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--------------------------------------------------------------ABSTRACT-------------------------------------------------------------------- 
The motivations behind 5G networks include seamless handovers, higher data rates, lower latencies of about one 
millisecond, and enhanced coverage compared to 4G networks. To achieve these goals, network densification has 
been implemented to cope with increasing capacity demands. Networks with ultra-densification have large 
numbers of heterogeneous small cell deployments such as femto-cells, relays and microcells which complicate 
mobility management, resulting in unnecessary, frequent, and ping-pong handovers as UEs move within the 
network. To address these challenges, state of the art approaches using fuzzy logic, adaptive neuro-networks or 
their combination have been proposed. However, these approaches majorly address the QoS issues, ignoring the 
security aspect of handovers. In this paper, a handover protocol that incorporates both security and QoS in the 
handover process is proposed. The simulation results showed that this protocol reduced handover latency, packet 
losses, number of executed handovers and ping pong rate by 56.1%, 38.8 %, 74.6% and 24.1% respectively. In 
addition, the developed protocol yielded a 27.1% increase in the handover success rate, and a 27.3% reduction in 
handover failure rate. This protocol was also shown to be robust against de-synchronization and session hijacking 
attacks. 
Keywords: 5G, handover success rate, handover failure rate, Latency, packet loss, ping pong, security. 
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1. Introduction 

Security requirements for 5G heterogeneous networks (Hetnets) 
are high compared to 2G, 3G and 4G due to interoperability 
requirements among the Hetnets [1]. Unfortunately, the use of 
inefficient authentication schemes during 5G handovers lead to 
performance degradation in heterogeneous 5G cells and increases 
the delay. In addition, [2] explain that apart from increased 
handover delays, 5G networks experience frequent failures of the 
handoff process, both of which reduce capacity gains offered by 
5G networks. In their paper, [3] discuss other 5G network 
technical challenges relating to handover authentication, user 
privacy protection and resource management. According to [4], 
provision of strong security, privacy and low latency handovers is 
required for the successful deployment of 5G-wireless local area 
networks (5G-WLAN) heterogeneous networks. As such, a 
number of authentication schemes such as worldwide 
interoperability for microwave access - local area network 
(WiMAX-WLAN), UMTS - wireless local area networks (UMTS-
WLAN), and LTE- wireless local area networks (LTE-WLAN) 
have been proposed to boost security and minimize handover 
delays. However, authentication delays still remain the main 
challenge in these schemes. An investigation by [5] pointed out 
that 5G networks call for communication processes that exhibit 
minimal latency. This requirement is cumbersome to achieve 
especially when combined with needs for secure and privacy-
preserving strategies. On the other hand, [6] explain that consistent 
and effective handover management in 5G heterogeneous 
networks is a serious challenge. This is because small cells infer 
frequent handovers, which necessitate frequent user equipment 
(UE) authentications among cells, leading to heavy signaling 
among the source evolved node B (eNB), target eNB, UE and the 
core network, and hence increased handover delays.  In their 
paper, [7] pointed out that if the handover procedures are not 
handled very fast, then the ongoing calls can be terminated, in  

 
 
which case it becomes a dropped call. High call drop probability 
leads to denial of services (DoS) which deteriorates the network   
quality of service (QoS). During handover between long LTE and 
UMTS networks, the use of internet protocol security (IPSec) is 
not obligatory [8]. This means that backhauling traffic lacks 
protection and hence is vulnerable to attacks. As a result, mobile 
user’s traffic and network’s UE’s are exposed to attacks such as 
eavesdropping, impersonation of the network, impersonation of a 
user, MitM, and session hijacking attacks. 
 
To ensure LTE-A security, strong authentication should be robust 
against attack such as foreign agent impersonation, home agent 
impersonation, offline password guessing, and insider attacks [9]. 
In addition, the authentication scheme should uphold local 
verification and user anonymity. As [10] point out that secure and 
efficient handoff authentication should ensure server 
authentication, subscription validation, user anonymity, privacy 
preservation, user untraceability, periodic session key updating, 
low computational complexity, and low communication cost. 
According to [11], the current handover protocols are reactive in 
nature in that resource assignment and control signaling is carried 
out upon handover initiation. This is detrimental for 5G ultra-
reliable and low latency communication requirements. There is 
therefore need for proactive strategies where resource assignment 
and control signaling is accomplished before the actual UE 
handover. This requires that there be both precise prediction of the 
UE next point of attachment and UE mobility instant. A number of 
strategies have been proposed for vertical handover decision, 
which fall in five categories: function based, user centric, multi 
criterion based, fuzzy logic and neural network based, and context 
aware strategies. Multi-criteria approaches are superior since they 
help in deciding when the handover should occur, establish the 
target network, and also the determination of the necessity of the 
handover. Function based strategies can be in form of the cost  
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functions such as security, bandwidth, power consumption and 
monetary cost. Many handover protocols proposed so far employ 
one or a combination of these strategies. In this paper, all these 
five strategies were combined to develop a protocol that met 
network, user and service requirements for improved QoS. The 
contributions of this paper include the following: 

• We introduce four additional ciphering parameters ƺ, ψ, Ж 
and Ұ in the current LTE EPS-AKA to protect traffic over the 
S1, X2, s6A and Uu interfaces respectively. 

• Six parameters are incorporated in the handover decision 
process which were shown to yield better decisions in target 
cell selection. 

• We employ adaptive neuro-network in conjunction with 
fuzzy logic to optimize the handover parameters in (II) above 
and hence improve the handover process in terms of reduced 
packet losses, ping pong handovers, average number of 
executed handovers and handover latencies. 

• We show through simulations that (I), (II) and (III) lead to 
improved security in the current LTE EPS-AKA and 
enhanced QoS respectively. 

The rest of this paper is organized as follows: Section 2 discusses 
related work while part 3 elaborates the methodology employed to 
achieve the paper objectives. On the other hand, section 4 presents 
the results and discusses these results while part 5 evaluates the 
developed protocol. Lastly, section 6 concludes this paper and 
gives future direction in this research area. 

2. Related Work 
To prevent packet losses and boost performance [12] proposed a 
fuzzy logic vertical handover using RSS, bandwidth, monetary 
cost, user preference and velocity of the mobile user as input 
metrics. On the other hand, [13] developed a fuzzy system for 
seamless handover and energy-efficient support for mobile 
multimedia communication in an integrated LTE and Wi-Fi 
network. This technique incorporated three input variables namely 
mobile speed, battery level and quality of experience. On their 
part, [14] developed handoff prediction and target network 
selection scheme for 5G-IoT networks using a combination of 
Multi-Layer Feed Forward Network (MFNN) and fuzzy decision 
model. Similarly, a multilayer feed-forward artificial neural 
network algorithm for handover decision in wireless 
heterogeneous networks has been suggested by [15]. Here, the 
neural network facilitates handover by selecting the best target cell 
based on data rate, service cost, RSSI and velocity of the UE. This 
algorithm was shown to reduce the number of handovers 
compared to existing techniques. In addition, [16] proposed a 
vertical handover based on adaptive neuro-fuzzy inference system 
(ANFIS) for intelligent handover and best destination network 
prediction. The input parameters employed were SINR, bandwidth 
and energy consumption while the implementation was handover 
decision between fem-to cell and macro-cell integrated network. 
The simulation results demonstrated that this approach reduced 
unnecessary handovers and minimized energy consumption as 
compared to the existing approaches. 
 
