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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
The maintenance of web server security is a daunting task today. Threats arise from hardware failures, software 

flaws, tentative probing and worst of all malicious attacks. Analysing server logs to detect suspicious activities is 

regarded as a key form of defence, however, their sheer size makes human log analysis challenging. Additionally, 

traditional intrusion detection systems rely on methods based on pattern-matching techniques which are not 

sustainable given the high rates at which new attack techniques are launched every day. The aim of this paper is 

to develop a proto-type intelligent log based intrusion detection system that can detect known and unknown 

intrusions automatically. Under a data mining framework, the intrusion detection system is trained with 

unsupervised learning algorithms specifically the k-means algorithm and the One Class SVM (Support Vector 

Machine) algorithm. The development of the prototype system is limited to machine generated logs due to lack of 

real access log files. However, the system’s development and implementation proved to be up to 85% accurate in 

detecting anomalous log patterns within the test logs.  
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I. INTRODUCTION 

In this advancing and fast developing field, technology 

has become cheaper, easier to develop, and deploy. On the 
other hand, this has also made probing and attacking 
servers cheaper and easier to carryout. It is therefore vital 
to ensure that web servers are alert and hence secured 
against any form of attack.  
Server logs have been used to confront: failure either 
hardware or software and  record notices, warnings and 
errors to ensure that system administrators can recover or 
at least know what caused  a system failure event. Log 
recording has also acted as a form of defense against 
human attacks where predetermined techniques such as 
SQL injections can be easily identified.  
An average web server receiving traffic of at least 1000 
unique visits a day generates a huge log that cannot be 
analyzed manually. The same web server placed in a large 
company would receive over 10000 unique visits a day. 
The sheer size of the log file would be practically 
impossible to inspect by most system administrators. Most 
log based intrusion detection systems on the market are 
pattern-matching technique based, that is, they compare 
the log entries to a set of predefined patterns that had been 
manually updated by security experts [1,5, 26]. Though 
this approach is effective in determining attacks of known 

patterns, the drawback is that for each new attack the 
system is defenseless and it takes security experts much 
time and effort to update the new patterns to the intrusion 
detection system [14, 15].  
From this perspective, current intrusion detection systems 
are far from intelligent in that they exclusively rely on 
human intervention to operate effectively and thus, more 
advanced intrusion detection systems are desirable. These 
systems should be capable of detecting known and 
unknown intrusions intelligently and automatically 
distinguishing normal network activities from those 
abnormal and possibly malicious ones without or with 
minimum human intervention.  
Some data mining algorithms applied to log based 
intrusion detection systems came up with an effective 
anomaly detection based intrusion detection system that 
relied on nothing more other than the inflowing stream of 
logs to determine what is normal and what is not (possibly 
an attack). Those algorithms are based on supervised 
learning. That is to say they are trained, other than being 
explicitly programmed, on data sets with labels indicating 
whether the instances are pre-classified as attacks or not. 
However, the techniques seemed cumbersome as manually 
labeling the large volumes of server data mostly over 1GB 
log files was expensive and difficult. This is what inspired 
the approach of unsupervised machine learning where no 
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labels are pre-set hence the system is left to determine 
what an attack is and what is not, see [11]. 
With no requirement for class labels, unsupervised 
learning algorithms seemed to solve this problem. A broad 
explanation of approach to intrusion detection systems is 
that when an intrusion detection system becomes 
“familiar” with the data through the unsupervised learning 
algorithms, it is likely to detect “abnormal” data when 
they come in many of which are malicious, see [1, 4].  
This paper aims to develop and implement a system that 
can learn the normal state and nature of a web server 
where installed and dynamically identify anomalies 
bringing them to the system administrator’s attention as 
follows: 
 

i). Learning and Detection  

Based on the unsupervised learning algorithm used, the 
system will be able to learn from the current states of the 
server (or when the server was working optimally). Detect 
the anomalies in the logs and hence alert the system 
administrator.  

ii).  Generality  

Based on unsupervised learning, detecting abnormal 
activities shall be executed automatically without too 
much human intervention [18, 25, 27]. 
 

