
Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4519

Prototype Intelligent Log-based Intrusion
Detection System

Gitau Joseph M.

School of Informatics and Innovative Systems, Jaramogi Oginga Odinga University of Science and Technology, Bondo ,
Kenya

Email: jkibasui@gmail.com
Rodrigues Anthony.J.

School of Informatics and Innovative Systems, Jaramogi Oginga Odinga University of Science and Technology, Bondo ,
Kenya

Email: tonyr@jooust.ac.ke
Abuonji Paul

School of Informatics and Innovative Systems, Jaramogi Oginga Odinga University of Science and Technology, Bondo ,
Kenya

Email: pabuonji@jooust.ac.ke

---ABSTRACT---
The maintenance of web server security is a daunting task today. Threats arise from hardware failures, software

flaws, tentative probing and worst of all malicious attacks. Analysing server logs to detect suspicious activities is

regarded as a key form of defence, however, their sheer size makes human log analysis challenging. Additionally,

traditional intrusion detection systems rely on methods based on pattern-matching techniques which are not

sustainable given the high rates at which new attack techniques are launched every day. The aim of this paper is

to develop a proto-type intelligent log based intrusion detection system that can detect known and unknown

intrusions automatically. Under a data mining framework, the intrusion detection system is trained with

unsupervised learning algorithms specifically the k-means algorithm and the One Class SVM (Support Vector

Machine) algorithm. The development of the prototype system is limited to machine generated logs due to lack of

real access log files. However, the system’s development and implementation proved to be up to 85% accurate in

detecting anomalous log patterns within the test logs.

Keywords: prototype, intrusion detection, log-based, data mining.
--
Date of Submission: June 05, 2020 Date of Acceptance: July 06, 2020
--

I. INTRODUCTION

In this advancing and fast developing field, technology

has become cheaper, easier to develop, and deploy. On the
other hand, this has also made probing and attacking
servers cheaper and easier to carryout. It is therefore vital
to ensure that web servers are alert and hence secured
against any form of attack.
Server logs have been used to confront: failure either
hardware or software and record notices, warnings and
errors to ensure that system administrators can recover or
at least know what caused a system failure event. Log
recording has also acted as a form of defense against
human attacks where predetermined techniques such as
SQL injections can be easily identified.
An average web server receiving traffic of at least 1000
unique visits a day generates a huge log that cannot be
analyzed manually. The same web server placed in a large
company would receive over 10000 unique visits a day.
The sheer size of the log file would be practically
impossible to inspect by most system administrators. Most
log based intrusion detection systems on the market are
pattern-matching technique based, that is, they compare
the log entries to a set of predefined patterns that had been
manually updated by security experts [1,5, 26]. Though
this approach is effective in determining attacks of known

patterns, the drawback is that for each new attack the
system is defenseless and it takes security experts much
time and effort to update the new patterns to the intrusion
detection system [14, 15].
From this perspective, current intrusion detection systems
are far from intelligent in that they exclusively rely on
human intervention to operate effectively and thus, more
advanced intrusion detection systems are desirable. These
systems should be capable of detecting known and
unknown intrusions intelligently and automatically
distinguishing normal network activities from those
abnormal and possibly malicious ones without or with
minimum human intervention.
Some data mining algorithms applied to log based
intrusion detection systems came up with an effective
anomaly detection based intrusion detection system that
relied on nothing more other than the inflowing stream of
logs to determine what is normal and what is not (possibly
an attack). Those algorithms are based on supervised
learning. That is to say they are trained, other than being
explicitly programmed, on data sets with labels indicating
whether the instances are pre-classified as attacks or not.
However, the techniques seemed cumbersome as manually
labeling the large volumes of server data mostly over 1GB
log files was expensive and difficult. This is what inspired
the approach of unsupervised machine learning where no

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4520

labels are pre-set hence the system is left to determine
what an attack is and what is not, see [11].
With no requirement for class labels, unsupervised
learning algorithms seemed to solve this problem. A broad
explanation of approach to intrusion detection systems is
that when an intrusion detection system becomes
“familiar” with the data through the unsupervised learning
algorithms, it is likely to detect “abnormal” data when
they come in many of which are malicious, see [1, 4].
This paper aims to develop and implement a system that
can learn the normal state and nature of a web server
where installed and dynamically identify anomalies
bringing them to the system administrator’s attention as
follows:

i). Learning and Detection

Based on the unsupervised learning algorithm used, the
system will be able to learn from the current states of the
server (or when the server was working optimally). Detect
the anomalies in the logs and hence alert the system
administrator.

ii). Generality

Based on unsupervised learning, detecting abnormal
activities shall be executed automatically without too
much human intervention [18, 25, 27].