Moreover, [17] employed Fuzzy Logic (FL) to design a vertical 
handover decision algorithm to facilitate target network selection 
in 5G IoT networks. To accomplish this, Multi-layer Feed 
Forward Network (MFNN) is employed to predict user mobility 
based on distance, RSS, mobile speed and direction parameters. 
Regarding target selection, parameters such as traffic load, 
handover latency, battery power, security and cost are used as 
inputs to the fuzzy decision model. Researchers in [18] have also 
developed a candidate network selection handover algorithm using 
fuzzy logic to estimate handoff necessity and perform target 
selection. When deployed in in heterogeneous wireless networks, 
the scheme can perform handoffs in situations where there is 
degraded QoS, unavailability of a channel or Weak RSS. By so 
doing, it increases resource utilization by facilitating large number 
of successful connections and few number of call blocking and      

 

dropping. In an effort to reduce both number of handoffs and 
delays, authors in [19] have implemented an Artificial Neural 
Networks (ANN) algorithm for vertical handover decisions using 
both QoS parameters and Quality of Experience (QoE) indicators. 
Similarly, [20] proposed an Adaptive Neuro-Fuzzy Inference 
System (ANFIS) based vertical handover using parameters such as 
subscriber speed, jitter, initial delay, bandwidth and RSS. 
Simulation results showed that this algorithm offered better 
performance in terms of reduced delays and improved QoS in 
terms of throughput, timeliness and reliability. Additionally, [21] 
have also proposed a cloud-based machine learning technique to 
improve QoS by reducing the number of handoffs in networks. 

Authors in [22] have exploited the UE's velocity and the radio 
channel quality combined into a fuzzy-logic system to develop 
self-tuning handover algorithm to reduce the ping pong effect and 
a handover failure ratio. Here, the algorithm compares the signal 
level from the serving eNB with a dynamic threshold of this signal 
level. The simulation results showed that this algorithm reduces 
handover failure ratio and ping pong effect. On the same breadth, 
[23] developed a mobile user traversal history based fuzzy 
handover address ping-pong effect. The results showed that the 
value of handover success metric was increased to 0.6 compared to 
0.3 for the Monte Carlo method. Similarly, researchers in [24] 
have proposed a fuzzy-logic-based handover decision system to 
reduce ping-pong effect in an LTE network while [25] have 
developed a fuzzy logic based handover decision algorithm that 
adapted fuzzy rules and membership functions according to 
historical data available within a tracking area. This algorithm 
utilized three inputs which included Reference Signal Received 
Power (RSRP), Block Error Rate and QoS. The results showed that 
this algorithm reduced operating expenses and the number of 
unnecessary handovers by 20% when compared with the standard 
LTE handover. 

In their paper, [26] have developed GPS historical information-
based technique using the multilayer perception neural network 
(MPNN) to reduce handover delays. Here, the angle of the target 
eNB is calculated and the distance to that target is taken into 
consideration during the handover process, such that some eNBs 
are skipped based on their angles. To prevent unnecessary 
handovers and reduce delays, [27] have also proposed genetic 
algorithm-based handover in which each channel consists of four 
parameters (genes), eNB capacity, signal strength, service cost and 
data rate. Here, this technique automatically scans and senses all 
available channels and selects the best or optimized channel. 
Further, [2] have proposed an SDN-based mobility and available 
resource estimation strategy to address the handover latency 
problem. Here, neighbor eNB transition probabilities of the UE 
and its available resource probabilities are estimated using Markov 
chain formulation.  

3. Methodology 
In the proposed architecture, both the Home Subscriber Server 
(HSS) and UE contained the Permanent master key, K which they 
utilized to derive both Cipher key (CK) key and Integrity key (IK) 
key. The MME stored the Local master key, KASME which was 
derived by binding both CK and IK with MME identity to key 
derivation function (KDF). The KNAS_E was employed for 
encrypting the NAS traffic while KNAS_I was utilized for integrity 
verification of the NAS traffic exchanged between UE and the 
MME as shown in Fig. 1. On the other hand, KeNB was used to 
protect the AS layer traffic between the UE and the eNB. The RRC 
encryption, KRRC_E, encrypted the RRC traffic while RRC integrity 
verification, KRRC_I was for integrity verification of the RRC 
traffic. On the other hand, the Uplink encryption, KUP_E key 
encrypted the uplink traffic. Three additional keys were introduced 
into the current LTE key hierarchy:  ƺ, ψ, Ж and Ұ.  Whereas ƺ 
enciphered traffic over the S1 interface, ψ encrypted traffic over 
the X2 interface. On the other hand, Ж protected the encrypted 
traffic over the S6a interface between the MME and the HSS. 
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On its part, Ұ enciphered traffic over the UU interface. In so doing, 
the security issues in the current LTE where handovers parameters 
and signaling traffic are passed over both the NAS and AS layers 
in plain text were solved. These parameters include time and date 
of expiration, session keys, and authentication parameters 
exchanged among the UE, serving eNB (SeNB) and target Enb 
(TeNB). As such, a sixth security layer was added to this key 
architecture. The rationale for combining fuzzy logic and neural 
networks was to design an architecture that employs a fuzzy logic 
to represent handover parameters in an interpretable manner and 
the learning ability of a neural network to optimize these 
parameters. Unlike majority of previous fuzzy logic and adaptive 
neuro network (ANN) based handovers that employ two or three 

input parameters for making handover decision, the developed 
protocol utilized six input parameters: blocking probability, power 
density, traffic intensity, velocity, received carrier power and path 
loss. Table 21 gives the justification for the selection of these 
parameters. These parameters satisfied the necessity for a 
handover that took into consideration the network, user, UE and 
service requirements as shown in Table 2. Another reason for the 
inclusion of additional paramerers was that increment in the 
number of parameters implied an increase in the number of rules in 
the fuzzy logic inference engine, which boosted the performance 
of the ANN-FL in terms of the path loss, ping pong, handover 
latencies and average number of executed handovers. 

 
Table 1: Parameters Selection Rationale 

Parameter Rationale 
Power density & received carrier 
power 

Guaranteed that the signal levels in the new eNB are strong enough to sustain an ongoing call 

Traffic density Ensured load balancing such that system overloading is mitigated 
Call blocking probability Guaranteed that the handover process does not interfere with new calls being initiated by the UEs 
Path loss Guaranteed that the new cell does not expose the handed-over calls to major path losses that may lead 

to packet losses or delays 
Velocity Control handover between macro and micro cells in an overlay network 

Here, received carrier power ( 𝑃𝑃𝑟𝑟 ) represented network 
requirements; power density (𝑃𝑃𝐷𝐷), path loss (𝑃𝑃𝐿𝐿) and velocity (V) 
represented UE requirements; traffic intensity (Ac) and blocking  

probability (Pb) represented service requirements; while security 
represented user requirements.  

Table 2: Handover Metrics 
Handover Information Gathering Phase Handover Decision Phase 

Network Based UE Based User Based Service Based Criteria Strategy 
Received carrier power Velocity 

Path loss 
Power density 

User preferences  
User profile 
Security 

Traffic intensity  
Blocking probability 

combination of: 
 
Network based 
UE Based 
User Based 
Service Based 

Function based 
User centric based 
Fuzzy logic based 
ANN based 
Multi-criteria based 
 

Regarding the handover strategy, this research employed three 
strategies: fuzzy logic; ANN based; multi-criteria; user centric and 
function based strategies in form of security, power density and 
path loss. Multi-criteria approach helped in deciding when the 
handover should occur, established the target network, and also the 
determined the necessity of the handover. On the other hand, 
function based strategy was in form of security. Mathematical 
model of some of these metrics are defined below. 

