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---------------------------------------------------------------------ABSTRACT----------------------------------------------------------------- 

This paper explains how to detect the 2D pose of multiple people in an image. We use in this paper Part Affinity Fields 
for Part Association (It is non-parametric representation), Confidence Maps for Part Detection, Multi-Person Parsing 

using PAFs, Simultaneous Detection and Association, this method achieve high accuracy and performance regardless 
the number of people in the image. This architecture placed first within the inaugural COCO 2016 key points 

challenge. Also, this architecture exceeds the previous state-of-the-art result on the MPII Multi-Person benchmark, 

both in performance and efficiency. 
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I. INTRODUCTION 

Human 2D pose estimation is the problem of localizing 

anatomical key points or “parts. We use it to find body parts 
of individuals[16,18,19,15,14,13,12,11,9]. There are a set of 

challenges. The first challenge, each image may contain an 

obscure number of individuals that can happen at any 

position or scale. The second challenge, interactions between 

individuals lead to complex spatial interference, due to 

contact joints, which makes different parts. The third 

challenge is real-time performance, when the number of 

individuals in the image increase, the complexity real-time 

increase there is a positive correlation in top-down 

approaches between the number of people and the 

computational cost. Whereas the more people there are, the 

greater the computational cost. In contrast, bottom-up 

approaches have the potential to decouple runtime 

complexity from the number of people in the image.  
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II. HUMAN POSE ESTIMATION  

Human pose estimation affects positively in our society. 

Because human pose estimation from multiple views can be 

used in motion capture, surveillance, and sport capturing 

systems. Motion capture systems are useful for film industry, 
especially for animating cartoon characters. The current 

technology is based on marker-based solutions which work 

only in a studio environment. Also, human pose estimation 

is very useful, in sport games. For example, we can estimate 

the pose of football or volleyball players,  

captured from different views, supports the analysis of a 

game. Furthermore, we use body pose estimation in sport 

activities to study the tactics of the team and its opponents.  

Also, we use body pose estimation in surveillance. Public or  

crowed places are monitored by multiple view camera 

systems. Automatic human pose estimation could make the  

recognition of unusual human actions and activities more 

easily. 

 

We can also estimate the body pose of the surgeons and staff 

in OR.  why we need to perform human pose estimation, 

OR? There is another motivation which is related to the 

surgical workflow modeling. Surgical workflow refers to the 
phase recovery and analysis of a medical operation. For this, 

a number of available signals inside the OR are employed. 

These signals come from different instruments, monitoring, 

and medical devices. Within this environment, the role of 

pose estimation from a multi-view camera system is an 

additional input modality to the surgical workflow analysis 
and modeling. For instance, the 3D body poses can be used 

to identifying human activities and thus can contribute to the 

phase recognition of the medical operation 

 

 

Also, we can use human pose estimation in autonomous 

cars. According to statistics, Car accidents account for about 

two percent of deaths globally each year. As such, an 

intelligent system tracking driver pose may be useful for  

emergency alerts. In autonomous cars pedestrian detection 

algorithms have been used successfully, to enable the car to 

make smarter decisions. Also, we can use human pose 

estimation in assisted living. Personal care robots may be 

deployed. So we use for these robots high-accuracy human 

detection and pose estimation to perform a variety of tasks, 

such as fall detection. There is Other applications include 

animal tracking and behavior understanding, sign language  

detection, advanced human-computer interaction, and 

marker less motion capturing. 
 

III. RELATED WORK  

A. Single Person Pose Estimation 

The conventional approach[1,2,3,4,5,6,7,8,16,10] to 

articulated human pose estimation is to perform inference 

over a combination of observations on the parts of the body 

and the spatial dependencies between them. The spatial 

model for articulated human pose estimation is either based 

on tree- 

structured graphical models or non-tree models. The tree-

structured model encodes the spatial relationship between 

adjacent parts following a kinematic chain. The non-tree 

model is a tree structure with additional edges to capture 

occlusion, symmetry, and long-range relationships. To obtain 

local observations of body parts, we use Convolutional 

Neural Networks (CNNs). The convolutional pose machines 

architecture proposed by Wei et al used a multi-stage design 

based on a sequential prediction framework iteratively 

incorporating global context. supervisions are enforced at the 

end of each stage to solve the problem of vanishing gradients 
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during training. Newell et al showed that supervisions are 

beneficial in a stacked hourglass architecture. However, all of 
these methods assume a single person. 