2.0 BACKGROUND
Designing an intelligent log based intrusion detection
system involves the following:

A. 2.1 Intrusion

Threats to web servers come typically from the
malfunction of hardware or software, or through malicious
behaviour by users of software. Promptly resolving
incidents is vital, considering the huge costs of data loss
and server down-time. The abundance of computational
resources makes lives of computer hackers easier. Without
much effort, they can acquire detailed descriptions of
system vulnerabilities and exploits to initiate attacks
accordingly. According to statistics from [2], the most
influential reporting centre for Internet security problems,
show that there was a dramatic increase of reported
network incidents to CERT/CC.

B. 2.2 Logs

To protect servers from attacks, a common approach is to
record server logs to monitor all those prominent
activities. Each time a noticeable event happens in the
server, an entry will be appended to a log file, in the form
of plain text or binary format. Take web log files as an
example. Every “hit” to a web site, including requests for
HTML pages as well as images, is logged as one line of
text in a log file. This records information about who is
visiting, where they are from and what they are doing with
the web server. Below is a sample of an apache log format,

 "%h %u %t \"%r\" %>s %b \"%{Referrer}i\"
\"%{User-Agent}i\"”
This translates to: -
%h – ip address
%u – Authenticated userID if http authenticated
%t – timestamp [day/month/year: hour: minute:

second zone]
%r – request line (method_used
requsted_resource protocol)
%>s – status code
%b size of returned obj
\"%{Referrer}i\” – http header referrer
\"%{User-Agent}i\"” – the user agent

Below are examples of apache server access logs
120.254.103.132 - - [14/Jan/2016:12:58:17
+0300] "GET /search?=IntelliIDS HTTP/1.0" 200
5057 "http://black-adkins.com/about/"
"Mozilla/5.0 (Windows NT 6.1)
AppleWebKit/5321 (KHTML, like Gecko)
Chrome/14.0.824.0 Safari/5321"
36.194.62.124 - - [14/Jan/2016:13:24:30 +0300]
"GET /productID=3257 HTTP/1.0" 200 4962
"http://www.hart.info/" "Mozilla/5.0 (Macintosh;
PPC Mac OS X 10_8_7) AppleWebKit/5360
(KHTML, like Gecko) Chrome/14.0.896.0
Safari/5360"

An experienced system administrator may take a quick
glance at web server logs and realize instantly what has
happened. However, it is almost impossible for any
normal person to check those logs when the log files have
accumulated to thousands if not millions of log entries.
Naturally, appropriate methods are needed to remove
irrelevant information and extract the most salient. What is
required, therefore, is an intrusion detection system that is
intelligent enough to automatically detect those abnormal
activities in the logs without too much human inputs.

C. 2.3 Intrusion Detection Methods

There have been several intrusion detection systems that
use log analysis on the market. The intrusion detection
methods used are categorized as follows, see [3, 28]:

i). Pattern Matching

This type of system examines the contents of network
traffic (in real-time intrusion detection systems) or log file
(in log based intrusion detection systems) to look for a
sequence of bytes as the pattern to match. The approach is
rigid but simple to implement and therefore widely used.

ii). State-full Pattern Matching

This performs pattern matching within the context of a
whole data stream instead of just looking into current
packets.

iii). Protocol Decode-Based Analysis

This makes extensions to the state-full pattern matching
method in that it tries to find out the violations against the
rules that are defined by the Internet standards.

iv). Heuristic-Based Analysis

Makes decisions based on pre-programmed algorithmic
logic. Those algorithms are often the statistical evaluations
of the network traffic content.

v). Anomaly Detection

This approach tries to find out anomalous actions based on
the learning of its previous training experience with
patterns assumed as normal.
The first four methods are widely used in industry
practices. However, most of these pattern-matching based
detectors can only deal with already-known intrusions that

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4521

have been recognized by the security experts.
Unfortunately, ill-intentioned hackers are aware of those
patterns too. When new attack patterns emerge, very likely
they could evade the detection by deliberately avoiding
those widely publicized matching patterns. The potential
damages caused by those attacks are consequentially
substantial.
With regard to attacks that become more cunning, more
variant, and hence much more dangerous human-
maintained, it would be difficult to update pattern-
matching intrusion detection systems quickly enough to be
effective. Data mining approaches, armed with machine
learning algorithms, may provide the solution.

D. 2.4 Data Mining Approaches

Data Mining is defined as the analysis of (often large)
observational data sets to find unsuspected relationships
and to summarize the data in novel ways that are both
understandable and useful to the data owner. During the
process of data mining, many machine learning algorithms
are available for choosing. Depending on whether the class
labels are provided for learning, these machine learning
algorithms can be classified as both supervised or
unsupervised [10,13].

1) 2.4.1 Supervised learning

Trained with data bearing class labels indicating to which
subcategories they belong or what real-valued properties
they have, a supervised learning algorithm tries to predict
the most likely labels for new test data. There are two
major subcategories for supervised learning:

i). Classification is to predict the class membership
as one of a finite number of discrete labels.

ii). Regression is to predict the output value as one of
a potentially infinite set of real- valued points.