Definition 1:  The free-space propagation model is employed for 
received signal strength prediction in the line-of-sight (LOS) 
environment where there is no obstacle between the transmitter 
and receiver. Using the Friis equation, received power is given by 
(1): 

𝑃𝑃𝑟𝑟(𝑑𝑑) = 𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟𝜆𝜆2

(4𝜋𝜋)2𝑑𝑑2𝐿𝐿
= � 𝜆𝜆

4𝜋𝜋𝑑𝑑
�

2
𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟                         (1)                                                                

Where 𝑃𝑃𝑡𝑡  is the transmitted power in watts, 𝑑𝑑 is the transmitter-
receiver distance in meters, 𝜆𝜆 is the wavelength in meters, 𝐺𝐺𝑡𝑡  is the  
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Fig.1: Proposed Handover Key Exchanges within the Network 
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transmitter antenna gain, 𝐺𝐺𝑟𝑟  is the receiver antenna gain, the 
product 𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡  is the EIRP and 𝐿𝐿  is system loss factor which is 
independent of propagation environment. Generally, L >1 but can 
be equal to unity for lossless system hardware. From (1), it is 
evident that the received power attenuates exponentially with 
distance 𝑑𝑑. Taking 𝐿𝐿 = 1, the free-space (FS) path loss without 
any system loss is given by (2): 

𝑃𝑃𝐿𝐿(𝐹𝐹𝑁𝑁)(𝑑𝑑) = 10 𝑙𝑙𝑙𝑙𝑙𝑙 𝑃𝑃𝑡𝑡
𝑃𝑃𝑟𝑟

 = 10 log 𝐺𝐺𝑡𝑡𝐺𝐺𝑟𝑟𝜆𝜆2

(4𝜋𝜋)2𝑑𝑑2𝐿𝐿
   (dB)     (2)                                      

In dBm form, taking 𝑑𝑑  as the transmitter-receiver distance in 
meters, transmitted power as 𝑃𝑃𝑡𝑡 , transmitter antenna gain as 𝐺𝐺𝑡𝑡 , 
receiver antenna gain as 𝐺𝐺𝑟𝑟  , and electromagnetic signal 
wavelength as 𝜆𝜆  , then by the Friis model, the received carrier 
power, 𝑃𝑃𝑟𝑟  is given by (3): 

𝑃𝑃𝑟𝑟 = 20 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝜆𝜆
4𝜋𝜋𝑑𝑑

� + 𝑃𝑃𝑡𝑡 + 𝐺𝐺𝑡𝑡 + 𝐺𝐺𝑟𝑟                          (3) 
                                                                               

Definition 2: Path loss depicts the attenuation of signal strength as 
it propagates from the transmitter to the receiver [28]. Taking 𝑁𝑁 as 
the free space path loss in dB, path loss exponent  𝑦𝑦 , distance 
between eNB and receiving antenna in meters 𝑑𝑑 , reference 
distances 𝑑𝑑0, 𝑋𝑋𝑓𝑓  as the correction for frequency 940 in MHz, 𝑋𝑋ℎ  as 
the correction for receiving antenna height in meters, and 𝑁𝑁 as the 
correction for shadowing in dB (8.2 < 𝑁𝑁 < 10.6 𝑑𝑑𝑑𝑑 ), then the 
Stanford University Interim (SUI) path loss model, 𝑃𝑃𝐿𝐿(𝑁𝑁𝑆𝑆𝐼𝐼)  is 
given as shown in (4): 
𝑃𝑃𝐿𝐿(𝑁𝑁𝑆𝑆𝐼𝐼)(𝑑𝑑)  =  𝑁𝑁 +  10𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙10 ( 𝑑𝑑  

𝑑𝑑0
)  +  𝑋𝑋𝑓𝑓  +  𝑋𝑋ℎ  +  𝑁𝑁    𝑓𝑓𝑙𝑙𝑟𝑟 𝑑𝑑 > 𝑑𝑑0    

                                                                                  (4)                                                                                                            
where 𝑑𝑑0  is equal to 100 meters. Here, 𝑦𝑦,  𝑋𝑋𝑓𝑓 , and 𝑋𝑋ℎ  are 
computed as shown in (5): 
 

 𝑁𝑁 = 20 log 10 �4𝜋𝜋𝑑𝑑0

𝜆𝜆
�                                                                        

𝑌𝑌 = 𝑎𝑎 − 𝑏𝑏ℎ𝑡𝑡 + � 𝑐𝑐
ℎ𝑡𝑡
�                                            (5)                               

𝑋𝑋𝑓𝑓 =  6.2𝑙𝑙𝑙𝑙𝑙𝑙10 � 𝑓𝑓
2000

�   𝑓𝑓𝑙𝑙𝑟𝑟 𝑓𝑓 > 2𝐺𝐺𝐺𝐺𝐺𝐺                                                                     
               𝑋𝑋ℎ =  −10.9𝑙𝑙𝑙𝑙𝑙𝑙10                                                                                         

                                          
In 5G networks, the modified SUI (MSUI) model is employed, 
which is expressed as shown in (6): 

𝑃𝑃𝐿𝐿(𝑀𝑀𝑁𝑁𝑆𝑆𝐼𝐼 ) = 𝛼𝛼 �𝑃𝑃𝐿𝐿(𝑁𝑁𝑆𝑆𝐼𝐼)(𝑑𝑑) − 𝑃𝑃𝐿𝐿(𝑁𝑁𝑆𝑆𝐼𝐼)(𝑑𝑑0)� + 𝑃𝑃𝐿𝐿(𝑑𝑑0) + 𝑁𝑁     
                                                                                    (6)                                                             

Where 𝛼𝛼 is the slope correction factor, equal to 0.88, the reference 
distance  𝑑𝑑0 = 1 𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑟𝑟, and 𝑁𝑁 = 9.2 𝑑𝑑𝑑𝑑 [29] and 𝑃𝑃𝐿𝐿(𝑑𝑑0) is path 
loss at reference point. On the other hand, the Hata model used in 
2G networks assumes the form given in (7) [30]. 

𝑃𝑃𝐿𝐿(𝐺𝐺𝑀𝑀) = 69.55 + 26.16 𝑙𝑙𝑙𝑙𝑙𝑙10𝑓𝑓𝑐𝑐 − 13.82 𝑙𝑙𝑙𝑙𝑙𝑙10ℎ𝑡𝑡 − 𝑎𝑎(ℎ𝑟𝑟) +
(44.9 − 6.55𝑙𝑙𝑙𝑙𝑙𝑙10ℎ𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙10(𝑑𝑑)                                          (7) 

where 𝑓𝑓𝑐𝑐  is the carrier frequency, 𝑑𝑑  is the transmitter-receiver 
antenna distance,  ℎ𝑡𝑡  and ℎ𝑟𝑟  are the transmitter and receiver 
heights respectively, and the parameter 𝑎𝑎(ℎ𝑟𝑟)  is the receiver 
antenna height correction factor expressed as in (8):  

𝑎𝑎(ℎ𝑟𝑟) = 3.2 (𝑙𝑙𝑙𝑙𝑙𝑙1011.75ℎ𝑟𝑟)2 − 4.97  𝑑𝑑𝑑𝑑      (8)                                                    

Definition 3: The power density at a point on the ground at 
distance 𝑑𝑑 meters away is given by (9) [31]: 

𝑃𝑃𝐷𝐷 = 𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡
4𝜋𝜋𝜋𝜋2     𝑤𝑤/𝑚𝑚2                                           (9)                                                                                                      

Where R is the distance from the top of the eNB to the base of the 
object on the ground as shown in Fig.2, 𝑃𝑃𝑡𝑡  and 𝐺𝐺𝑡𝑡  are the 
transmitted power and gain of the eNB antenna respectively in 
dBm and dB.  