B. Multi-Person Pose Estimation 

For multi-person pose estimation, most approaches have 

used a top-down strategy that first detects people after that 
estimates the pose of each person independently on each 

detected region. Although this strategy makes the techniques 

developed for the single person directly applicable, it suffers 

from the early commitment to person detection and fails to 

capture the spatial dependencies across different people that 

require global inference. Some approaches have started to 

consider inter-person dependencies. Eichner et al. extended 

pictorial structures to take into account a set of interacting 

people and depth order, but unfortunately still required a 

person detector to initialize detection hypotheses. Patchouli et 

al. proposed a bottom-up approach that labels part detection 

candidates and also associated them with individual people, 

with pairwise scores regressed from spatial offsets of 

detected parts. This approach does not depend on person 

detections, however, solving the proposed  

integer linear programming over the fully connected graph is  

an NP-hard problem and thus the average processing time for 

a single image is on the order of hours. nsafutdinov et al. 

built with a stronger part detector based on Reset and image-

dependent pairwise scores and improved the run time with an 

incremental optimization approach, but the method still takes 

a few minutes per image, with a limit of at most 150-part 

proposals. 

IV. METHODS 

Fig. 2 outlines the in general pipeline of our 

methodology. The system takes, as input, a color picture of 

size w × h (Fig. 2a) and produces, as output, the 2D areas of 

anatomical key points for every person within the image (Fig. 

2e) to start with, a feed forward organize at an equivalent 

time predicts a group of 2D certainty maps S of  

 

body portion points (Fig. 2b) and a group of 2D vector areas 

L of part affinities, which encode the degree of affiliation 

between parts (Fig. 2c). The set S = (S1, S2, ..., SJ) has J 

confidence maps, one per part, where Sj ∈ Rw×h, j ∈ {1 . . 

. J}. The set L = (L1, L2, ..., LC) has C vector zones, one per 

limb1 , where Lc ∈ Rw×h×2 , c ∈ {1 . . . C}, each picture 

zone in Lc encodes a 2D vector (as appeared up in Fig. 1). At 

long last, the knowledge maps and therefore the getting a 

charge out of ranges are parsed by insatiable 

acknowledgment (Fig. 2d) to resign the 2D key points for all 

individual’s interior the image. 

A. Simultaneous Detection and Association 

Our architecture, shown in Fig. 3, simultaneously predicts 

detection confidence maps and affinity fields that encode 

part-to-part association. The network is split into two 

branches: the highest branch predicts the arrogance maps, 

and therefore the bottom branch predicts the affinity fields.  
Each branch is an iterative prediction, following Wei et 

al. [17], which refines the predictions on the successive 

stages t ∈ {1, . . ., T}, with intermediate supervision at every 

point. 
 

First part the image predicted by a convolutional network 

generating a group of feature maps F that's input to the 

primary stage of every branch, At the first stage, the network 

produces a group of detection confidence maps S1 = ρ1 (F) 
and part affinity fields L1 = φ1 (F)  where ρ1 and φ1 are the 
CNNs for inference at the primary stage, then we follow the 

sub-stages in each a part of it the predictions from both 

branches are sequenced and wont to produce refined 

predictions 
 

 S
t= ρt

 (F, S
t-1

, L
t-1

), ∀t ≥  2, (1)   

 

L
t
 = φt

 (F, S
t-1

, L
t-1

), ∀t ≥  2, (2) 

 
where ρt

 and φt
 are the CNNs for assumption at Stage t.  

 
Fig. 4 shows the development of the arrogance maps and 
affinity fields across stages. To direct the network to 
iteratively foresee confidence maps of body parts within the 
zero part and PAFs within the second department, we apply 
two loss functions at the top of each stage. one at each branch 
respectively. We utilize an L2 loss between the evaluated 
predictions and therefore the ground truth maps and fields. 
Here, we weight the loss functions spatially to  
deal with a viable issue that some datasets don't completely 
label all people. Specifically. 
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B. Confidence Maps for Part Detection 

Ideally, just in 

case one 

individual occurs 

within the image, 

one peak needs to 

exist in each 

confidence map 

on the off chance that the corresponding portion is visible, if 

multiple people occur, there ought to be a peak like each 

visible part j for every person k.  

