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This paper focus on the asymptotic synchronization issue of coupled time-delay PDSs via pinning control and 

boundary control. The asymptotic synchronization of PDSs with both node-delay and coupling delay is discussed 

firstly. Then the pinning controller and boundary controller are also presented in order to achieve the asymptotic 

synchronization. Further more, synchronization criteria are established by using the Lyapunov function method 

and inequality techniques. Obviously, it is an efficient control technique to combine the pinning control with the 

boundary control for the asymptotic synchronization of the PDSs. Finally, an example of digital simulation is used 

to elucidate the practicability and validity of our control method and the correctness of the theorem. 
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I. INTRODUCTION 

Complex networks have become omnipresent for the 

irreplaceable role they play in nature and  human society, 

and  their application in engineering industry is the most 

noticeable. Examples of representative networks, such as 

Internet, power grids and interpersonal network, abound in 

our lives. Thus the study of complex networks not only 

provides great scientific value for us to further understand 

and adhere to the law of nature, it also shown great practical 

guiding significance in our life. 

Synchronization is an important feature of complex 

networks. By taking advantage of its special property, 

people have successfully solved many sticky problems. 

Domestic and foreign scholars have proposed and studied 

various synchronization patterns [1-26], [28-34].  

Delays are inevitable on account of the limited propagation 

velocity, traffic congestion in the signal transmission and 

other objective factors. If delays are ignored, differences 

between  theoretical analysis and reality will emerge, which 

in turn, may contribute to erroneous results and 

immeasurable loss. Time delay exists objectively during 

the information transmission of complex networks. Hence, 

complex networks with time-delay are attracting more and 

more attention because of their broad prospect in 

application and the synchronization problem with 

time-delay has been studied extensively [1-8]. The delay in 

the complex dynamical network comprises two types, the 

node delay that occurs inside the system, and the coupling 

delays generated during the exchange of information 

between systems. The model discussed in this paper is the 

co-existence of node delay and coupling delay. 

The phenomena related to time and space can be modeled 

by partial differential systems in the field of time and space 

in mathematics. Due to the existence of complex network 

models with PDSs in reality, the research on 

synchronization of complex networks with PDSs has 

aroused great interest of scholars and many breakthroughs

have been made in this field. In [22], the author explored

the pinning sampled-date synchronization of inertial neural 

networks. The authors studied pinning synchronization of 

CRDNNs and obtained the sufficient conditions to make 

the networks achieve synchronization in [23-24]. In [26], 

the author designed a novel distributed coupling protocol 

and proposed some criteria for the complete 

synchronization of CRDNNs. In [27], the author addressed 

the passivity-based synchronization problems of an array 

model of nonlinear CRDNNs. In [30], the authors 

considered the synchronization for the coupled PDSs via 

diffusion coupling. In [31], the author investigated the 

synchronization of coupled delay PDSs. In [34], the 

sufficient condition which guarantees the mean square 

synchronization for disturbed coupled stochastic PDSs was 

provided and the adaptive pinning control strategy was 

proposed. The synchronization control of PDSs is mainly 

based on the distributed control method in the documents 

listed above. 

It is impractical to impose control on all nodes because of 

the complex properties and huge structure of a complex 

dynamical network. In order to reduce the difficulty to 

control and to save the cost, we naturally consider the 

practice of selecting some nodes in the network and taking 

control of them to realize synchronization. We named this 

control method pinning control. Owing to its low cost and 

convenience, pinning control is widely applied in the 

synchronization control of complex networks and a lot of 

fruitful research results have been achieved, see [9-28]. At 

the same time, the adaptive control method is beneficial for 

the network to obtain the appropriate control gain, thus the 

synchronization can be ensured. 

We know that boundary control is an excellent control 

method for PDSs as it just requires a small number of 

controllers and is easy to use. Therefore, some authors 
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started their study on this topic. In [32], Kai-Ning Wu 

investigated the asymptotic synchronization for PDSs and 

presented criteria for synchronization via boundary control. 