 

 

 

 

 

 
 
 
 
 
 
Based on Fig. 2, 𝜋𝜋2 = 𝑑𝑑2 + ℎ2 and hence (4) can be re-written as 
shown  in (10): 

𝑃𝑃𝐷𝐷 = 𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡
4𝜋𝜋(𝑑𝑑2+ℎ2)

    𝑤𝑤/𝑚𝑚2                                 (10)                                                            
Where 𝑑𝑑 is the distance between eNB and object bases and ℎ is the 
eNB height. Considering a subscriber of height ℎ0, then 𝑁𝑁2 =
( 𝑑𝑑2 + (ℎ − ℎ0)2) and hence the power density at the head of this 
subscriber will be expressed by (11). 

𝑃𝑃𝐷𝐷 = 𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡
4𝜋𝜋𝑁𝑁 2  = 𝑃𝑃𝑡𝑡𝐺𝐺𝑡𝑡

4𝜋𝜋(𝑑𝑑2+(ℎ−ℎ0)2)
  𝑤𝑤/𝑚𝑚2           (11)                                                             

Definition 4: Instantaneous traffic intensity in a resource pool is a 
measure of the number of busy resources at a given instant of time.  
This traffic can be designated as offered traffic (𝑁𝑁), carried traffic 
or flow traffic (𝑁𝑁𝑐𝑐), and blocked or lost traffic (𝑁𝑁𝑏𝑏 ) such that: 

𝑁𝑁 =   𝜆𝜆µ = 𝑁𝑁𝑐𝑐 +  𝑁𝑁𝑏𝑏                                     (12)                                                                     
Where 𝜆𝜆 is the number of calls per hour and µ is the mean holding 
time. 

Definition 5: Blocking probability defines the probability of users 
being denied services due to unavailability of radio resources and 
is a dominant parameter employed during network design and 
planning. Using the Erlang C formula, the probability that a 
customer has to wait for service, Pc is give by (13): 

𝑃𝑃𝑏𝑏 =
𝑁𝑁𝑁𝑁

𝑁𝑁 !
𝑁𝑁

𝑁𝑁−𝑁𝑁

∑ 𝑁𝑁𝑖𝑖

𝑖𝑖!
𝑁𝑁−1
𝑖𝑖=0 +𝑁𝑁𝑁𝑁

𝑁𝑁 !
𝑁𝑁

𝑁𝑁−𝑁𝑁

                                          (13)                                                                 

Where 𝑁𝑁 and 𝑁𝑁 are the number of channels available and offered 
traffic, respectively. 

Definition 6: Considering a fuzzy system with inputs 𝑥𝑥1 and 𝑥𝑥2 
(antecedents) and one output 𝑦𝑦  (consequent), a collection of r 
linguistic IF_THEN propositions of the form shown below are 
utilized to describe this system: 

IF x1 is Ã1
𝑘𝑘  and IF x2 is Ã2

𝑘𝑘  THEN y is 𝑑𝑑�𝐾𝐾  for k=1,2,……,r 

Where Ã1
𝑘𝑘  and Ã2

𝑘𝑘  are fuzzy sets denoting kth antecedents and 𝑑𝑑�𝐾𝐾  is 
a fuzzy set representing the kth consequent. The above six 
handover parameters were the inputs of each of the fuzzy sets, 
which further had three membership functions: LOW, MEDIUM 
and HIGH. Fig.3 depicts the neuro-fuzzy architecture employed in 
this research thesis. Here, knowledge base consisted of a set of IF--
-THEN rules, which together with the figures of merit in the 
database were the inputs to the fuzzy inference system. The main 
components of the neuro-fuzzy architecture were the knowledge 
base, database, inference engine, fuzzifier, defuzzifier, ANN 
learner, explanation facility and LTE network. The knowledge 
base held handover rules expressed in modus ponens statements 
that evaluated to TRUE or FALSE. The database on its part was a 
repository of all measured handover figures of merit (FOM).

 

 

 

 

Fig.2: Power Density Computation 
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The inference engine linked the rules in the knowledge base and 
FOM in the database, and hence facilitated the execution of the  

 

handover decisions. Here, the ANN learner dynamically adjusted 
the handover conditions. 

 

 

 

 

  

  

 
 

   

At any given moment during the time when the UE is in the cell 
overlapping region, the MME utilizes this proposed handover to 
reduce the handover latency. 

3.1 Modeling Adaptive Handover Decision Making Process 
The ANN-FL modeled in this paper comprised of five layers as 
shown in Fig.4. The first layer was the fuzzy layer the crisp input 
variables were translated into one of the three fuzzy sets of 

linguistics variables of low, medium, and high, after which a 
membership function was computed for each input of the fuzzy 
system. The membership function was a curve that defined how 
each point in the input space (universe of discourse) was mapped 
to a membership value or degree of membership between 0 and 1 
as shown in Fig.5.

 

 

 

 

 

 

 

 

 The fuzzy set �̃�𝑁  in a universe of discourse X was designated 
membership function 𝜇𝜇�̃�𝑁(𝑥𝑥)  where 𝑥𝑥 ∈ 〈0,1〉  and 𝑥𝑥 ∈ ℛ . The 
function value 𝜇𝜇�̃�𝑁(𝑥𝑥)represented membership rating of x in �̃�𝑁.   

 

 

 

 

 
Fig. 5: Fuzzy Logic Membership Functions 

Here, the triangular fuzzy number �̃�𝑁 is described by a triplet (l, m 
and h) and the mathematical expression for 𝜇𝜇�̃�𝑁(𝑥𝑥) is shown in step 
(3) of neuro-fuzzy algorithm shown in Fig.6.  As shown here, the 
proposed neuro-fuzzy system consisted of twelve (12) steps. In the 
fuzzy layer, translation of input variables into fuzzy sets is  
accomplished, followed by the computation of the membership 
functions for each of these sets (step2).  Thereafter, the derivation 
of truth level for each of the fuzzy rule is done (phase 3) followed 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
by the calculation of the antecedent of each  𝑘𝑘 rule (step 4). In 
phase 5, the outputs of each triggered rule are computed based on 
the rule base and membership function. Next, outputs for each rule 
are aggregated into a single fuzzy set (step 6) and in phase 7, this 
output is transformed into a crisp value. 