We first generate individual confidence maps S*j,k for every 

person k. Let xj,k ∈  R2 be the groundtruth a part of 

everyone k part j within the picture. 

The value at location p ∈ R2 in S*j,k is defined as,  

where σ controls the spread of the height. The ground truth 

confidence outline to be anticipated by the network is a 

conglomeration of the person certainty maps through a max 

operator, We take the maximum of the confidence maps 

rather than the normal so that the precision of nearby peaks 

remains, as outlined within Fig (5). At test time, we predict 

confidence maps (as appeared within the to begin with push 

of Fig. 4), and get body part candidates by performing non-

maximum suppression 

 

C. Part Affinity Fields for Part Association 

How do we collect them to form the full-body postures of 
an obscure number of individuals? 

 
   fig5  

 

We need a certainty degree of the affiliation for each pair of 

body portion discoveries, i.e., that they have a place to the 

same person. One possible way to degree the affiliation is to 

identify an extra midpoint between each combine of parts on 

an appendage, and check for its rate between candidate 

portion discoveries, as appeared in Fig. 5b. 

In any case, when individuals crowd together - as they are 

inclined to do—these midpoints are likely to bolster wrong 

affiliations (appeared as green lines in Fig. 5b). Such wrong 

associations emerge due to two impediments 

within the representation: (1) it encodes as it were the 

position, and not the introduction, of each appendage; (2) it 

decreases the locale of bolster of an appendage to a single 

point. 

To address these restrictions, we show a novel include 

representation called part affinity fields 

 that preserves both location and orientation information 

across the region of support of 

the limb (as shown in Fig. 1c). The part affinity 

is a 2D vector field for each appendage, 

also shown in Fig. 1d: for each pixel within the region 

having a place to a specific appendage. 

a 2D vector encodes the course that focuses from one 

portion of the appendage to the other. Each type of limb has a 

corresponding affinity field joining its two associated body 

parts. Consider a single limb shown in the figure below. Let 

x_(j1,k)and x_(j2,k)be the ground truth positions of body 

parts j1and j2from the appendage c for individual k in the 

image . In case a point p lies on the appendage, the value at  

Lc
’*’

k may be a unit vector that focuses from j1 to j2 ; for all 

other focuses, the vector is zero-valued 

 To assess fL in Eq. 5 during training, we 

characterize the ground truth part affinity vector field Lc
’*’

k at 

an image point p as 

 
Here 𝑣 = (𝑥𝑗2,𝑘 − 𝑥𝑗1,𝑘) ‖𝑥𝑗2,𝑘 − 𝑥𝑗1,𝑘‖2⁄  is the unit vector 

within the heading of the appendage. The set of points on the 

appendage is characterized as those inside a remove limit of 

the line segment, i.e., those points p for which  

 

where the appendage width 𝜎𝑙is a distance in pixels, the 

appendage length is 𝑙𝑐,𝑘 = ‖𝑥𝑗2,𝑘 − 𝑥𝑗1,𝑘‖ and v⊥isa vector 

per-pendicular to v. 

The ground truth part affinity field midpoints the affinity 

fields of all individuals within the image 

 
where nc(p)is the number of non-zero vectors at point p 

across all k individuals (i.e., the average at pixels where 

limbs of different people overlap). 

 During testing, we degree affiliation between 

candidate portion location by computing the line integral over 

the comparing PAF, with the candidate appendage that would 

be shaped by interfacing the recognized body parts. 

Particularly, for two candidate portion areas dj1 and dj2 we 

test 

the anticipated portion liking field, 𝐿𝑐along the line fragment 

to degree the certainty in their affiliation 
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where p(u) introduces the position of the two body parts 𝑑𝑗1and 𝑑𝑗2, 

 
In practice, we surmised the necessarily by inspecting and 

summing uniformly spaced values of u 

D. Multi-Person Parsing using PAFs 

We perform non-maximum concealment on the location 

certainty maps to get a discrete set of portion candidate areas. 

For each part, we may have a few candidates, due to 

multiple people in the image or false positives (shown in Fig. 