2.0 BACKGROUND  
Designing an intelligent log based intrusion detection 
system involves the following: 

A. 2.1 Intrusion  

Threats to web servers come typically from the 
malfunction of hardware or software, or through malicious 
behaviour by users of software. Promptly resolving 
incidents is vital, considering the huge costs of data loss 
and server down-time. The abundance of computational 
resources makes lives of computer hackers easier. Without 
much effort, they can acquire detailed descriptions of 
system vulnerabilities and exploits to initiate attacks 
accordingly. According to statistics from [2], the most 
influential reporting centre for Internet security problems, 
show that there was a dramatic increase of reported 
network incidents to CERT/CC.  
 

B. 2.2 Logs  

To protect servers from attacks, a common approach is to 
record server logs to monitor all those prominent 
activities. Each time a noticeable event happens in the 
server, an entry will be appended to a log file, in the form 
of plain text or binary format. Take web log files as an 
example. Every “hit” to a web site, including requests for 
HTML pages as well as images, is logged as one line of 
text in a log file. This records information about who is 
visiting, where they are from and what they are doing with 
the web server. Below is a sample of an apache log format,  

  "%h %u %t \"%r\" %>s %b \"%{Referrer}i\" 
\"%{User-Agent}i\"” 
This translates to: -  
%h – ip address 
%u – Authenticated userID if http authenticated 
%t – timestamp [day/month/year: hour: minute: 

second zone] 
%r – request line (method_used 
requsted_resource protocol) 
%>s – status code 
%b size of returned obj 
\"%{Referrer}i\” – http header referrer 
\"%{User-Agent}i\"” – the user agent 

Below are examples of apache server access logs 
120.254.103.132 - - [14/Jan/2016:12:58:17 
+0300] "GET /search?=IntelliIDS HTTP/1.0" 200 
5057 "http://black-adkins.com/about/" 
"Mozilla/5.0 (Windows NT 6.1) 
AppleWebKit/5321 (KHTML, like Gecko) 
Chrome/14.0.824.0 Safari/5321" 
36.194.62.124 - - [14/Jan/2016:13:24:30 +0300] 
"GET /productID=3257 HTTP/1.0" 200 4962 
"http://www.hart.info/" "Mozilla/5.0 (Macintosh; 
PPC Mac OS X 10_8_7) AppleWebKit/5360 
(KHTML, like Gecko) Chrome/14.0.896.0 
Safari/5360"  

An experienced system administrator may take a quick 
glance at web server logs and realize instantly what has 
happened. However, it is almost impossible for any 
normal person to check those logs when the log files have 
accumulated to thousands if not millions of log entries. 
Naturally, appropriate methods are needed to remove 
irrelevant information and extract the most salient. What is 
required, therefore, is an intrusion detection system that is 
intelligent enough to automatically detect those abnormal 
activities in the logs without too much human inputs.  
 

C. 2.3 Intrusion Detection Methods  

There have been several intrusion detection systems that 
use log analysis on the market. The intrusion detection 
methods used are categorized as follows, see [3, 28]:  

i). Pattern Matching  

This type of system examines the contents of network 
traffic (in real-time intrusion detection systems) or log file 
(in log based intrusion detection systems) to look for a 
sequence of bytes as the pattern to match. The approach is 
rigid but simple to implement and therefore widely used.  

ii).  State-full Pattern Matching  

This performs pattern matching within the context of a 
whole data stream instead of just looking into current 
packets.  

iii). Protocol Decode-Based Analysis  

This makes extensions to the state-full pattern matching 
method in that it tries to find out the violations against the 
rules that are defined by the Internet standards.  

iv). Heuristic-Based Analysis  

Makes decisions based on pre-programmed algorithmic 
logic. Those algorithms are often the statistical evaluations 
of the network traffic content.  

v).  Anomaly Detection  

This approach tries to find out anomalous actions based on 
the learning of its previous training experience with 
patterns assumed as normal.  
The first four methods are widely used in industry 
practices. However, most of these pattern-matching based 
detectors can only deal with already-known intrusions that 
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have been recognized by the security experts. 
Unfortunately, ill-intentioned hackers are aware of those 
patterns too. When new attack patterns emerge, very likely 
they could evade the detection by deliberately avoiding 
those widely publicized matching patterns. The potential 
damages caused by those attacks are consequentially 
substantial.  
With regard to attacks that become more cunning, more 
variant, and hence much more dangerous human-
maintained, it would be difficult to update pattern-
matching intrusion detection systems quickly enough to be 
effective. Data mining approaches, armed with machine 
learning algorithms, may provide the solution.  
 