There are many widely used supervised classification
techniques. They include but not limited to Support Vector
Machines (SVMs), Decision Trees, Neural Networks,
Naive Bayes, Nearest Neighbour and Regression models.
For example, based on a Naive Bayes classifier, trained
with a data set with virus labels on file headers, an
automatic email filter that detects malicious Windows
executables coming through the email system has been
developed in the past [23].

2) 2.4.2 Unsupervised learning

In unsupervised learning, the data are not labelled, which
makes it hard to tell what counts as good. The model
generating the output must either be stochastic or must
have an unknown and varying input in order to avoid
producing the same output every time. From this point of
view, the aim of unsupervised learning could be regarded
as a generative model that gives a high likelihood to the
observed data, [11].
From the perspective of machine learning, the searching
for clusters is unsupervised learning. To perform
clustering is to try to discover the inner nature of the data
structure as a whole, and to divide the data into groups of
similarity. From the viewpoint of data mining, clustering
is the partitioning of a data set into groups so that the
points in the group are similar as possible to each other

and as different as possible from points in other groups.
There are generally three types of clustering algorithms

i). Partition-based clustering

Given a predefined number of clusters, find the optimal
partitions for each point. Choose the centres so as to
minimize the summed distance. The k-means algorithm is
a well-known example of this kind of clustering methods.

ii). Hierarchical clustering

Hierarchical clustering builds a cluster hierarchy. The
hierarchy is a tree of clusters. Every node in the tree
contains child clusters while sibling clusters share a
common parent node. Depending on how the tree is
formed, hierarchical clustering methods fall in two
categories, agglomerative and divisive. Agglomerative
methods recursively merge points while divisive methods
start from a cluster of all data and then gradually split
them into smaller clusters.

iii). Probabilistic based clustering

This approach assumes that the data comes from a
multivariate and finite mixture model with probability as
shown below 𝑝(𝑥)= ∑ 𝜋𝑘𝑓𝑘𝐾

𝑘−1 (𝑥; θ𝑘) 𝑒𝑞. (1)

where πk is the class component prior probability,

fk(x: θk) is class conditional density function, and
 θk is its model parameters.

E. 2.5 Novelty Detection

Novelty detection refers to the identification of new or
unknown data or signal that a machine learning system is
not aware of during training. It is one of the fundamental
requirements of a good classification or identification
system since some- times the test data contains
information about objects that were not known at the time
of model training.
Anomaly could be regarded as one kind of novelty.
Normally, classifiers are expected to give reliable results
when the test data are similar to those used during training.
However, the real world is totally different, when
abnormal data come in, picking them out is a problem.
Compared to conventional 2-class classification problem,
an anomaly detection system is trained with only normal
patterns and then try to predict those abnormal data based
solely on the models built from normal data. There exist a
variety of methods of novelty detection that have been
shown to perform well on different data sets [17].

1) 2.5.1 Probabilistic/GMM approaches

This category of approaches is based on statistical
modelling of data and then estimating whether the test data
come from the same distribution that generates the training
data. First estimate the density function of the training
data. By assuming the training data is normal, the
probability that the test data belong to that class can be
computed. A threshold can then be set to signal the
novelty if the probability calculated is lower than that
threshold.

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4522

For Gaussian Mixture Modelling (GMM) models, the
parameters of the model are chosen by maximizing the log
likelihood of the training data with respect to the model.
This task could be done using re-estimation techniques
such as EM algorithm. However, if the dimensionality of
the data is high, a very large number of samples are
needed to train the model, which makes the computation
even harder [5].
It is simpler to just find the distance of test data from the
class mean and set a threshold for the variance. If the test
data is far away from the mean plus the variance threshold,
then it can be claimed to be novel.
.

2) 2.5.2 Non-parametric approaches

For non-parametric methods, the overall form of the
density function is estimated from the data as well as
parameters of the model. Therefore, non-parametric
methods do not require extensive prior knowledge of the
problem and do not have to make assumptions on the form
of data distribution, which means that they are more
flexible though much more computational demanding.

i). K-nearest neighbour approaches

The k-nearest neighbour algorithm is another technique for
estimating the density function of data. This technique
does not require a smoothing parameter [20]. Instead, the
width parameter is set as a result of the position of the data
point in relation to other data points by considering the k-
nearest data in the training set to the test data.
For novelty detection the distribution of normal vectors is
described by a small number of spherical clusters placed
by the k-nearest neighbour technique. Novelty is assessed
by measuring the normalised distance of a test sample
from the cluster centres [17].

ii). String matching approaches

String matching approaches is biologically inspired by
studying how the immune system works [6].
 Treating training data as templates, which are represented
by a string (vector of features), they could then compute
some measure of dissimilarity between training and test
data. The self-data is converted to binary format forming a
collection S. Then a large number of random strings are
generated forming a set R0. Strings from R0 are matched
against the strings in S and those that match are
eliminated.