2b).These portion candidates characterize a expansive set of 

conceivable limbs.We score each candidate limb utilizing the 

line indispensably computation on the PAF, defined in Eq. 3. 

The issue of finding the ideal parse compares to a K-

dimensional coordinating issue that's known to be NP-

Hard(shown in Fig. 2c).In this paper, we show a greedy 

relaxation that consistently produces high-quality matches. 

We guess the reason is that the pair-wise affiliation scores 

certainly encode worldwide setting, due to the expansive 

responsive field of the PAF network.Formally, we to begin 

with get a set of body portion detection candidates 𝐷𝐽 for 

multiple people, where 𝐷𝐽 = {𝑑𝑗𝑚: 𝑓𝑜𝑟𝑗 ∈{1. . . . 𝐽},𝑚 ∈ {1. . . 𝑁𝑗}} , with 𝑁𝑗 the number of 

candidates of portion 𝑗, and 𝑑𝑗𝑚 ∈ ℝ2is the location of the 

m-th discovery candidate of body portion 𝑗These portion 

discovery candidates still have to be be related with other 

parts from the same person—in other words, we have to be 

discover the sets of portion location that are in reality 

associated appendages. We define a variable to show 

whether two discovery candidates 𝑑𝑗1𝑚and 𝑑𝑗2𝑛 are connected , 

and the objective is to discover the ideal task for the set of 

all conceivable associations , 𝑍 = {𝑧𝑗1𝑗2𝑚𝑛 : 𝑓𝑜𝑟𝑗1, 𝑗2 ∈{1. . . . 𝐽},𝑚 ∈ {1. . . . 𝑁𝑗1}, 𝑛 ∈ {1. . . 𝑁𝑗2}}. In case 

we consider a single combine of parts 𝑗1 and 𝑗2 (e.g., neck 

and right hip) for the c-th appendage, finding the ideal 

affiliation decreases to a greatest weight bipartite chart 

coordinating issue.This case is shown in Fig. 1b.In this 

graph coordinating issue, hubs of the chart are the body 

portion discovery candidates 𝐷𝑗1and 𝐷𝑗2and the edges are 

all conceivable associations between sets of discovery 

candidates. Additionally, each edge is weighted by Eq. 3—
the part affinity aggregate. A coordinating in a bipartite chart 

may be a subset of the edges chosen in such a way that no 

two edges share a hub. Our objective is to discover a 

coordinating with most extreme weight for the chosen edges,  

 

where 𝐸𝑐is the generally weight of the coordinating from 

limb type 𝑐, 𝑍𝑐 is the subset of𝑍for limb type 𝑐, 𝐸𝑚𝑛is the 

part affinity between parts 𝑑𝑗1𝑚and 𝑑𝑗2𝑛 defined in Eq. 3. 

Eg.6 and 7 (e.g., left forearm) share a portion. Able to use the 

Hungarian algorithm to get the optimal matching. 

When it comes to finding the total body posture of 

different individuals, determining Z is a K-dimensional 

matching problem. This problem is NP Hard and numerous 

relaxations exist. In this work, we include two relaxations to 

the optimization,specialized to our space. To begin with, we 

select a minimal number of edges to get a crossing tree 

skeleton of human posture instead of utilizing the total chart, 

as appeared in Fig. 2c. Moment,we advance break down the 

coordinating issue into a set of bipartite coordinating 

subproblems and decide the coordinating in adjoining tree 

hubs freely, as appeared in Fig. 2d. 

We show detailed comparison results in Section 3.1, 

which illustrate that negligible greedy induction well-

approximate the worldwide arrangement at a division of the 

computational cost. The reason is that the relationship 

between adjoining tree hubs is modeled expressly by 

PAFs,but inside, the relationship between nonadjacent tree 

hubs is verifiably modeled by the CNN.This property rises 

since the CNN is prepared with a expansive open field, and 

PAFs from non-adjacent tree hubs too impact the anticipated 

PAF. 