D. 2.4 Data Mining Approaches  

Data Mining is defined as the analysis of (often large) 
observational data sets to find unsuspected relationships 
and to summarize the data in novel ways that are both 
understandable and useful to the data owner. During the 
process of data mining, many machine learning algorithms 
are available for choosing. Depending on whether the class 
labels are provided for learning, these machine learning 
algorithms can be classified as both supervised or 
unsupervised [10,13].  

1) 2.4.1 Supervised learning  

Trained with data bearing class labels indicating to which 
subcategories they belong or what real-valued properties 
they have, a supervised learning algorithm tries to predict 
the most likely labels for new test data. There are two 
major subcategories for supervised learning:  

i). Classification is to predict the class membership 
as one of a finite number of discrete labels.  

ii). Regression is to predict the output value as one of 
a potentially infinite set of real- valued points.  

There are many widely used supervised classification 
techniques. They include but not limited to Support Vector 
Machines (SVMs), Decision Trees, Neural Networks, 
Naive Bayes, Nearest Neighbour and Regression models. 
For example, based on a Naive Bayes classifier, trained 
with a data set with virus labels on file headers, an 
automatic email filter that detects malicious Windows 
executables coming through the email system has been 
developed in the past [23]. 
  

2) 2.4.2 Unsupervised learning  

In unsupervised learning, the data are not labelled, which 
makes it hard to tell what counts as good. The model 
generating the output must either be stochastic or must 
have an unknown and varying input in order to avoid 
producing the same output every time. From this point of 
view, the aim of unsupervised learning could be regarded 
as a generative model that gives a high likelihood to the 
observed data, [11].  
From the perspective of machine learning, the searching 
for clusters is unsupervised learning. To perform 
clustering is to try to discover the inner nature of the data 
structure as a whole, and to divide the data into groups of 
similarity. From the viewpoint of data mining, clustering 
is the partitioning of a data set into groups so that the 
points in the group are similar as possible to each other 

and as different as possible from points in other groups.  
There are generally three types of clustering algorithms  

i). Partition-based clustering  

Given a predefined number of clusters, find the optimal 
partitions for each point. Choose the centres so as to 
minimize the summed distance. The k-means algorithm is 
a well-known example of this kind of clustering methods.  

ii). Hierarchical clustering  

Hierarchical clustering builds a cluster hierarchy. The 
hierarchy is a tree of clusters. Every node in the tree 
contains child clusters while sibling clusters share a 
common parent node. Depending on how the tree is 
formed, hierarchical clustering methods fall in two 
categories, agglomerative and divisive. Agglomerative 
methods recursively merge points while divisive methods 
start from a cluster of all data and then gradually split 
them into smaller clusters.  

iii). Probabilistic based clustering  

This approach assumes that the data comes from a 
multivariate and finite mixture model with probability as 
shown below 𝑝(𝑥)=  ∑ 𝜋𝑘𝑓𝑘𝐾

𝑘−1 (𝑥;  θ𝑘  )                                                𝑒𝑞. (1) 

where πk is the class component prior probability,  

fk(x: θk) is class conditional density function, and  
 θk is its model parameters.  

 
E. 2.5 Novelty Detection  

Novelty detection refers to the identification of new or 
unknown data or signal that a machine learning system is 
not aware of during training. It is one of the fundamental 
requirements of a good classification or identification 
system since some- times the test data contains 
information about objects that were not known at the time 
of model training.  
Anomaly could be regarded as one kind of novelty. 
Normally, classifiers are expected to give reliable results 
when the test data are similar to those used during training. 
However, the real world is totally different, when 
abnormal data come in, picking them out is a problem. 
Compared to conventional 2-class classification problem, 
an anomaly detection system is trained with only normal 
patterns and then try to predict those abnormal data based 
solely on the models built from normal data. There exist a 
variety of methods of novelty detection that have been 
shown to perform well on different data sets [17].  