In [33], the authors studied the synchronization for PDSs by 

using the back-stepping approach and boundary control. 

However, many problems related to boundary control 

require further study. 

Obviously, it is a good control strategy to combine the 

pinning control with boundary control in order to realize 

asymptotic synchronization for the PDSs. In that the 

research is difficult, as far as we know, there is no relative 

literature. So in literature [32], the author regards this issue 

as an open question and looks forward to further research 

results. 

After reviewing a large number of literature,  this article, 

inspired by those above-mentioned analysis, is devoted to 

the research of the asymptotic synchronization of PDSs via 

pinning control and boundary control. The main 

innovations of this article are listed as below in comparison 

with other references related to boundary control. 

(1) We will try to solve the pinning boundary control

problem for the coupled PDSs in this article. A new

adaptive pinning controller is designed to control the

fraction of nodes in PDSs. The pinning controller and the

boundary controller are designed to realize the asymptotic

synchronization and the criteria for synchronization are

established. We have imposed additional pinning control

on the basis of boundary control compared with literature

[32].

(2) The research scope of the asymptotic synchronization of

PDSs is expanded. On the one hand, in [32], the author

investigated node-delay and coupling delay of the coupled

PDSs respectively and presented the synchronization

criteria. In this paper, the co-existence of node-delay and

coupling delay of PDSs will be studied and this situation is

more complicated. On the other hand, the function   in the

PDSs is assumed to be a nonlinear vector valued function.

From these two aspects we can see that a great

improvement has been made in the model in literature [32]

and the model presented in this article is more general and

more practical.

(3) A new asymptotic synchronization criterion is

established for the coupled delay PDSs by using the

Lyapunov functional method and inequality techniques.

The major content and the structure of this article are

arranged this way. The PDSs model with pinning controller

and boundary controller is presented and background

knowledge is introduced in section 2. The asymptotic

synchronization criteria for the coupled delay PDSs are

established in section 3. In section 4, an example of digital

simulation is used to elucidate the practicability and

validity of our control method and the correctness of the

theorem. The last section summarizes the main conclusion

of this paper.

II. MODEL DESCRIPTION AND 

PRELIMARIES

First, we consider the N-coupled PDSs with node-delay and 

coupling delay  

, ,

1
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1( , ) [ ( , ), , ( , )]T n

i i in
y x t y x t y x t R is the state 

variable of the i-th subsystem and the subscripts t  and x
stand for separately the partial derivatives relative to t  and 

x  in system (1). The variables [0, )t   and

[0, ]x L R   are the time and spatial variable and

( ( , )) n

i
f y x t R  is a nonlinear vector valued function

used to characterize the dynamic behavior of the node. 
is required to be a symmetric positive definite matrix and 

, n n
A R

   are real matrices. ( ) m

i
u t R is the

boundary control input of the i-th subsystem and 

n m
C R

 is the control input matrix. ( )
ij N N

G g   is

the coupling matrix of the PDSs and ij
g  is defined as 

follows: 0
ij

g   when there is a connection between node

i  and node ( )j i j ; otherwise, 0( )
ij

g i j   and the

diagonal elements are defined by 

, 1,2, , .
ii ijj i

g g i N
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Remark 1 The matrix G  does not need to be symmetric or 

irreducible.  

Let 
1( , ) [ ( , ), , ( , )]T n

n
s x t s x t s x t R  be a unique

solution to the isolated node of the PDSs to which all 
'( , )

i
y x t s  are expected to synchronize and ( , )s x t

satisfies the following PDSs: 

0

( , ) ( , ) ( ( , )) ( , ),

( , ) ( , ) 0,

( , ) ( , ), [ ,0].

t xx
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(2)

Define the synchronization error of the PDSs as below: 

( , ) ( , ) ( , )
i i

e x t y x t s x t   .  (3) 

And ( ) m

i
u t R  is the state feedback controller for the i-th

node of the PDSs (1) which is designed as follows: 

0 0
( ) ( ( , ) ( , )) ( , ) , (4)

L L

i i i
u t y x t s x t dx e x t dx    
where 

m n
R  is the undetermined control gain matrix.