In step 8, the crisp output of each node is computed and sent to 
product layer. Here, the computation of the firing strengths of each 
rule (phase 9) while in step 10 these firing strengths are 
normalized. This is followed by the computation of the adaptive 
function for each layer in the de-fuzzy layer (step 11). Step 12 is 
the last step where the summation of the outputs coming from the 
nodes in de-fuzzy layer is accomplished. In the proposed protocol, 
the ANN-FL’s database defined fuzzy membership functions that 
permitted the assignment of membership ratings to the fuzzy sets 
while the rule base contained all feasible relationships among the 
inputs and outputs. These were a set of IF---THEN rules, which 
together with the figures of merit in the database were crucial in 
the handover decision making process. There were a number of 
antecedents that were combined using fuzzy operators which 
included AND, OR, and NOT. In this protocol, fuzzy inputs 
variables and three fuzzy sets were designed for each fuzzy 
variable, hence the maximum possible number of rules in the 
knowledge base is 36=729. For the UE within the micro-cell, the 
following are examples of these rules: 
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Fig.3: Neuro-Fuzzy Architecture 

 

Fig. 4: Proposed Neuro-Fuzzy Architecture 
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RULE-1: If 𝑃𝑃𝑏𝑏  is low and 𝑁𝑁𝐶𝐶  is low and 𝑃𝑃𝑟𝑟  is low and 𝑃𝑃𝐷𝐷  is low 
and 𝑃𝑃𝐿𝐿is low and V is low then handover factor is low. 

RULE-729: If 𝑃𝑃𝑏𝑏  is high and 𝑁𝑁𝐶𝐶  is high and 𝑃𝑃𝑟𝑟  is high and 𝑃𝑃𝐷𝐷  is 
high and 𝑃𝑃𝐿𝐿is high and V is high then handover factor is high. 

On  its part, the inference engine determined the rules to be 
triggered and computed the fuzzy values of the output variables 
using a max-min inference method which tested the magnitudes of 
each rule and selected the highest one. The max-min method was 
adopted owing to its computational simplicity. 

3.2 Modeling Handover Parameters Ciphering 
The proposed handover authentication was multi-factor 
encompassing six parameters which included, Physical Cell 
Identity (PCI), E-UTRAN Absolute Radio Frequency Channel 
Number on the Download (EARFCN-DL), Next Chaining Counter 
(NCC), Next Hop Chaining Counter (NHNCC) KDF and a globally 
unique temporary identifier (GUTI) as shown in Fig. 7. As shown 
here, the first phase was admission control in which channel 
reservation is performed at TeNB for the incoming UE. In step 2, 
the MME sends NCC and NHNCC parameters used for the previous 
handover over the S1 interface protected by ƺ. In phase 3, the 
SeNB computes both temporary intermediary key, K*eNB and  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SHSeNB and sends them to TeNB together with its NCCSeNB value 
over the X2 interface secured by ψ. Upon receipt of these 
parameters, TeNB derives its own SHTeNB from NCCSeNB and 
K*eNB sent by SeNB in phase 4. This facilitates the validation of 
NCCSeNB after which if SHTeNB and SHSeNB match (step 5), it sends 
its NCCTeNB to SeNB over X2 safeguarded by ψ in step 6. 
However, if the two do not match, then the handover request is 
explicitly denied (step 20). Upon receiving NCCTeNB, the SeNB 
compares it with its own NCCSeNB (7) and if the two match, then 
the first tier mutual authentication involving SeNB and TeNB is 
successful (step 8). Next, the SeNB sends handover (HO) 
command (HOC), NCCSeNB, and SHSeNB to the UE over UU 
protected by Ұ (step 9) which in turn derives its own SHU from 
NCCSeNB and its own generated K*eNB to validate NCCSeNB (phase 
10).  

Here, if SHU and SHSeNB match, then the second tier mutual 
authentication involving the UE, SeNB and TeNB is successful 
(step 11). Afterwards, the UE confirms handover to TeNB over UU 
secured by Ұ (phase 12). In step 13, TeNB sends S1 path switch 
request message to the MME via S1 interface protected by ƺ, 
which then computes the fresh NH key and NCC values (phase 
14). Afterwards, it confirms the received S1 path switch request  

Fig. 6: Algorithm for Neuro-Fuzzy Handover Optimization 

 

𝜇𝜇�̃�𝑁(𝑥𝑥) =
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⎪
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ℎ −𝑚𝑚
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µ𝑑𝑑�𝑘𝑘  
(𝑓𝑓) = 𝑚𝑚𝑖𝑖𝑚𝑚 �𝜇𝜇𝑁𝑁�1

𝑘𝑘 (𝑃𝑃𝑏𝑏),𝜇𝜇𝑁𝑁�2
𝑘𝑘(𝑁𝑁𝐶𝐶),𝜇𝜇𝑁𝑁�3

𝑘𝑘 (𝑃𝑃𝑟𝑟),𝜇𝜇𝑁𝑁�4
𝑘𝑘 (𝑃𝑃𝐷𝐷),𝜇𝜇𝑁𝑁�5

𝑘𝑘 (𝑉𝑉),𝜇𝜇𝑁𝑁�6
𝑘𝑘 (𝑃𝑃𝐿𝐿)� 

𝑁𝑁𝐹𝐹𝐴𝐴 = 𝑚𝑚𝑎𝑎𝑥𝑥
𝑘𝑘 �min �𝜇𝜇𝑁𝑁�1

𝑘𝑘(𝑃𝑃𝑏𝑏),𝜇𝜇𝑁𝑁�2
𝑘𝑘 (𝑁𝑁𝐶𝐶),𝜇𝜇𝑁𝑁�3

𝑘𝑘(𝑃𝑃𝑟𝑟), 𝜇𝜇𝑁𝑁�4
𝑘𝑘(𝑃𝑃𝐷𝐷),𝜇𝜇𝑁𝑁�5

𝑘𝑘 (𝑉𝑉),𝜇𝜇𝑁𝑁�6
𝑘𝑘(𝑃𝑃𝐿𝐿)�� 

𝜃𝜃5, 𝑖𝑖 = �𝜔𝜔�𝑖𝑖𝑓𝑓
4

𝑖𝑖=1

=
∑ 𝜔𝜔𝑖𝑖𝑓𝑓4
𝑖𝑖=1
∑ 𝜔𝜔𝑖𝑖4
𝑖𝑖=1

 

INPUT: Blocking probability, power density, path loss, velocity, traffic intensity, received carrier power 
OUTPUT: Adaptive handover decision 
 
BEGIN:  

1. Translate crisp input variables into fuzzy sets 
2. Compute membership function, MF for each input of the fuzzy system 

𝑀𝑀𝐹𝐹 = 𝜇𝜇�̃�𝑁(𝑥𝑥)  /* 𝑥𝑥 ∈ 〈0,1〉&𝑥𝑥 ∈ ℛ 
3. Derive the truth level of each fuzzy rule 

4. Calculate the  antecedent of each  𝑘𝑘 rule, µ𝑑𝑑�𝑘𝑘  (𝑓𝑓) /*  for k=1, 2,…..r */ 

5. Compute outputs of each triggered rule according to rule base and membership functions of the output 

6. Aggregate outputs for each rule into a single fuzzy set, AFZ 

7. Transform the output value of (5) into a crisp value 

µ𝑑𝑑�𝑘𝑘  
(𝑓𝑓) = ∑ µ𝑑𝑑 � (𝑓𝑓)𝑓𝑓𝑁𝑁

𝑖𝑖=1
∑ µ𝑑𝑑 � (𝑓𝑓)𝑁𝑁
𝑖𝑖=1

  / *  µ𝑑𝑑 � (𝑓𝑓)𝑓𝑓 is the centroid of each symmetric membership function */ 

8. Send crisp output of each node to the next layer /*  𝑝𝑝 and 𝑞𝑞 are the inputs* / 

𝜃𝜃1, 𝑖𝑖 = 𝜇𝜇𝑁𝑁𝑖𝑖(𝑝𝑝) for i=1,2 and  𝜃𝜃1, 𝑖𝑖 = 𝜇𝜇𝑑𝑑𝑖𝑖 − 2(𝑞𝑞) for i=3,4  /*𝑁𝑁𝑖𝑖 & 𝑑𝑑𝑖𝑖 are the fuzzy sets */ 