1) 2.5.1 Probabilistic/GMM approaches  

This category of approaches is based on statistical 
modelling of data and then estimating whether the test data 
come from the same distribution that generates the training 
data. First estimate the density function of the training 
data. By assuming the training data is normal, the 
probability that the test data belong to that class can be 
computed. A threshold can then be set to signal the 
novelty if the probability calculated is lower than that 
threshold.  
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For Gaussian Mixture Modelling (GMM) models, the 
parameters of the model are chosen by maximizing the log 
likelihood of the training data with respect to the model. 
This task could be done using re-estimation techniques 
such as EM algorithm. However, if the dimensionality of 
the data is high, a very large number of samples are 
needed to train the model, which makes the computation 
even harder [5].  
It is simpler to just find the distance of test data from the 
class mean and set a threshold for the variance. If the test 
data is far away from the mean plus the variance threshold, 
then it can be claimed to be novel. 
.  

2) 2.5.2 Non-parametric approaches  

For non-parametric methods, the overall form of the 
density function is estimated from the data as well as 
parameters of the model. Therefore, non-parametric 
methods do not require extensive prior knowledge of the 
problem and do not have to make assumptions on the form 
of data distribution, which means that they are more 
flexible though much more computational demanding.  

i). K-nearest neighbour approaches  

The k-nearest neighbour algorithm is another technique for 
estimating the density function of data. This technique 
does not require a smoothing parameter [20]. Instead, the 
width parameter is set as a result of the position of the data 
point in relation to other data points by considering the k-
nearest data in the training set to the test data.  
For novelty detection the distribution of normal vectors is 
described by a small number of spherical clusters placed 
by the k-nearest neighbour technique. Novelty is assessed 
by measuring the normalised distance of a test sample 
from the cluster centres [17].  

ii). String matching approaches  

String matching approaches is biologically inspired by 
studying how the immune system works [6]. 
 Treating training data as templates, which are represented 
by a string (vector of features), they could then compute 
some measure of dissimilarity between training and test 
data. The self-data is converted to binary format forming a 
collection S. Then a large number of random strings are 
generated forming a set R0. Strings from R0 are matched 
against the strings in S and those that match are 
eliminated.  
 
Since perfect matching is extremely rare, the matching 
criterion is relaxed so as to consider only r contiguous 
matches in the strings. Once R0 is created, new patterns are 
converted to binary and matched against R0. If a match is 
found, then new pattern belongs too non-self and is 
rejected. The major limitation appears to be the 
computational difficulty of generating the initial 
repertoire. This method has been applied on the detection 
of computer virus and claimed some good results.  

3) 2.5.3 Neural network based approaches  

Quite a number of different architectures of neural 
networks are applied to novelty detection. A neural 
network can detect novelty by setting a threshold on the 
output values of the network. Or it can calculate the 
Euclidean distance between output patterns and target 

patterns and throw those with highest distance out as the 
novelty [22].  
.  

F. 2.6 Feasibility Study 

Efficacy of Log Analysis Based IDS => High 
Practicality of Log Based IDS => High 
Efficacy of AI in Anomaly Detection => High 
Efficacy of Unsupervised Learning in Anomaly Detection 
=> High 
Top Rated Python Analytical and Statistics Library  => 
SciKit-Learn 
Most Favourable Unsupervised Learning Algorithms => k 

means and One Class SVM 
 

3.0 Methodology 
We now discuss how an intelligent network log analyzer 
can be built with a more in-depth approach on the 
theoretical aspects of the algorithms to be incorporated in 
the system. We introduce how the logs are vectorized, 
discuss briefly feature extraction, and system development 
methodology. 

3.1 K means 
The k means algorithm is cluster based [12], hence one 
needs to define the number of clusters, k, hence the name. 
The clusters are the average locations of all the members 
of a cluster.  
If we assume n data points  then  D = {x1,….,xn} 
Hence to find K clusters {C1,…..CK}  the algorithm is 
describe below: 

 
initialize m1...mK through random 

selection as cluster centers 
while (no conditions are met, mostly 

(lack of change in clusters CK)  

for i = 1,...,n  

calculate |xi - mj|
2 for 

each center 
assign i to the closest 

center  
end for loop 
re-compute each mj as the mean 

of the data points assigned to it  
end while loop 

 
The overall formula for k means is: ∑ 𝑚𝑖𝑛𝑢𝑗∈𝐶𝑛𝑖=0 (||𝑥𝑗 − 𝑢𝑖||.2)                           eq(2) 

 
3.2 One Class SVM 

One class SVM attempts to learn the decision boundaries 
that achieve the maximum separation between the data 
points and the origin. The introduction of kernels in one 

class SVM gives it the ability to learn non-linear decision 
boundaries as well as account for outliers. One class SVM 
utilizes an implicit transformation function φ(x·) that is 
defined by the kernel chosen [16,19]. It then learns the 
decision boundary which separates most of the data from 
the origin. Data that lie outside the data points are 
considered as outliers [7].  
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By observing that all kernel entries are non-negative (≥0), 
all the data in the kernel space can be concluded as to 
belong in the same quadrant.  
 