( , ), 1,2, ,
i

v x t i N  are the pinning adaptive 

controllers which are designed as follows: 

( , ) ( , ) ( , ), 1,2, ,

( , ) 0, 1, .

i i i

i

v x t k x t e x t i l

v x t i l N

  
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(5)
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We can assume that the first (1 )l l N   nodes are

selected to be controlled by pinning controllers. 

The pinning feedback gains are tuned by  

, ( , ) ( , ) ( , ), 1,2, , .T

i t i i i
k x t e x t e x t i l                (6) 

where i
  is a positive constant for 1 .i l 

From (1) and (2), we can get the following error system of 

the i-th node:  

, ,

1
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( ( , )) ( , )

( , ) ( , ),
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          (7) 

Remark 2 The model of the PDSs (1) discussed here is 

different from the models of PDSs aforementioned [22-24, 

26-27, 30-34].So the model of the PDSs is extended.

Denote

1( , ) [ ( , ), , ( , )]T T T

N
e x t e x t e x t ,           (8) 

1( ( , ), , ( , ) ,0, ,0)
l

N ll
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


,          (9) 

* * *

1( , , ,0, ,0)
l

N ll

K diag k k




,          (10) 

1[( ( ( , ) ( ( , ))) ,

, ( ( ( , ) ( ( , ))) ] .

T

T T

N
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 


       (11) 

For the sake of simplicity, the variables ( , )x t  are omitted 

in the subsequent proof. n
I  is the identity matrix and

A B  stands for the Kronecker product of A and B .

According to equation (7) and the above notations, the error 

system can be converted into the following form: 

0
0

( ) ( ) ( , )

( ) ( , ) ( ) ,

( ) , 0,

, [ ,0].

t N xx N
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where 1[ , , ]T T T T T

N       .

For a symmetric matrix M ， 0( 0)M M   means

that it is negative definite (semi-negative definite). 
1,2([0, ]; )n

W L R  is a Sobolev space of absolutely 

continuous n-dimensional vector function 

( ) :[0, ] n
x L R   with Squire integral derivatives

( )l

l

d x

dx


of the order 1l  .

Definition 1 [32] The PDSs (1) achieve asymptotic 

synchronization if the error ( , )e x t  satisfies 

lim ( , ) 0
t

e x t   for all [0, ].x L

Lemma 1 [35] Let 
1,2([0, ]; )n

z W L R  be a vector

function with (0) 0z   or ( ) 0z L  . Then, for a matrix

0,S   we have the integral inequality:

2 2

0 0
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  
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i
l  ,
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III. ASYMPTOTIC SYNCHRONIZATION FOR

COUPLED TIME-DELAY PDSS

In this section, we present the synchronization criteria for 

the coupled time-delay PDSs via pinning control and 

boundary control. 

Theorem1. For the PDSs (1) with node-delay and coupling 

delay, if there exist matrices 
m n

R   and * N N
K R


satisfying the following LMI: 
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where 
*
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*2( ) 2( ),N nI C K I    then the PDSs (1) achieve 

asymptotic synchronization via pinning control and 

boundary control. 

Proof.If we want to prove that system (1) is asymptotically 

synchronous, we only need to prove that the system (12) is 

asymptotically stable. 

Construct the Lyapunov function for the error system (12) 
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The time derivative of V  along the solution of PDSs (7) is 

given by 
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Integrating by parts and using the boundary conditions of 

(12), we can get  
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2

2 0
( )

2

L
T

Ne I edx
L


   

0
( )

L
T T

e
e e dx

e

 
  

 
 .

In light of (13), we can get 

( ( , )) 0V e t 
Noting (0) 0,lim ( ) ,

e
V V e   we can find that

0
lim 0

L
T

t
e edx


 , then lim ( , ) 0,

t
e x t




This indicates that system (12) is asymptotically stable so 

that the proof of the theorem is complete. 