9. Compute the firing strengths of each rule 

𝜃𝜃2, 𝑖𝑖 = 𝜔𝜔𝑖𝑖 = 𝜇𝜇𝑁𝑁𝑖𝑖(𝑝𝑝) ∗  𝜇𝜇𝑑𝑑𝑖𝑖 − 2(𝑞𝑞) for i=1,2 

10. Calculate normalized firing strength of each rule 

𝜃𝜃3, 𝑖𝑖 = 𝜔𝜔� = 𝜔𝜔𝑖𝑖
𝜔𝜔1+𝜔𝜔2

, for i=1,2 

11. Compute the adaptive function for each layer /*r 𝑖𝑖, 𝑠𝑠𝑖𝑖, and 𝑡𝑡𝑖𝑖 are consequent parameters of rule 𝑖𝑖*/ 

𝜃𝜃4, 𝑖𝑖 = 𝜔𝜔�𝑖𝑖𝑓𝑓𝑖𝑖 = 𝜔𝜔�𝑖𝑖(𝑟𝑟𝑖𝑖 + 𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖), for i=1,2 /* to make each node adaptive*/ 

12. Sum the outputs coming from the nodes in layer 4 

END 
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ACK back to TeNB (which is now the new SeNB) over S1 
protected by ƺ (step 15). This is followed by transmission of  the 
NHNCC+1 and NCC+1 for next handover to the new SeNB over S1 
protected by ƺ (16).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

4. Results and Discussion  
In this section, the simulation results obtained for handover 
parameter ciphering and neuro-fuzzy handover parameter 
optimization are presented. Table 3 shows the values of the 
parameters that were employed in the developed protocol 
simulations. 

Table 3: Simulation Parameters 
Parameter Value Units 
Slope correction factor, 𝛼𝛼 0.88    - 
Reference distance for 
modified SUI, 𝑑𝑑0 

1 meters 

Reference distance for SUI, 𝑑𝑑0 100 meters 
Shadowing correction, 𝑁𝑁 9.2  dB 
Transmission Frequency, 𝑓𝑓 28 Ghz 
Maximum eNB-UE distance, 𝑑𝑑 248 meters 
eNB Transmit power, 𝑃𝑃𝑡𝑡  20 dBm 
Transmitter antenna height, ℎ 
or ℎ𝑡𝑡  

52.5 meters 

Mobility model RD & RWP - 
Subscriber height, ℎ0 1.5 meters 
Transmitter antenna gain,𝐺𝐺𝑡𝑡  19.2 dBi 
Correction for frequency, 𝑋𝑋𝑓𝑓  -11.5 MHz 
Correction for receiving 
antenna height, 𝑋𝑋ℎ  

34.1 meters 

Free space path loss, 𝑁𝑁 41.38 dB 
Path loss exponent, 𝑦𝑦 2 - 

 

 

 

 

 

Based on (4) above, the slope correction factor was 0.88, while the 
reference distances for SUI and modified SUI were 100 meters (7) 
and 1meter (6) respectively. On the other hand, shadowing 
correction was taken to be 9.2 (6), while transmission frequency 
and eNB –UE distance were 28GHz and 248 meters respectively 
(as applied in 5G networks). Using (9) as a basis, the transmit 
power was taken to be 20 dBm (lies within the 16dBm to 20dBm 
range for most cellular networks), and based on (5), the transmitter 
antenna was 52.5 meters (average of 15 meters and 90 meters 
range). The mobility models adopted were random waypoint 
(RWP) and random direction (RD). The subscriber height was 1.5 
meters and transmitter antenna gain was 19.2 dBi in accordance 
with (11).  

Taking the value of 𝑓𝑓 in (5) to be 28 GHz, 𝑋𝑋𝑓𝑓  becomes -11.5 but 
using the value of 1.5 meters for  ℎ𝑟𝑟  , 𝑋𝑋ℎ  yields a value of 34.1 as 
shown in Table 3. On the other hand, substituting for the variables 
in (5) yields 41.38 as the values for free space path loss, 𝑁𝑁 . 
Regarding the path loss exponent, 𝑦𝑦 its free space value of 2 was 
adopted to mimic typical cellular network RF propagation. Table 4 
shows the membership functions for the fuzzified input variables. 
As shown in Table 4, each of the membership functions of low, 
medium and high were each decomposed into lower bound (LB) 
and upper bound (UB) corresponding to the lower and upper 
concentric circles of the partitioned tracking area. 

The values in Table 4 were utilized to plot the membership 
functions shown in Figure 8, Figure 9 and Figure 10.  As shown in 
Figure 8 (a), degree of membership ranged from 0 to a maximum 
of 1 while the blocking probability ranged from 1 * e-10 to 9 * e-7. 

 

Fig. 7: Algorithm for the Proposed Authentication 

Next, TeNB allocates the incoming UE the reserved 
channel (step 17). Lastly, MME instructs previous eNB 
over S1 protected by ƺ to release the channel. 

INPUTS:   MCC, MNC, 𝑃𝑃𝐶𝐶𝐼𝐼,𝑁𝑁𝜋𝜋𝐹𝐹𝐶𝐶𝑁𝑁 − 𝐷𝐷𝐿𝐿, MMEGID,MMEC, M-TMSI 
OUTPUTS:  Best TeNB selection 
 
BEGIN: 

1. Initiate admission control / * channel reservation for incoming UE at TeNB */ 
2. MME sends NCC-1 and NHNCC-1 to SeNB over S1 protected by ƺ 
3. SeNB computes K*eNB, SHSeNB, NCCSeNB and sends to TeNB over X2 protected by ψ 
4. TeNB computes SHTeNB from  NCCSeNB and K*eNB to validate received NCCSeNB 
5. IF SHSeNB = SHTeNB THEN 
6.       TeNB sends NCCTeNB to SeNB over X2 protected by ψ 
7.          SeNB compares  received NCCTeNB with its own NCCSeNB 
8.          IF NCCTeNB = NCCSeNB THEN /* 1st tier mutual authentication successful –SeNB & TeNB*/ 
9.              SeNB sends HO command, NCCSeNB ,and SHSeNB  to the UE over UU protected by Ұ 
10.                UE derives SHU from NCCSeNB and its own generated K*eNB to validate  NCCSeNB 
11.                 IF SHU = SHSeNB THEN /* 2nd tier mutual authentication successful –UE, SeNB & TeNB */ 
12.                     UE confirms handover to TeNB over UU protected by Ұ 
13.                         TeNB sends S1 path switch request message to the MME via S1 interface protected by ƺ 
14.                       MME receives path switch request and computes the fresh NH key and NCC values 
15.                   MME sends S1 path switch request ACK back to the new SeNB over S1 protected by ƺ 
16.              MME sends NHNCC+1 and NCC+1 for next handover new SeNB over S1 protected by ƺ 
17.         TeNB allocates the incoming UE the reserved channel 
18.     MME instructs previous Enb over S1 protected by ƺ to release the channel  
19.      ELSE 
20.        Explicitly deny handover request 
21.     ENDIF  
22. ENDIF 

END 
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Table 4: Neuro-Fuzzy Membership Functions 

Crisp Inputs Low Medium High Units 

LB UB LB UB LB UB 
Received Carrier Power -125 -168 -172 -186 -184 -191 dB 
Blocking probability 1.0 * e-10 9.0 * e-9 8.0 * e-9 9.0 * e-8 8.0 * e-8 9.0 * e-7 - 
Velocity 0 0.9 0.7 2.9 2.5 5 m/s 
Power density -5 -16 -14 -24 -22 -27 dB 
Path loss -9 2 1.8 9 8.8 21 dB 
Traffic intensity 0.1 0.2 0.18 0.5 0.48 0.9 Erlang 

In Figure 8 (b), it is evident that the power density ranged from -5 
to -27dB. It is clear from Figure 8 that the membership functions 
are overlapping owing to the smooth transition boundary, which is 
an underlying characteristic of the fuzzy sets. This means that the  

precise input values during fuzzification process can fit in more 
than one fuzzy set with dissimilar degree of membership depicted 
in individual membership functions of each parameter. 