Assume g(x·) is defined as: 

g(x) = w
T φ(x) − ρ (1)                                   eq(3)  
where w is the perpendicular vector to the 

decision boundary and ρ is the bias term 
Then,  

f(x) = sgn(g(x))                                             eq(4) 

shows the decision function that one-class SVM 
uses in order to identify normal points. The function 
returns a positive value for normal points and negative for 

outliers.  
 
3.3 Text Vectorization and Feature Extraction 

Since apache logs are in human readable text form, 
vectorization is required to convert them into numerals. 
The feature extraction and text vectorization techniques 
used in this system are  

i). Frequency  
A frequency matching function searches through the logs 
for unique instances of a specific row in each column and 
assigns each a numerical value.  

ii). The Bag of Words representation 
Count Vectorization from Scikit-learn: This tokenizes 
each unique word in the logs and assigns it a unique 
numeral value (Scikit-learn.org)  
 

4.0 Development 
The general purpose of IDS is to quickly identify 

attacks in the system. IntelliIDS was developed with this 
in mind hence it is developed to search for known attacks 
first and then use machine learning to detect unknown 
attack patterns  
 

4.1 System Design  
4.1.1 Experimental Approach IntelliIDS is an 
experimental framework. Given this, the best algorithm 
will be determined by the highest accuracy scores. This 
means that several detection methods will be used and the 
one with the highest scores will be implemented. For 
faster development, the system will be developed for 
console usage other than a GUI based approach. However, 
the system takes up multiple arguments which enhance its 
usage and allows for custom analysis. For example, the 
user has the option to choose the type of analysis, 
algorithm to use, etc.  

4.1.2 Modularity  
Module based approach will be used for the entire system 
hence more features can be added easily. 

4.1.3 Rapid Development  
Existing source code available [9] and public libraries will 
be used where necessary to hasten the development 
process.  

4.2 Programming Languages  
Since IntelliIDS is experimental and exploration oriented 
we use some of the best working supervised and 
unsupervised machine learning algorithms  already 
available in popular programming languages such as 

python, R, C, C # etc. A thorough search reveals that the 
best programming language for machine learning is R 
(since it is data science based) however for the sake of 
expediency  python was chosen for the sake of proficiency 
with regard to the prototype IntelliIDS.  
 

4.3 Modules  
Below is the description for each module in IntelliIDS. For 
more details see [8]. 

 
Figure 1- Modules in the system IntelliIDS 
 
4.3.1 Pre-processing module  

Input: Raw Apache logs   
Output: Vectorised logs in the following format  

1. IP 

2. Time (Unix time) 

3. Request 

4. Status   
 

Implementation:   

1. Function to parse logs will be written 

2. Function to vectorise the logs will be written. 
“This will search through the logs for unique words 

and assigning them a numerical value” 

3. Python’s pandas library will be used to create 
Data Frames holding the vectorised logs 
 
4.3.2 Known Attacks Analysis Module 

Input: Raw Logs 
Output: Report on known attacks detected 
Function: Two major functions:  

1. Scanning through logs for known attack 
patterns.  
2. Exporting results and calling the 

notification system when one or more 
patterns are detected 

Implementation: Regular expressions will be used to 
search through the requested URLs for known attack 
patterns such as; 

XSS  : Cross-Site Scripting 
 SQLI  : SQL Injection 
 CSRF  : Cross-Site Request Forgery 

DOS  : Denial of Service 
 DT  : Directory Traversal 
 SPAM: Spam 
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 ID  : Information Disclosure 
 RFE  : Remote File Execution 
 LFI  : Local File Inclusion 

This will be achieved through modified code forked from 
Scalp (a python library).  
 