Since perfect matching is extremely rare, the matching
criterion is relaxed so as to consider only r contiguous
matches in the strings. Once R0 is created, new patterns are
converted to binary and matched against R0. If a match is
found, then new pattern belongs too non-self and is
rejected. The major limitation appears to be the
computational difficulty of generating the initial
repertoire. This method has been applied on the detection
of computer virus and claimed some good results.

3) 2.5.3 Neural network based approaches

Quite a number of different architectures of neural
networks are applied to novelty detection. A neural
network can detect novelty by setting a threshold on the
output values of the network. Or it can calculate the
Euclidean distance between output patterns and target

patterns and throw those with highest distance out as the
novelty [22].
.

F. 2.6 Feasibility Study

Efficacy of Log Analysis Based IDS => High
Practicality of Log Based IDS => High
Efficacy of AI in Anomaly Detection => High
Efficacy of Unsupervised Learning in Anomaly Detection
=> High
Top Rated Python Analytical and Statistics Library =>
SciKit-Learn
Most Favourable Unsupervised Learning Algorithms => k

means and One Class SVM

3.0 Methodology
We now discuss how an intelligent network log analyzer
can be built with a more in-depth approach on the
theoretical aspects of the algorithms to be incorporated in
the system. We introduce how the logs are vectorized,
discuss briefly feature extraction, and system development
methodology.

3.1 K means
The k means algorithm is cluster based [12], hence one
needs to define the number of clusters, k, hence the name.
The clusters are the average locations of all the members
of a cluster.
If we assume n data points then D = {x1,….,xn}
Hence to find K clusters {C1,…..CK} the algorithm is
describe below:

initialize m1...mK through random

selection as cluster centers
while (no conditions are met, mostly

(lack of change in clusters CK)

for i = 1,...,n 

calculate |xi - mj|
2 for

each center
assign i to the closest

center
end for loop
re-compute each mj as the mean

of the data points assigned to it
end while loop

The overall formula for k means is: ∑ 𝑚𝑖𝑛𝑢𝑗∈𝐶𝑛𝑖=0 (||𝑥𝑗 − 𝑢𝑖||.2) eq(2)

3.2 One Class SVM

One class SVM attempts to learn the decision boundaries
that achieve the maximum separation between the data
points and the origin. The introduction of kernels in one

class SVM gives it the ability to learn non-linear decision
boundaries as well as account for outliers. One class SVM
utilizes an implicit transformation function φ(x·) that is
defined by the kernel chosen [16,19]. It then learns the
decision boundary which separates most of the data from
the origin. Data that lie outside the data points are
considered as outliers [7].

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4523

By observing that all kernel entries are non-negative (≥0),
all the data in the kernel space can be concluded as to
belong in the same quadrant.

Assume g(x·) is defined as:

g(x) = w
T φ(x) − ρ (1) eq(3)
where w is the perpendicular vector to the

decision boundary and ρ is the bias term
Then,

f(x) = sgn(g(x)) eq(4)

shows the decision function that one-class SVM
uses in order to identify normal points. The function
returns a positive value for normal points and negative for

outliers. 

3.3 Text Vectorization and Feature Extraction

Since apache logs are in human readable text form,
vectorization is required to convert them into numerals.
The feature extraction and text vectorization techniques
used in this system are

i). Frequency
A frequency matching function searches through the logs
for unique instances of a specific row in each column and
assigns each a numerical value.

ii). The Bag of Words representation
Count Vectorization from Scikit-learn: This tokenizes
each unique word in the logs and assigns it a unique
numeral value (Scikit-learn.org)

4.0 Development
The general purpose of IDS is to quickly identify

attacks in the system. IntelliIDS was developed with this
in mind hence it is developed to search for known attacks
first and then use machine learning to detect unknown
attack patterns

4.1 System Design
4.1.1 Experimental Approach IntelliIDS is an
experimental framework. Given this, the best algorithm
will be determined by the highest accuracy scores. This
means that several detection methods will be used and the
one with the highest scores will be implemented. For
faster development, the system will be developed for
console usage other than a GUI based approach. However,
the system takes up multiple arguments which enhance its
usage and allows for custom analysis. For example, the
user has the option to choose the type of analysis,
algorithm to use, etc.

4.1.2 Modularity
Module based approach will be used for the entire system
hence more features can be added easily.

4.1.3 Rapid Development
Existing source code available [9] and public libraries will
be used where necessary to hasten the development
process.

4.2 Programming Languages
Since IntelliIDS is experimental and exploration oriented
we use some of the best working supervised and
unsupervised machine learning algorithms already
available in popular programming languages such as

python, R, C, C # etc. A thorough search reveals that the
best programming language for machine learning is R
(since it is data science based) however for the sake of
expediency python was chosen for the sake of proficiency
with regard to the prototype IntelliIDS.