  With these two relaxations, the optimization is 

decayed essentially as: 
 

 
We subsequently get the appendage association 

candidates for each limb sort freely utilizing Eqns.5-7. With 

all appendage association candidates, we will collect the 

associations that share the same portion location candidates 

into full-body postures of numerous individuals. Our 

optimization conspire over the tree structure is orders of size 

quicker than the optimization over the completely associated 

chart  

V. RESULTS 

We evaluate our method on two benchmarks for multi-

person pose estimation: the MPII human multi-person 

dataset and the COCO 2016 key points challenge dataset . 

These two datasets collect images in different scenarios that 

contain many real-world challenges such as crowding, scale 

variation, occlusion, and contact. 
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 Table [1] Results on the MPII subset of 288 images 

 

 

 

key-points challenge and significantly exceeds the previous 

state-of-the-art result on the MPII multi-person benchmark 

as we will see in the following lines. We also provide 

runtime analysis to evaluate the efficiency of the system. 

Fig. 1 shows some real results from our algorithm 
table [2] Results on the MPII full testing dataset 

Note that Testing without scale search is denoted as “(one scale)”. 

keypoints challenge and significantly exceeds the previous 

state-of-the-art result on the MPII multi-person benchmark 

as we will see in the following lines. We also provide 

runtime analysis to evaluate the efficiency of the system. 

Fig. 1 shows some real results from our algorithm. 

A. Results on the MPII Multi-Person Dataset 

Figure 1.  For comparison on the MPII dataset, we 

use the measurements of mean Average Precision (mAP) of 

all body parts based on the PCKh threshold. Table 1 

compares mAP performance between our method and other 

approaches on the same subset of 288 testing images as in 

table [1], and the full MPI testing set as in table [2]. Besides 

these measures, we compare the average optimization time 

per image in seconds. For the 288 images subset, our method 

outperforms previous state-of-the-art bottom-up methods by 

8.5% mAP. Remarkably, our estimated time is 6 orders of 

magnitude less. We report a more detailed runtime analysis 

in Section 2.2. For the full MPII testing set, our method 

without scale search already outperforms previous state-of-

the-art methods by a large margin, i.e., 13% absolute 

increase on mAP. Using a 3 scale search (0.7x, 1x and 1.3x) 

further increases the performance to 75.6% mAP. 

The mAP comparison with previous bottom-up approaches 

indicate the effectiveness of our novel feature illustration, 

PAFs, to associate body components. supported the tree 

structure, our greedy parsing methodology achieves higher 

accuracy than a graphcut optimisation formula supported a 

totally connected graph structure. We train our model 

supported a completely connected graph, and compare 

results by choosing all edges, and stripped tree edges. Their 

similar performance shows that it suffices to use stripped  

Figure 2.  Edges. we have a tendency to trained 

another model that solely learns the stripped edges to totally 

utilize the network capability. This approach outperforms 

Fig. 6c and even Fig. 6b, whereas maintaining potency. the 

rationale is that the abundant smaller variety of half 

association channels (thirteen edges of a tree vs ninety one 

edges of a graph) makes it easier for coaching convergence. 

 

Fig. 7a shows Associate in Nursing ablation analysis on our 

validation set. For the edge of PCKh-0.5, the result 

victimisation PAFs outperforms the results victimisation the 

centre illustration, specifically, it is 2.9% beyond one-

midpoint and a pair of.3% beyond 2 intermediate points. The 

PAFs, that encodes each position and orientation data of 

human limbs, is best able to distinguish the common cross-

over cases, e.g., overlapping arms. coaching with masks of 

untagged persons any improves the performance by a pair 

of.3% as a result of it avoids penalizing truth positive 

prediction in the loss throughout coaching. If we tend to use 

the ground-truth keypoint location with our parsing rule, we 

are able to acquire a mAP of 88.3%. In Fig. 7a, the mAP of 

our parsing with GT detection is constant across totally 

different PCKh thresholds because of no localization error. 

victimisation GT reference to our keypoint detection achieves 

a mAP of 81.6%. it's notable that our parsing rule supported 

PAFs achieves the same mAP as victimisation GT 

connections (79.4% vs 81.6%). this means parsing supported 

PAFs is sort of sturdy in associating correct half detections. 

Fig. 7b shows a comparison of performance across stages. 