4.3.3 Machine Learning and Outlier Detection 
module  
Input: Two Inputs  

1. Vectorised logs to be checked 
2. Vectorised logs to be trained with (Normal 

dataset) 
Output: Detection Results 
Function: Two major functions:  

1. Using the Normal Dataset to learn  
2. Detect outlier activities based on the 

Normal Dataset 
Implementation: Two unsupervised learning algorithms 
are tried.  

1. k means 
2. One Class Support Vector Machine (One 

class SVM)  
 
4.3.4 Notification module  

Input: Detection Results  
Output: An email to the system administrator containing 
detected information 
Function: sending notifications to system administrators 
through email 
Implementation: Written in Python utilizing the smtplib 
library. 
 

4.3.5 Real-time Detection Module (yet to be 
implemented) 
Function: Analyse new log lines as they are generated by 
Apache 

 
4.4 Related packages utilised  

To reduce the development and testing time, external 
libraries in python are used. They include: 

i). Numbly (Offering array capabilities for python) 
ii). Scikit-learn [24] This Data Science based library 

includes all machine learning algorithm and test 
data. It is an open source machine learning library 
for Python. It features various classification, 
regression and clustering algorithms both 
supervised and unsupervised machine learning 
algorithms, and is built on top of Python 
numerical and scientific libraries (NumPy and 
SciPy) for faster interoperation. 

iii). Pandas (creating manageable data frames) 
 

5.0 Discussion 
For an intelligent log-based intrusion detection system to 
be termed as successful, it has to identify both known and 
unknown attack patterns in the given dataset. We now 
discuss performance measures and experiment results. 

 
5.1 Experiment Design  
5.1.1 Performance measures 

The performance measures that deemed effective in this 
case were the true positive rate which will be referred to as 
the accuracy.  
The Detection Rate is the percentage of attacks detected.  
 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝐿𝑜𝑔𝑠     

eq. (4) 

 
5.2 Experiment results  

A series of experiments were conducted on the two 
unsupervised leaning algorithms chosen to determine 
which of the two had a higher performance rate.   

5.2.1 Experiment 1 (k means Clustering) 
i). Test1 

Given a training sample of 50000 line of logs that 
are normal logs and a test sample of 1000 log lines of 
which 80% were attacks and 20% normal  

NB: The Data was labeled for reference purposes.  
 
 

Table 1 Experiment 1Test 1 Input Logs format 

IP 
(vectored) 

TIME 
 (Unix 
time) 

Request 
(vectored) 

Referrer 
(vectored) 

Agent 
(vectored) 

1231122
112 

14521
62152 

-1243 3445 23 

0100103
4004 

14531
64844 

52 45 0 

 
Given the parameters in Table 1 , the accuracy of the IDS 
was 50% which is of no great significance in practice. The 
parameters were adjusted accordingly by dropping the 
referrer and the agent paving way for the second test see 
Table 2.  

ii). Test2 

With the adjusted parameters, as in Table 2  
 
Table 2: Experiment 1Test 2 Input Logs format adjusted. 

IP 
(vectored) 

TIME 
 (Unix time) 

Request 
 (Vectored) 

1231122112 1452162152 -1243 

01001034004 1453164844 52 

 
The accuracy of the system has now increased by 10% 
giving an accuracy level of 60%. However, the results 
were still not satisfactory. This demanded another test with 
more adjustments to the parameters. 

iii).  Test3 

It was noted that the issue was with the time (Unix time) 
which gave the time in milliseconds hence offering a large 
dataset that gave the wrong projections to the algorithm. 
With this in mind, the Unix time was adjusted in the log 
generator to generate new logs at intervals of 60 second to 
300 seconds. This was then rounded up the Unix time to 6 
digits working with a smaller number and a better time 
range to correlate events.  
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Table 3   Experiment 1 Test 3 Input Logs format adjusted 
IP 
(vectored) 

TIME 
 (Unix time) 

Request 
 (Vectorized) 

1231122112 145216 -1243 

01001034004 145316 52 

 
With the new parameters k means algorithm delivered an 
accuracy of 85% which we considered a significant 
improvement. The k means algorithm module gave 
consistent results ranging from 80 – 85% 

 

5.2.2 Experiment 2 (One class SVM) 
With previous results from the k means algorithm the best 
working parameters were selected as the initial test.  