4.3 Modules
Below is the description for each module in IntelliIDS. For
more details see [8].

Figure 1- Modules in the system IntelliIDS

4.3.1 Pre-processing module

Input: Raw Apache logs  
Output: Vectorised logs in the following format

1. IP

2. Time (Unix time)

3. Request

4. Status

Implementation:

1. Function to parse logs will be written

2. Function to vectorise the logs will be written.
“This will search through the logs for unique words

and assigning them a numerical value”

3. Python’s pandas library will be used to create
Data Frames holding the vectorised logs

4.3.2 Known Attacks Analysis Module

Input: Raw Logs
Output: Report on known attacks detected
Function: Two major functions:

1. Scanning through logs for known attack
patterns.
2. Exporting results and calling the

notification system when one or more
patterns are detected

Implementation: Regular expressions will be used to
search through the requested URLs for known attack
patterns such as;

XSS : Cross-Site Scripting
 SQLI : SQL Injection
 CSRF : Cross-Site Request Forgery

DOS : Denial of Service
 DT : Directory Traversal
 SPAM: Spam

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4524

 ID : Information Disclosure
 RFE : Remote File Execution
 LFI : Local File Inclusion

This will be achieved through modified code forked from
Scalp (a python library).

4.3.3 Machine Learning and Outlier Detection
module
Input: Two Inputs

1. Vectorised logs to be checked
2. Vectorised logs to be trained with (Normal

dataset)
Output: Detection Results
Function: Two major functions:

1. Using the Normal Dataset to learn
2. Detect outlier activities based on the

Normal Dataset
Implementation: Two unsupervised learning algorithms
are tried.

1. k means
2. One Class Support Vector Machine (One

class SVM)

4.3.4 Notification module

Input: Detection Results
Output: An email to the system administrator containing
detected information
Function: sending notifications to system administrators
through email
Implementation: Written in Python utilizing the smtplib
library.

4.3.5 Real-time Detection Module (yet to be
implemented)
Function: Analyse new log lines as they are generated by
Apache

4.4 Related packages utilised

To reduce the development and testing time, external
libraries in python are used. They include:

i). Numbly (Offering array capabilities for python)
ii). Scikit-learn [24] This Data Science based library

includes all machine learning algorithm and test
data. It is an open source machine learning library
for Python. It features various classification,
regression and clustering algorithms both
supervised and unsupervised machine learning
algorithms, and is built on top of Python
numerical and scientific libraries (NumPy and
SciPy) for faster interoperation.

iii). Pandas (creating manageable data frames)

5.0 Discussion
For an intelligent log-based intrusion detection system to
be termed as successful, it has to identify both known and
unknown attack patterns in the given dataset. We now
discuss performance measures and experiment results.

5.1 Experiment Design
5.1.1 Performance measures

The performance measures that deemed effective in this
case were the true positive rate which will be referred to as
the accuracy.
The Detection Rate is the percentage of attacks detected.
 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐿𝑜𝑔𝑠

eq. (4)

5.2 Experiment results

A series of experiments were conducted on the two
unsupervised leaning algorithms chosen to determine
which of the two had a higher performance rate.

5.2.1 Experiment 1 (k means Clustering)
i). Test1

Given a training sample of 50000 line of logs that
are normal logs and a test sample of 1000 log lines of
which 80% were attacks and 20% normal

NB: The Data was labeled for reference purposes.

Table 1 Experiment 1Test 1 Input Logs format

IP
(vectored)

TIME
 (Unix
time)

Request
(vectored)

Referrer
(vectored)

Agent
(vectored)

1231122
112

14521
62152

-1243 3445 23

0100103
4004

14531
64844

52 45 0

Given the parameters in Table 1 , the accuracy of the IDS
was 50% which is of no great significance in practice. The
parameters were adjusted accordingly by dropping the
referrer and the agent paving way for the second test see
Table 2.

ii). Test2

With the adjusted parameters, as in Table 2

Table 2: Experiment 1Test 2 Input Logs format adjusted.

IP
(vectored)

TIME
 (Unix time)

Request
 (Vectored)

1231122112 1452162152 -1243

01001034004 1453164844 52

The accuracy of the system has now increased by 10%
giving an accuracy level of 60%. However, the results
were still not satisfactory. This demanded another test with
more adjustments to the parameters.

iii). Test3

It was noted that the issue was with the time (Unix time)
which gave the time in milliseconds hence offering a large
dataset that gave the wrong projections to the algorithm.
With this in mind, the Unix time was adjusted in the log
generator to generate new logs at intervals of 60 second to
300 seconds. This was then rounded up the Unix time to 6
digits working with a smaller number and a better time
range to correlate events.

