens and session-id and

validate it at the server-side is the most effective solution.

By implementing this solution, double verification takes

place in the form of currently running session-id and

unpredictable CSRF tokens in the web application to

ensure the prevention of the CSRF attack. The above

mention work can be extended to provide better solutions

for the CSRF attack by means of applying techniques to

preventing the attack before the attacker's attack.

REFERENCES

[1] J. Grossman, “Whitehat website security

statistics report Online”. Available at:

www.whitehatsec.com . 2007.

[2] Jovanovic, Kirda and Kruegel, “Preventing cross site

request forgery attacks”, in Proceedings of IEEE

Securecomm and Workshops, 2006, 1-10.

[3] Rupali D. Kombade, Dr. B. B. Meshram, “CSRF

Vulnerabilities and Defensive Techniques”,
International Journal of Computer Network and

Information Security, 2012, 31-37.

[4] Kafer K, Cross Site Request Forgery, Online,

Technical report, Hasso-Plattner-Institute, 2008.

[5] Ramarao R. Tool “Preventing Image Based CSRF

attacks”, Avalailabe at:

http://isea.nitk.ac.in/rod/csrf/PreventImageCSRF/.

Accessed on May, 2009.

[6] Adam Barth, Collin Jackson and Mitchell Stanford

“Robust Defenses for Cross-Site Request Forgery”,
in Proc. Association for Computing Machinery

ACM, 2008.

[7] Wasim Akram Shaik and Rajesh Pasupuleti,

“Avoiding Cross Site Request Forgery (CSRF)

Attack Using TwoFish Security Approach,

International Journal of Computer Trends and

Technology, 25(2), 2015, 68-72.

[8] A. V. Barabanov, A. S. Markov and V.L. Tsirlov,

“Information Security Controls against Cross-Site

Request Forgery Attacks on Software Applications

of Automated Systems”, International Conference

Information Technologies in Business and Industry,

2018.

[9] Emil Semastin, Sami Azam et al. “Prevention

Measures for Cross Site Request Forgery Attacks on

Web-based Applications”, International Journal of

Engineering and Technology, 2018, 130-134.

[10] Sentamilselvan K et.al. “Survey on Cross Site

Request Forgery”, International Conference on

Research and Development Prospects on

Engineering and Technology, 5, 2013, 159-164.

[11] Sheeghrata Adnihotri and Pawan Patidar, Prevention

against CSRF Attack using Client Server Mutual

Authentication Technique, International Journal of

Engineering Science and Computing, 9(3), 2009,

20393-20398.

[12] Jaya Gupta and Suneeta Gola, Server Side Protection

againstCross Site Request Forgery using CSRF

Gateway, Journal Information Technology &

Software Engineering, 6(3), 2016, 3-8.

[13] Damm Vulnerable Web Application (DVWA),

Available at: http://www.dvwa.cp.uk/.

[14] OWASP (Open web application security project) top

ten project, http://www.owasp.org/index.php/

Category: OWASP-Top_Ten_Project 2013.

Available at:

http://www.owasp.org/index.php/CrossSiteRequestF

orgery .

[15] Xiaoli Lin, Pavol Zavarsky, Ron Ruhl and Dale

Lindskog, "Threat Modeling for CSRF

Attacks", Proc. IEEE International Conference

Computational Science and Engineering, 2009, 486-

491.

[16] P. Khurana and P. Bindal, “Vulmerabilities and

degensive mechanism of CSRF”, International

Journal of Computer Trends and Technology, 13(4),

2014, 2231-2803.

[17] Nenad Jovanovic, Engin Kirda and Christoper

Kruegel, “Preventing cross site request forgery

attacks”, Proc. IEEE International Conference on

Security and Privacy in Communication Networks,

2006.

[18] Hossain Shahriar and Mohammad Zulkernine,

“Client-Side Detection of Cross-Site Request

Forgery attacks”, IEEE International Symposium on

Software Reliability Engineering”, 2010.

[19] R. P. Seenivasan and K. Suresh Joseph, “A Survey

of Clickjacking Attack and Countermeasures in Web

Environment”, International Journal of Advance

Networking and applications (IJANA), 2016, 206-

213.

[20] Haneet Kour and Lalit Sen Sharma, “Tracing out

Cross Site scripting Vulnerabilities in Modern

Script”, International Journal of Advance

Networking and applications (IJANA), 2016, 2862-

2867.

AUTHORS BIOGRAPHY

Puneet Kour is a Master of

Technology (M.Tech) student in

Department of Computer Science

and IT, University of Jammu. She

has obtained her Undergraduate

degree in Information Technology

(IT) from Mahant Bachittar Singh College of Engineering

and Technology, Jammu. Her research interests are in the

field of Networking and Network Security.

 .

http://www.whitehatsec.com/
http://isea.nitk.ac.in/rod/csrf/PreventImageCSRF/
http://www.dvwa.cp.uk/
http://www.owasp.org/index.php/
http://www.owasp.org/index.php/CrossSiteRequestForgery
http://www.owasp.org/index.php/CrossSiteRequestForgery

	1. introduction