1. Test1 

The same training and testing datasets were used in 
determining the effectiveness of One Class SVM. The 
format given as input is in Table 4 
 
Table 4: Experiment 2 Test 1 Input Logs format  

IP 
(vectorized) 

TIME 
 (Unix time) 

Request 
 Vectorized) 

1231122112 145216 -1243 

01001034004 145316 52 

 
With the success of the k means algorithm using the same 
dataset and parameters, the expectation of this algorithm 
was high. The novelty detection based algorithm did not 
fail in detection rates as it gave a success rate ranging from 
80% to 85%.  
 
A second test was done to determine whether additional 
information would be relevant to this algorithm and hence 
improving the accuracy and detection rate.  

 
2. Test2 

A fourth column was added to the datasets the same one 
that had been removed in 5.2.1.i) Test 1.see Table 5.  
 
Table 5: Experiment 2 Test 2 Input Logs format  

IP 
(vectorized) 

TIME  
(Unix 
time) 

Request 
 (Vectorized) 

Referrer 
(Vectorized) 

1231122112 145216 -1243 3445 

01001034004 145316 52 45 

 
With these new parameters, the accuracy of the algorithm 
negatively affected the accuracy which reduced to a range 
of 70% to 79%. We therefore reverted back to the old 
parameters to preserve the high accuracy and enhanced 
detection rate.  
 

6.0 Conclusion 
The paper aimed to build an IDS prototype that utilized 
machine learning to detect known and unknown attack 
patterns in Apache logs. In this chapter the achievements, 
problems and limitations of the system are discussed.  
Achievements:   

1. Modularity of the system. The system has been 

fully modularized in that additional features can 
easily be added. Modularization was achieved 
through classes in python.  

2. Machine Learning and Detection: The system 
detected most of the known attack patterns using 
the Known-Attack Analysis module and a decent 
percentage 85% of the same attacks using the 
Machine Learning and Detection Module. 

 
Challenges: During the implementation, some problems 
were encountered which include: 

1. Lack of Data: When working with unsupervised 
machine learning algorithms the size of the data 
matters. This is to say that unsupervised learning 
works best with large data. This was a problem 
since it was difficult to obtain  access to entire 
‘access_log’ dump. This became a challenge 
because the only logs we had access to were from 
our owned websites with minimal traffic hence a 
year’s access_log only contained about 3000 log 
lines. The solution was to generate logs through a 
fork of Kiritbasu’s Fake-Apache-Log-Generator 
available [9]. The code was modified.  

2. Processing power: With generated logs of up to 
1GB (over 15 millions log lines), the processing 
power required was a bit higher than the machine 
used to develop the system. Most of the time, a 
wait of over 40 minutes elapsed before getting 
the results. In a production setting this would not 
be realistic since. 

 
Limitations:  
Since this prototype system was rapidly developed there 
exist some limitations to its functionality. These include: 

1. Software development: The system developed 
has a hard coded log pattern it uses to analyze. 
The current pattern does not allow for per-
logged-in-user analysis which would be a big 
plus since most attacks are carried out from 
hijacked accounts and/ or rouge accounts;  

2. Definition of the Norm (Normality definition): 
The success of the system partially depends on 
the success of the normality definition. For each 
analysis a normal state of the analyzed system 
logs had to have been achieved and recorded in 
order to determine the outliers based on the 
current analyzed system logs;  

3. Real-time detection: Due to time limitations, 
IntelliIDS operates the same way a batch mode 
data miner would, this is helpful for post analysis, 
however, the most appealing way intrusion 
detection systems ought to work is real-time 
detection. Plans of implementing this are 
currently underway and will be released at a later 
date.  

 
Development, plans are underway to modify the IntelliIDS 
into a real time scanner. However, many features need to 
be incorporated in the system to ensure better accuracy 
and hence higher detection rates. The features that are 
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missing in this version that would improve the system are: 
i. Online Learning: Incorporating the ability to 

access and analyze remote logs from say a hosted 
server. This would increase the productivity of 
the system in that one system can be used from a 
stationary location to analyze and report on 
anomalies of remote systems in real-time. 

ii. Real time analysis: This is a feature that is vital to 
any IDS, will ensure that the system analyzes 
logs as  they come in other than a post-analysis 
based approach that the current version works 
with.  

 
Though the accuracy of the system needs to be improved, 
the prototype has been an overall success of an IDS that 
utilizes unsupervised machine learning algorithms for 
novel/anomaly detection.  
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