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4525

Table 3 Experiment 1 Test 3 Input Logs format adjusted
IP
(vectored)

TIME
 (Unix time)

Request
 (Vectorized)

1231122112 145216 -1243

01001034004 145316 52

With the new parameters k means algorithm delivered an
accuracy of 85% which we considered a significant
improvement. The k means algorithm module gave
consistent results ranging from 80 – 85%

5.2.2 Experiment 2 (One class SVM)
With previous results from the k means algorithm the best
working parameters were selected as the initial test.

1. Test1

The same training and testing datasets were used in
determining the effectiveness of One Class SVM. The
format given as input is in Table 4

Table 4: Experiment 2 Test 1 Input Logs format

IP
(vectorized)

TIME
 (Unix time)

Request
 Vectorized)

1231122112 145216 -1243

01001034004 145316 52

With the success of the k means algorithm using the same
dataset and parameters, the expectation of this algorithm
was high. The novelty detection based algorithm did not
fail in detection rates as it gave a success rate ranging from
80% to 85%.

A second test was done to determine whether additional
information would be relevant to this algorithm and hence
improving the accuracy and detection rate.

2. Test2

A fourth column was added to the datasets the same one
that had been removed in 5.2.1.i) Test 1.see Table 5.

Table 5: Experiment 2 Test 2 Input Logs format

IP
(vectorized)

TIME
(Unix
time)

Request
 (Vectorized)

Referrer
(Vectorized)

1231122112 145216 -1243 3445

01001034004 145316 52 45

With these new parameters, the accuracy of the algorithm
negatively affected the accuracy which reduced to a range
of 70% to 79%. We therefore reverted back to the old
parameters to preserve the high accuracy and enhanced
detection rate.

6.0 Conclusion
The paper aimed to build an IDS prototype that utilized
machine learning to detect known and unknown attack
patterns in Apache logs. In this chapter the achievements,
problems and limitations of the system are discussed.
Achievements:

1. Modularity of the system. The system has been

fully modularized in that additional features can
easily be added. Modularization was achieved
through classes in python.

2. Machine Learning and Detection: The system
detected most of the known attack patterns using
the Known-Attack Analysis module and a decent
percentage 85% of the same attacks using the
Machine Learning and Detection Module.

Challenges: During the implementation, some problems
were encountered which include:

1. Lack of Data: When working with unsupervised
machine learning algorithms the size of the data
matters. This is to say that unsupervised learning
works best with large data. This was a problem
since it was difficult to obtain access to entire
‘access_log’ dump. This became a challenge
because the only logs we had access to were from
our owned websites with minimal traffic hence a
year’s access_log only contained about 3000 log
lines. The solution was to generate logs through a
fork of Kiritbasu’s Fake-Apache-Log-Generator
available [9]. The code was modified.

2. Processing power: With generated logs of up to
1GB (over 15 millions log lines), the processing
power required was a bit higher than the machine
used to develop the system. Most of the time, a
wait of over 40 minutes elapsed before getting
the results. In a production setting this would not
be realistic since.

Limitations:
Since this prototype system was rapidly developed there
exist some limitations to its functionality. These include:

1. Software development: The system developed
has a hard coded log pattern it uses to analyze.
The current pattern does not allow for per-
logged-in-user analysis which would be a big
plus since most attacks are carried out from
hijacked accounts and/ or rouge accounts;

2. Definition of the Norm (Normality definition):
The success of the system partially depends on
the success of the normality definition. For each
analysis a normal state of the analyzed system
logs had to have been achieved and recorded in
order to determine the outliers based on the
current analyzed system logs;

3. Real-time detection: Due to time limitations,
IntelliIDS operates the same way a batch mode
data miner would, this is helpful for post analysis,
however, the most appealing way intrusion
detection systems ought to work is real-time
detection. Plans of implementing this are
currently underway and will be released at a later
date.

Development, plans are underway to modify the IntelliIDS
into a real time scanner. However, many features need to
be incorporated in the system to ensure better accuracy
and hence higher detection rates. The features that are

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4526

missing in this version that would improve the system are:
i. Online Learning: Incorporating the ability to

access and analyze remote logs from say a hosted
server. This would increase the productivity of
the system in that one system can be used from a
stationary location to analyze and report on
anomalies of remote systems in real-time.

ii. Real time analysis: This is a feature that is vital to
any IDS, will ensure that the system analyzes
logs as they come in other than a post-analysis
based approach that the current version works
with.

Though the accuracy of the system needs to be improved,
the prototype has been an overall success of an IDS that
utilizes unsupervised machine learning algorithms for
novel/anomaly detection.

REFERENCES

1. Amoli, P. V., Hamalainen, T., David, G.,
Zolotukhin, M., & Mirzamohammad, M. (2016).
Unsupervised Network Intrusion Detection
Systems for Zero-Day Fast-Spreading Attacks
and Botnets. JDCTA (International Journal of

Digital Content Technology and its Applications,

Volume 10 Issue 2, 1-13.
2. CERT Coordination Center (CERT/CC).