Remark 3 The control method in this paper is different from 

the control method in literature [32] because the pinning 

controller and the boundary controller are designed 

simultaneously in system (1) to realize the asymptotic 

synchronization.   

Remark 4The nonlinear PDSs (1) presented in this paper is 

more general and applicable than the linear PDSs (2.1) in 

literature [32] because the function f  in PDSs (1) is a 

nonlinear vector valued function. 

Remark 5 We can see that the model (2.1) and the model 

(3.7) proposed in literature [32] can be considered as two 

special cases of the model (1) proposed in this paper 

because the node-delay and the coupling delay are included 

in model (1). 

Remark 6 The model of PDSs is generalized in this paper 

and our control methods are different in comparison with 

the PDSs in literature [22-24, 26-27, 30-34]. For the first 

time, we combine pinning control with boundary control 

for synchronous control of PDSs.  

Next, we discuss the coupled PDSs only with the 

node-delay. 

, ,

1

, 0 ,

( , ) ( , ) ( ( , ))

( , ) ( , ) ( , ),

( , ) ( ), ( , ) 0,

( , ) ( , ), [ ,0], 1,2, , .

i t i xx i

N

i ij j i

j

i x x i i x x L

i i

y x t y x t f y x t

Ay x t g y x t v x t

y x t Cu t y x t

y x t x t t i N



 



 

  

    

  
    


   (21) 

Boundary controller ( )
i

u t  and pinning controller ( , )
i

v x t

are designed according to (4) and (5). 

The synchronization function ( , )s x t  can be described by 

the following equation corresponding to equation (21): 

0

( ) ( , ),

0,

, [ ,0].

t xx

x x x x L

s s f s As x t

s s

s t



 
 

    
  
   

     (22) 

We can obtain the synchronization error dynamics, for 

1,2, , ,i N

, ,

1

, 0 ,

( ) ( )

( , ) ,

( ), 0,

, [ ,0].

i t i xx i

N

i ij j i

j

i x x i i x x L

i i

e e f y f s

Ae x t g e v

e Cu t e

e t



  



 

   

    

  
    


   (23) 

Similarly, we can get the following error system: 

0
0

( ) ( ) ( , )

( ) ( ) ,

( ) , 0,

, [ ,0].

t N xx N

n n

L

x x N x x L

e I e F I A e x t

G I e K I e

e I C edx e

e t






 

     
    


  
    


    (24) 

where 
1[ , , ]T T T T T

N       .

For system (21), we have the following corollary of 

asymptotic synchronization via boundary control and 

pinning control. 

Corollary 1 For the PDSs (21), if there are matrices 
m n

R   and * N N
K R

 satisfying the following LMI:

11

2

2

( )

0,
( )

2

T

N

N N

I C

I C I
L





  
        

 (25) 

where
*

11 2 2 2( )( )T

nN nN N NI l I I A I A     
*2( ) 2( ) 2( ).n N nG I I C K I       

Then the PDSs (21) are of asymptotic synchronization. 

Here we omit the proof. 

At the end of this section, we discuss the PDSs only with 

the coupling delay. 

, ,

1

, 0 ,

( , ) ( , ) ( ( , ))

( , ) ( , ),

( , ) ( ), ( , ) 0,

( , ) ( , ), [ ,0], 1,2, , .

i t i xx i

N

ij j i

j

i x x i i x x L

i i

y x t y x t f y x t

g y x t v x t

y x t Cu t y x t

y x t x t t i N



 



 

  

   

  
    


   (26) 

Boundary controller ( )
i

u t  and pinning controller ( , )
i

v x t

are designed according to (4) and (5). 

Define the synchronization function ( , )s x t  as follows: 

0

( ),

0,

, [ ,0].

t xx

x x x x L

s s f s

s s

s t 
 

  
  
   

          (27) 

The error system is as follows: 

.
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, ,

1

, 0 ,

( ) ( )

( , ) ,

( ), 0,

, [ ,0].

i t i xx i

N

ij j i

j

i x x i i x x L

i i

e e f y f s

g e x t v

e Cu t e

e t



  



 

   

   

  
    


     (28) 

The error system can be converted into the following form: 

0
0

( )

( ) ( , ) ( ) ,

( ) , 0,

, [ ,0].

t N xx

n n

L

x x N x x L

e I e F

G I e x t K I e

e I C edx e

e t






 

  
     


  
    


      (29) 

where 
1[ , , ]T T T T T

N       .