 
 

 

 

 

 

 
 

 

 

 

 

Figure 8: (a) Blocking Probability Membership Function (b) Power Density Membership Function 

Figure 9 shows the membership functions for path loss and 
traffic intensity. As shown in Figure 9 (a), path loss ranges from 

-9dB to 21dB while Figure 9 (b) shows that traffic intensity 
ranged from 0.1 Erlangs to 0.9 Erlangs. 

 

 

 

 

 

 

 

  

 

 

 
Figure 9: (a) Path Loss Membership Function (b) Traffic Intensity Membership Function 

It is also evident that the membership functions exhibit 
overlappings due to the smooth transition boundary of the fuzzy 

sets. Figure 10 gives the membership functions for velocity and 
received carrier power. 
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Figure 10: (a) Received Carrier Power Membership Function (b) Velocity Membership Function 

From Figure 10 (a), it is evident that the received carrier power 
ranged from -191dB to -125dB while Figure 10 (b) shows that 
the velocity ranged from 0 m/s to 5 m/s. In addition, 
overlappings are observed for various membership functions. 

The neuro-fuzzy system optimized the values in Table 4 to 
yield the values shown in Table 5 that were employed to make 
handover decisions. 

 
Table 5: Optimized Neuro-Fuzzy Membership Functions 

Crisp Inputs Low High Units 

Received Carrier Power >-182 ≤ -182 dB 
Blocking probability <1.0 * e-8 1.0 * e-8 - 
Velocity ≤ 1 >1 m/s 
Power density >-23 ≤ -23 dB 
Path loss <9 9  dB 
Traffic intensity <0.4 0.4 Erlang 

 
Using the membership functions in Table 5, a handover to the 
next eNB was only possible when the crisp output evaluated to 
a HIGH. However, for the rest of the crisp outputs, handovers 

to the next eNBwas denied. Table 6 presents simulations results 
for NCC and NHNCC ciphering over the S1 and Uu interfaces. 

Table 6: S1 and Uu Interfaces Parameters Ciphering 

Simulation Iteration MME to SeNB SeNB to UE MME to TeNB 
NCC 

(S1, ƺ) 
NHNCC 
(S1, ƺ) 

NCC 
(Uu, Ұ) 

NCC+1 
(S1, ƺ) 

NHNCC+1 
(S1, ƺ) 

1 8881469555 1741101710 14802420925 47475487 14098577108050 
2 9249221135 940850230 15415340225 65857630 33712446099017 
3 5944131410 1250072430 9906857350 12108934 22520921877646 
4 7766187350 889563050 12943617250 43037387 83603801071236 
5 6264669710 2076237175 10441087850 11112192 78200490591307 

As shown in Table 6, during the five simulation iterations the 
values of both NCC and NHNCC varied widely over the S1 and 
Uu interfaces. Considering NCC values over the S1 interface 
and its equivalent over the Uu interface, it is clear that the two 

are quite different owing to the different ciphering keys used. 
Whereas S1 employed ƺ, Uu utilized Ұ. Regarding the 
ciphering of these parameters over the X2 interface, Table 
7gives the results for handover parameter ciphering over the X2 
and S6a interfaces over five simulation iterations. 

Table 7: X2 and S6a Interfaces Parameters Ciphering 

Simulation Iteration SeNB to TeNB TeNB to SeNB HSS to MME  
NCC 

(X2, ψ) 
NCC 

(X2, ψ) 
GUTI 

(S6a, Ж) 
1 20836687250 24625176750 752246802752 
2 13699379710 16190176930 546795402102 
3 7193632000 8501566000 308662894930 
4 45151079990 53360368170 795726052657 
5 45304223530 53541355990 385587721685 
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As shown in Table 7, the NCC ciphered values over the X2 
interfaces were different over the five simulation iterations for 
both SeNB to TeNB and TeNB to SeNB. The same is observed 
for the GUTI that was being passed from the HSS to the MME. 
Consequently, over all the four interfaces, the four ciphering  keys 
introduced secured NCC, NHNCC, GUTI, NCC+1 and NHNCC+1 
that were being sent over these interfaces. 

5. Evaluation of the Developed Protocol 
The developed protocol was evaluated both from the security 
perspective and performance perspective. Session hijacking and 
de-synchronization were the two attack models that were 
employed to evaluate the security level of this model. This was 
informed by their prevalence as attack vectors in LTE networks. 
Regarding performance, handover latencies, average number of 
executed handovers, ping pong handovers, and packet losses were 
employed as discussed below. 

 

5.1 Security Evaluation of the Developed Protocol 
The first attack model to be tested against the developed protocol 
was session hijacking. Here, a malicious UE attempted to 
handover to the target eNB once a legitimate UE had initiated its 
own handover to this target eNB. Figure 11 shows the response 
obtained upon this malicious request. It is clear in Figure 11 (a) 
that this UE is at the HPHR of eNB-4 and from Figure 11 (b), the 
neuro-fuzzy output is HIGH since blocking probability is HIGH, 
path loss is HIGH, traffic intensity is HIGH and power density is 
HIGH based on the membership functions given in Table 5 above. 
As such, a handover from eNB-4 to eNB-5 is anticipated at this 
location. However, since the developed protocol required the three 
entities (source eNB, UE and target eNB) to authenticate each 
other, the validation of the malicious UE failed. In LTE-A, the 
HSS contains authentication center (AuC) to fetch subscriber 
identifier and the pre-loaded shared key for authentication 
purposes. 

 

 
(a) 

 
(b) 

Figure 11: Session Hijacking Response 

As such, since the malicious GUTI identifier as well as the pre-
loaded shared keys such as NCC, NHNCC, K*eNB and SH could not 
be established, the handover was denied. In de-synchronization 
attack, a rogue eNB was employed to try and eavesdrop or alter 
authentication messages that are exchanged between the handover 

entities. To accomplish this, eNB-3 acted as a rogue base station 
that was configured to masquerade as a legitimate target eNB. It 
was assumed that the attacker using the rogue base station had 
access to NCC, KeNB, NHNCC, PCI and EARFCN-DL. The 
simulation results obtained are shown in Figure 12 below.

  

 
Figure 12: De-synchronization Attack Response 

 
 

 
 



4439 Int. J. Advanced Networking and Applications 
Volume: 11 Issue: 06 Pages: 4429-4442 (2020) ISSN: 0975-0290 

 
 
 
 
As shown here, although spoofed KeNB, NCC, NHNCC, PCI and 
EARFCN-DL were valid and same as those computed at the 
source eNB-2, the rogue eNB-3 is unable to compute a valid K*eNB 
and hence SH owing to the frequent refreshment of UE identifier,  

5.2 Performance Evaluation of the Developed 
Protocol 
 

 
 
 
GUTI and the new requirement that the submitted NCC must be 
validated among all the handover entities. At this point, an 
adversary using spoofed valid identities is unable to  forward 
modified NCC and NHNCC values between the handover entities, 
which included an UE and the source eNB-5. 
 