CERT/CC Statistics 1988-2003.
http://www.cert.org/stats/cert_stats.html#incident
s

3. CISCO Systems Ltd White paper:. The Science
of Intrusion Detection System Attack
Identification .
http://www.cisco.com/en/US/products/sw/securs
w/ps2113/products_whitepaper09186a008009233
4.shtml. last accessed December 2016 last
accessed December 2016

4. Coates, A., Lee, H., & Ng, A. Y. (2010). An
analysis of single-layer networks in unsupervised
feature learning. Ann Arbor, 1001(48109), 2.

5. Deepa H. Kulkarni Computational Statistics and
Predictive Analysis in Machine Learning.
(2016). International Journal Of Science And

Research (IJSR), 5(1), 1521-1524.
http://dx.doi.org/10.21275/v5i1.nov152818 last
accessed February 2017

6. Forrest, S., Perelson, A. S., Allen, L., &
Cherukuri, R. (1994, May). Self-nonself
discrimination in a computer. In Research in

Security and Privacy, 1994. Proceedings., 1994

IEEE Computer Society Symposium on (pp. 202-
212). IEEE.

7. Gardner, A. B., Krieger, A. M., Vachtsevanos,
G., & Litt, B. (2006). One-class novelty detection
for seizure analysis from intracranial
EEG. Journal of Machine Learning

Research, 7(Jun), 1025-1044.
8. Gitau, J. M. (2016) Automated Log Analysis

Using AI: Intelligent Intrusion Detection System.
Jaramogi Odinga Oginga University of Science

andTechnology.
http://jooust.ac.ke/projects/siis/2016/JGM-10-
2016.pdf last accessed February 2017

9. Github https://github.com/kiritbasu/Fake-
Apache-Log-Generator

10. Hand, D. J., Mannila, H., & Smyth, P. (2001).
Principles of data mining. MIT press.

11. Hinton, G. E., & Sejnowski, T. J. (1999).
Unsupervised learning: foundations of neural

computation. MIT press
12. Kanungo, T, Mount, D. M., Netanyahu, N. S.,

Piatko, C. D., Silverman, R. and Wu, A. Y. 2002.
An efficient k-means clustering algorithm:
Analysis and implementation. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
24(7):881–892.

13. Li, K. L., Huang, H. K., Tian, S. F., & Xu, W.
(2003, November). Improving one-class SVM for
anomaly detection. Machine Learning and

Cybernetics, 2003 International Conference Vol.
5, pp. 3077-3081. IEEE.

14. Li, W. (2013). Automatic Log Analysis using
Machine Learning: Awesome Automatic Log
Analysis version 2.0.
http://uu.divaportal.org/smash/get/diva2:667650/
FULLTEXT01.pdf last accessed December 2016

15. Ma, P. (2003). Log Analysis-Based Intrusion
Detection via Unsupervised Learning. Master of

Science, School of Informatics, University of

Edinburgh.
16. Manevitz, L. M., & Yousef, M. (2001). One-class

SVMs for document classification. Journal of

Machine Learning Research, 2(Dec), 139-154.

17. Markou, M., & Singh, S. (2003). Novelty
detection: a review—part 1: statistical
approaches. Signal processing, 83(12), 2481-
2497.

18. Matherson, K. (2015). Machine Learning Log
File Analysis. http://docplayer.net/10128120-
Machine-learning-log-file-analysis.html

19. Muller, K. R., Mika, S., Ratsch, G., Tsuda, K., &
Scholkopf, B. (2001). An introduction to kernel-
based learning algorithms. IEEE transactions on

neural networks, 12(2), 181-201.
20. Parzen, E. (1962). On estimation of a probability

density function and mode. The annals of

mathematical statistics, 33(3), 1065-1076.
21. Patil , A. S and Patil, D. R. Post-Attack Intrusion

Detection using Log Files Analysis. International

Journal of Computer Applications 127(18):19-21,
October 2015. Foundation of Computer Science
(FCS), NY, USA..
http://dx.doi.org/10.5120/ijca2015906731 last
accessed December 2016

22. Ryan, J., Lin, M. J., & Miikkulainen, R. (1998).
Intrusion detection with neural networks.
Advances in neural information processing

systems, 943-949.

https://github.com/kiritbasu/Fake-Apache-Log-Generator
https://github.com/kiritbasu/Fake-Apache-Log-Generator
http://docplayer.net/10128120-Machine-learning-log-file-analysis.html
http://docplayer.net/10128120-Machine-learning-log-file-analysis.html

Int. J. Advanced Networking and Applications
Volume: 12 Issue: 01 Pages: 4519-4527(2020) ISSN: 0975-0290