For system (26), we have the following corollary of 

asymptotic synchronization via boundary control and 

pinning control. 

Corollary 2 For the coupling delay PDSs (26), if there are 

matrices 
m n

R   and * N N
K R

  satisfying the 

following LMI: 

11

2

2

( )

0,
( )

2

T

N

N N

I C

I C I
L





  
        

      (30) 

where 
*

11 2 2 2( )( ) 2( )T

nN nN n n NI l I G I G I I C       
*2( ).

n
K I   

Then the PDSs (26) are of asymptotic synchronization. 

We omit the proof here. 

IV. EXAMPLE
An example of digital simulation is used to elucidate the

practicability and validity of our control method and the

correctness of the theorem in this section. We discuss the

PDSs with node-delay and coupling delay

, ,

3

1

( , ) 0.01 ( , ) sin( ( , ))

0.01 ( , 0.5)

( , -0.5) ( , ).

i t i xx i

i

ij j i

j

y x t y x t y x t

y x t

t
g y x t e x t

x

 

 

 
     (31) 

The boundary conditions and initial value are designed as 

below: 

, 0 , 1( ), 0, ( , ) ( ),
i x x i i x x i i

y u t y y x t x   
[ 0.5,0], 1,2,3,t i  

in which 
1

0
( ) 4 ( , ) .

i i
u t e x t dx   

The synchronization function ( , )s x t  satisfies 

( , ) 0.01 ( , ) sin( ( , )) 0.01 ( , 0.5).
t xx

s x t s x t s x t s x t   

The boundary conditions and initial value are designed as 

below: 

0 1 0, ( , ) ( ), [ 0.5,0].
x x x x

s s s x t x t       

The coupling matrix G  is designed as 

1 0 1

1 1 0

0 1 1

G

 
   
  

. 

Let the initial conditions be 

1

2

3

( , ) 0.4cos ,

( , ) 0.3sin ,

( , ) 0.3cos 2 ,

y x t x

y x t x

y x t x









( , ) 0.4, [ 0.5,0]s x t t   .

Let 2l  , it means that the first two nodes are selected to

be controlled by pinning controllers. 

We can verify that (13) is satisfied. Fig 1 shows that the 

second-order PDSs (1) can achieve asymptotic 

synchronization via pinning control and boundary control. 

Fig1 Closed-loop profiles of evolution of 
( , )

i
e x t

for the 

system (31), i=1,2,3. 
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Fig2 Time evolution of the synchronization errors 

( , ), 1,2,3
i

e x t i  . 

Remark 7 From the figure 1 and the figure 2 we can see that

the synchronization errors of the first two nodes which are 

controlled by pinning control and boundary control 

simultaneously can converge to zero faster than the third 

node which is controlled only by boundary control and the 

convergence effect of the synchronization errors is superior 

to that of the third one, which indicates combining pinning 

control with boundary control is a more efficient control 

method for the PDSs. 

V. CONCLUSION

Asymptotic synchronization of PDSs via pinning control 

and boundary control is investigated in this paper. 

Boundary control is a practical control strategy for 

spatial-temporal systems, like the partial differential 

systems, which helps to implement performance gains. 

On the one hand, only a small number of actuators are 

required for the boundary of the one-dimensional space 

domain. On the other hand, the pinning control only control 

part of the nodes, so the pinning controller and boundary 

controller designed by us are relatively simple and easy to 

implement and can ensure the asymptotic synchronization 

of PDSs.  

Boundary controllers have unique advantages because they 

are different from state feedback controllers and can be 

designed and implemented when the system state is 

unknown. Therefore, the study of boundary control has 

important realistic significance for us. 
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