The mAP will increase monotonically with the unvaried 

refinement framework. Fig. 3 shows the qualitative 

improvement of the predictions over stages. 
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B. Results on the COCO Keypoints Challenge 

The COCO preparing set comprises of over 100K individual 

occurrences labeled with over 1 million add up to keypoints 

(i.e. body parts). The testing set contains “test-challenge”, 

“test-dev” and “test-standard” subsets, which have generally 

20K pictures each. The COCO assessment characterizes the 

protest keypoint likeness (OKS) and employments the cruel 

normal exactness (AP) over 10 OKS edges as fundamental 

competition metric 

The OKS plays the same part as the IoU in object detection. 

It is calculated from scale of the individual and the distance 

between anticipated focuses and GT focuses. Table 3 shows 

comes about from best groups within the challenge. It is  
 

 
essential that our strategy has lower exactness than the top- 
down methods on individuals of littler scales (APM). The 

reason is that our strategy needs to deal with a much bigger 

scale range spanned by all individuals within the picture in 

one shot. In differentiate, top-down strategies can rescale the 

fix of each recognized range to a bigger measure and hence 

endure less degradation at littler scales 

 
 Table 4. Self-comparison tests on the COCO approval set 

In Table 4, we report self-comparisons on a subset of the 

COCO approval set, i.e., 1160 pictures that are haphazardly 

chosen. In case we utilize the GT bounding box and a single 

individual CPM [17], we are able accomplish a upper-bound 

for the top-down approach utilizing CPM, which is 62.7% 

AP. If we utilize the state-of-the-art protest finder, Single 

Shot Multibox Locator (SSD)[17], the execution drops 10%. 

This comparison shows the execution of top-down 

approaches depend intensely on the individual locator. In 

contrast, our bottom-up strategy accomplishes 58.4% AP. In 

the event that we refine the results of our strategy by applying 

a single individual CPM on each rescaled locale of the 

evaluated people parsed by our method, we pick up an 2.6% 

in general AP increment. Note that we as it were upgrade 

estimations on expectations that both strategies concur well 

sufficient, coming about in progressed exactness and recall. 

We anticipate a bigger scale look can encourage improve the 

execution of our bottom-up strategy. Fig. 8 appears a 

breakdown of blunders of our strategy on the COCO 

approval set. Most of the untrue positives come from 

imprecise localization, other than foundation disarray. This 

shows there's more enhancement space in capturing spatial 

dependencies than in recognizing body parts appearances. 

 
Figure 8. AP execution on COCO approval set in (a), (b), and 
(c) for Segment 3.2, and runtime examination in (d) for 
Segment 3.3 

C. Runtime Analysis 

To analyze the runtime execution of our strategy, we 

collect recordings with a changing number of individuals. 

The first outline measure is 1080×1920, which we resize to 

368×654 during testing to fit in GPU memory. The runtime 

investigation is performed on a portable workstation with one 

NVIDIA GeForce GTX-1080 GPU. In Fig. 8d, we utilize 

individual location and single-person CPM as a top-down 

comparison, where the runtime is generally corresponding to 

the number of individuals in the picture. In differentiate, the 

runtime of our bottom-up approach increments generally 

gradually with the expanding number of individuals. 

The runtime comprises of two major parts: (1) CNN handling 

time whose runtime complexity is O (1), constant with 

changing number of individuals; (2) Multi-person parsing 

time whose runtime complexity is O(n 2 ), where n represents 

the number of individuals. In any case, the parsing time does 

not altogether impact the generally runtime because it is two 

orders of size less than the CNN preparing time, e.g., for 9 

individuals, the parsing takes 0.58 ms while CNN takes 99.6 

Ms. Our strategy has accomplished the speed of 8.8 fps for a 

video with 19 individuals. 

VI. CONCLUSION 

Multi-person 2D pose estimation makes machines to 
understand and interpret humans and their interactions. In 
this paper, first, present a representation of the key point 
association that encodes both position and orientation of 
human limbs. Second, we design an architecture that learns 
part detection and association. Third, we prove that the 
greedy parsing algorithm produces high-quality parses of 
body poses and preserves efficiency regardless of the number 
of people. Fourth, we prove that PAF refinement is more 
important than combined PAF and body part location 
refinement, leading to a great increase in both runtime 
performance and accuracy. Fifth, we show that combining 
body and foot estimation into a single model improves the 
accuracy of each component individually and reduces the 
Run-time. 
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