In this section, the developed handover protocol’s performance 
was evaluated against the conventional LTE handover. The 
evaluation metrics employed included, handover latencies, average 

number of handovers per unit time, packet losses, and ping pong 
handovers. Table 8 presents the latencies and packet losses 
obtained for the conventional LTE and the proposed protocol. 

Table 8: Performance Comparison of Standard LTE and Proposed Protocol 

Simulation Iterations Conventional LTE Proposed Protocol 

Latency 

(Secs) 

Packet Loss (Bytes) Latency 

(Secs) 

Packet Loss (Bytes) 

1 0.070 49 0.030 30 

2 0.055 45 0.043 40 

3 0.110 54 0.028 28 

4 0.072 50 0.049 43 

5 0.067 49 0.019 13 

6 0.092 53 0.039 38 

7 0.065 48 0.024 23 

8 0.045 41 0.037 36 

9 0.089 52 0.027 26 

10 0.060 47 0.022 18 

As shown in Table 8, both standard LTE and the developed protocol 
exhibited different values at various simulation iterations. Figure 13 
shows the graph of handover latencies against simulation iterations 
for both protocols. In Figure 13, it is clear that the standard LTE 

protocol’s highest latency was 0.11 seconds while the lowest 
latency was 0.045 seconds. On the other hand, the proposed 
protocol’s highest latency was 0.049 seconds while the lowest 
latency was 0.019 seconds. 

 
Figure 13: Latencies for Standard LTE and Proposed Protocol 

Whereas the standard LTE took an average of 0.0725 seconds, 
the proposed protocol took an average of 0.0318 seconds, 
representing a 56.1% reduction in handover latency. Figure 14 
shows the graph of packet losses against simulation iterations 
for both protocols. It is evident that the highest packet losses for 
the conventional LTE were 54 while the lowest was 41.  

On the other hand, the highest and lowest packet losses for the 
developed protocol were 43 and 13 respectively. This 

represented an average of 49 and 30 packet losses for LTE and 
the proposed protocol respectively. As such, the proposed 
protocol yielded a 38.8 % reduction in packet losses. Regarding 
handover success rate, handover failure rate and ping pong rate, 
Table 9 summarizes the performance of the standard LTE and 
the proposed protocol. Here, I represents number of initiated 
handovers, S represents number of successful handovers, F 
represents number of failed handovers while PP represents ping 
pong handovers. 

LTE 

Proposed Protocol 
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As Table 9 shows, different simulation durations yielded different 
numbers of handovers for both the standard LTE and the proposed  
 

 
protocol. The number of initiated handovers (I) in the standard 
were 122 while only 31 handovers were initiated in the proposed 
protocol. 

 
Table 9: Summary of Comparisons of LTE and Proposed Protocol 

Simulation Duration 
(Minutes) 

LTE Proposed Protocol 
I S F PP I S F PP 

4 9 7 2 1 2 2 0 0 
5 13 9 4 3 4 3 1 0 
6 18 12 6 5 5 5 0 0 
7 23 13 10 4 5 4 1 1 
8 28 15 13 4 8 6 2 0 
9 31 17 14 6 7 7 0 1 
Total 122 73 49 23 31 27 4 2 
Handover success rate 59.8% 87.1% 
Handover failure rate 40.2% 12.9% 
Ping pong rate 31.5% 7.4% 

 

This represented a 74.6% reduction in the number of handovers. In 
the conventional LTE, a total of 122 handovers were initiated (I), 
out of which 73 were successful (S) while 49 of them failed (F), 
representing a 59.8% and 40.2% success rate and failure rate 
respectively. Out of the 73 successful handovers, 23 of them were 
ping pong (PP) handovers, representing a ping pong rate of 31.5%. 
On the other hand, in the developed protocol, a total of 31 were 
initiated out of which 27 were successful (S) while 4 of them 
failed (F), representing 87.1% and 12.9% success rate and failure 

rate respectively. Regarding ping pong (PP) handovers, out of the 
27 successful handovers, 2 of them were ping pongs, representing 
ping pong rate of 7.4%. As such, the developed protocol yielded a 
27.1% increase in handover success rate, a 27.3% reduction in 
handover failure rate, and a 24.1% reduction in ping pong 
handovers. Further comparisons between RSSI and neuro-fuzzy 
based handovers  were performed by considering a constant 
number of handovers and measuring the time it took to generate 
them as shown in Table 10. 

Table 5.10: Rate of RSSI and Neuro-Fuzzy Handovers 

Simulation Iterations Number  of Handovers RSSI-Based HO 

Duration (Secs) 

Neuro-Fuzzy-Based HO 

Duration (Secs) 

1 5 5.84 1159.85 

2 5 2.95 1553.31 

3 5 4.36 925.38 

4 5 5.73 1032.05 

5 5 3.92 896.97 

6 5 5.98 1029.51 

7 5 2.95 1293.73 

  

Proposed Protocol 

LTE 

Figure 14: Packet Losses for Standard LTE and Proposed 
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Based on the number of handovers and the time it took to generate 
them, for both RSSI and neuro-fuzzy based scenarios, the graphs  

 

in Figure 15 were plotted. As shown in Figure 15 (a), the time 
taken to generate the five RSSI based handovers flactuated 
between 2.95 seconds to 5.98 seconds.  

  
Figure 15: Rate Comparison between RSSI and Neuro-Fuzzy Handovers 

On the other hand, the time taken to generate the five neuro-
fuzzy based handovers flactuated between 896.97 seconds and 
1553.31 seconds as evidenced in Figure 5.15 (b). The 
implication is that within the same amount of time, RSSI based 
handovers were more frequent compared with the neuro-fuzzy 
based handovers. Since handovers are expensive in terms of the 
signaling involved, the developed protocol made good use of 
the network bandwidth. 
 
6. Conclusion and Future Work 
In this paper, an ANN-FL handover protocol is designed 
developed and simulated. This protocol employed three 
handover decision handover decision strategies including fuzzy 
logic, ANN, multi-criteria, user centric and function based 
strategies. The combination of fuzzy logic and adaptive neuro-
network has been demonstrated to lead to low handover 
latencies by facilitating efficient selection of the target eNB. 
Consequently, the developed protocol also exhibited reduced 
average number of executed handovers, lower packet losses and 
minimized ping pong handovers. Conversely, the developed 
handover protocol exhibited high handover success rates with 
lower handover failure rates. The developed protocol’s highest 
latency was 0.049 seconds while the lowest latency was 0.019 
seconds. As such, this protocol exhibited very little handover 
latencies for both mutual authentication and handover signaling, 
which were well within the ITU recommendation of 200 ms. Its 
resistant against both de-synchronization and session hijacking 
enhances both signaling and user traffic security. These low 
latencies and security are key for the 5G and beyond networks 
which will experience not only frequent handovers and hence 
the need for these handovers to be faster but also carry sensitive 
data from many interoperable devices. In the proposed protocol, 
six input parameters were utilized, which presented some 
complexity in membership function derivation. As such, future 
work in this area lies in exploring techniques for simplifying 
membership function derivation process. 
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