4527

23. Schultz, M. G., Eskin, E., Zadok, E.,
Bhattacharyya, M., & Stolfo, S. J. (2001, June).
MEF: Malicious Email Filter-A UNIX Mail Filter
That Detects Malicious Windows Executables. In
USENIX Annual Technical Conference,

FREENIX Track (pp. 245-252).
24. Scikit-learn: machine learning in Python —

scikit-learn 0.18.1 documentation. (2016). Scikit-

learn.org. Retrieved 2 December 2016, from
http://scikit-learn.org/stable/

25. Svensson, C. (2015). Automatic Log Analysis
System Integration: Message Bus Integration in a
Machine Learning Environment.
http://www.divaportal.org/smash/get/diva2:81853
8/FULLTEXT01.pdf last accessed February
2017

26. Yen, T. F., Oprea, A., Onarlioglu, K., Leetham,
T., Robertson, W., Juels, A., & Kirda, E. (2013,
December). Beehive: Large-scale log analysis for
detecting suspicious activity in enterprise
networks. In Proceedings of the 29th Annual

Computer Security Applications Conference (pp.
199-208). ACM.

27. Zwietasch, T. (2014). Detecting anomalies in
system log files using machine learning
techniques . http://dx.doi.org/10.18419/opus-
3454 last accessed February 2017

28. Rai, K., Davi, M. S. & Guleria, A. (2016),
Decision Tree Based Algorithm for Intrusion
Detection: Int. J. Advanced Networking and

Applications, Volume: 07 Issue: 04 Pages: 2828-

2834 (2016) ISSN: 0975-0290.

	Gitau Joseph M.
	Email: jkibasui@gmail.com
	I. INTRODUCTION
	i). Learning and Detection
	ii). Generality
	A. 2.1 Intrusion
	B. 2.2 Logs
	C. 2.3 Intrusion Detection Methods
	i). Pattern Matching
	ii). State-full Pattern Matching
	iii). Protocol Decode-Based Analysis
	iv). Heuristic-Based Analysis
	v). Anomaly Detection

	D. 2.4 Data Mining Approaches
	1) 2.4.1 Supervised learning
	2) 2.4.2 Unsupervised learning
	i). Partition-based clustering
	ii). Hierarchical clustering
	iii). Probabilistic based clustering

	E. 2.5 Novelty Detection
	1) 2.5.1 Probabilistic/GMM approaches
	2) 2.5.2 Non-parametric approaches
	i). K-nearest neighbour approaches
	ii). String matching approaches

	3) 2.5.3 Neural network based approaches

	F. 2.6 Feasibility Study
	3.0 Methodology
	3.1 K means
	3.2 One Class SVM
	3.3 Text Vectorization and Feature Extraction
	i). Frequency
	ii). The Bag of Words representation

	4.0 Development
	4.1 System Design
	4.1.1 Experimental Approach IntelliIDS is an experimental framework. Given this, the best algorithm will be determined by the highest accuracy scores. This means that several detection methods will be used and the one with the highest scores will be i...
	4.1.2 Modularity
	4.1.3 Rapid Development

	4.2 Programming Languages
	4.3 Modules
	4.3.1 Pre-processing module
	4.3.2 Known Attacks Analysis Module
	4.3.3 Machine Learning and Outlier Detection module
	4.3.4 Notification module
	4.3.5 Real-time Detection Module (yet to be implemented)

	4.4 Related packages utilised

	5.0 Discussion
	5.1 Experiment Design
	5.1.1 Performance measures
	5.2 Experiment results
	5.2.1 Experiment 1 (k means Clustering)
	i). Test1
	ii). Test2
	iii). Test3
	5.2.2 Experiment 2 (One class SVM)
	1. Test1
	2. Test2

	Achievements:
	Challenges: During the implementation, some problems were encountered which include:
	1. Lack of Data: When working with unsupervised machine learning algorithms the size of the data matters. This is to say that unsupervised learning works best with large data. This was a problem since it was difficult to obtain access to entire ‘acce...
	2. Processing power: With generated logs of up to 1GB (over 15 millions log lines), the processing power required was a bit higher than the machine used to develop the system. Most of the time, a wait of over 40 minutes elapsed before getting the resu...

	Limitations:
	Since this prototype system was rapidly developed there exist some limitations to its functionality. These include:
	1. Software development: The system developed has a hard coded log pattern it uses to analyze. The current pattern does not allow for per-logged-in-user analysis which would be a big plus since most attacks are carried out from hijacked accounts and/ ...
	2. Definition of the Norm (Normality definition): The success of the system partially depends on the success of the normality definition. For each analysis a normal state of the analyzed system logs had to have been achieved and recorded in order to d...
	3. Real-time detection: Due to time limitations, IntelliIDS operates the same way a batch mode data miner would, this is helpful for post analysis, however, the most appealing way intrusion detection systems ought to work is real-time detection. Plans...

