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-------------------------------------------------------------------ABSTRACT--------------------------------------------------------------- 
Stochastic Dynamic Programming (SDP) is an important class of optimization which has recently been used in the area of 

dynamic adaptive streaming over HTTP (DASH). Though DASH is very popular method of video delivery in recent 

years it is plagued with problems when multiple players share a bottleneck link. Thus, this area has become a very 

active area of research. Two works which implement SDP in DASH are selected and their performances compared 

against the Conventional DASH player. It is shown that SDP works well for various network conditions.  

 

Keywords – stochastic; dynamic; programming; SDP; optimization; DASH; video; bottleneck; network.  

-------------------------------------------------------------------------------------------------------------------------- ----------------------- 

Date of Submission: Aug 21, 2019                                 Date of Acceptance: Dec 23, 2019 

----------------------------------------------------------------------------------------------------------------------------- -------------------- 

I. INTRODUCTION 

Many DASH approaches require choosing the best 

option among a range of competing video segments [29], 

[27], [21], [18]. These so-called optimization problems 

can be solved using mathematical methods such as linear 

programming to evaluate maximum advantages or 

minimum expenses given some goals and under certain 

limitations for equilibrium-assumed deterministic systems. 

These goals are formalized in a utility function that 

prioritizes certain desired results by assessing the benefits 

of any system decisions. Stochastic dynamic programming 

(SDP) models [42], [20], [45] show the trade-off between 

acquiring present utility and changing future events to 

obtain future usefulness. Such video streaming issues 

abound because segment selection choices often have 

significant consequences for influencing future user 

quality of experience (user-QoE) [48], [24].  

Stochastic dynamic programming is an optimization 

technique suitable for multiple video streaming systems 

involving nonlinear and random processes. While in 

optimization processes such as classical linear or nonlinear 

programming, the time dimension is often ignored, SDP 

determines ideal state-dependent choices that differ over 

time. Finally, SDP is recognized as one of the finest 

instruments for making recurrent choices when dealing 

with streaming system-inherent uncertainty. The SDP 

principle is based on the partitioning of a complicated 

problem into easier sub-problems in several steps, which 

once solved are combined to provide a general solution. 

SDP was first created and used in the fields of applied 

mathematics, economics and engineering. In recent years 

it has gained much attention in video streaming.  

SDP's goal is to find a solution to an optimization problem 

based on the 'principle of optimality' [5], [37], [39], [23] 

which states that 'an optimal policy has the property that 

regardless of the initial state and decision, the remaining 

decisions must constitute an optimal policy resulting from 

the first decision'. The principle of optimality enables us to 

consider a static problem for the present era, assuming that 

all future choices are made in the best possible way. The 

impact of the present action therefore adds to both present 

utility and future utility by affecting the future state of the 

system. SDP discovers a strategy in this manner that 

balances present rewards/benefits with future 

opportunities/possibilities. The method used to solve a 

Markov decision problem [16] is stochastic dynamic 

programming. There are six stages of stochastic dynamic 

programming. The first step describes the problem's 

optimization goal. An objective must be specific to the 

problem, acceptable to the decision makers involved, 

achievable, defined over a period of time also called time 

horizon, and measurable with a function related to the 

state and actions of the system. This function, called 

utility, provides the reward of any action applied to a 

particular state. Depending on the sort of environment and 

streaming problem, several goals can be defined, but an 

optimization goal must be described as maximizing or 

minimizing a function over a horizon of time [19]. The 

horizon of time may be defined as finite [34] or infinite 

[13]. 

The second step is to identify the set of states at each time 

step that reflects the feasible system arrangement. Further, 

let Xt be the system's state variable at the moment t. In the 

third stage, the decision variable must be defined. This is 

the system dynamic element that can be controlled to 

fulfill the goal. The fourth stage is to construct a transition 

model that describes the dynamics of the system and its 

behavior with regard to the impact of a decision on the 

state variables. This transformation model follows a 

Markov process in which the future Xt+1 state depends on 

the present Xt state and the action taken At, but not on the 

system's previous state and action pairs. In the fifth step, 

the utility function Ut must also be defined at the time t 

which is called the immediate reward. This function 

referred to as Ut (Xt, At), which pertains to the Markov 

chain formulation [12], represents the desirability of acting 

in a given system state and is defined in terms of the state 

variable Xt (step 2) and At (step 3) decision. Depending on 

the objectives formalized in step 1, the utility values can 

accumulate over either a finite or an infinite time horizon. 

The final stage is to determine the optimum solution to the 
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optimization problem. The optimal solution, also referred 

to as the optimal strategy or policy, maximizes our 

opportunity to achieve our goal over time. An optimal 

solution maps each state to the optimal action for that 

state.  

A discussion on solving SPDs is given in Section II. Then 

the problem in dynamic adaptive streaming over 

HyperText Transfer Protocol (HTTP) (DASH) based 

systems with multiple competing players is given in 

Section III. DASH approaches using SDP is explored in 

section IV. Experimental setup is given in section V. 

Results are given in section VI and finally, the conclusion 

is given in Section VII. 

II. STOCHASTIC DYNAMIC PROGRAMMING (SDP) 

How to select the most suitable algorithms relies primarily 

on the goal of optimization (step one)? In time-reversed 

fashion, reverse iteration is the run over a finite horizon. It 

leads to an optimal time- and state-specific solution. Value 

iteration and policy iteration are used to resolve problems 

with the infinite time horizon. Both methods provide 

optimal action expressed as a feature that is independent of 

time.  

According to the principle of optimality [4], reasoning 

back in time is an effective way to find an optimal 

decision. More specifically, it involves assuming that the 

last decision taken at horizon time T is optimal and 

choosing what to do in each remaining step of the time. T 

is the time it takes to get the optimal solution. Let V(X) be 

the value function [30] of states that quantify the reward or 

the penalty after each state transition following the choice 

made. Let Pi* be a vector mapping the best horizon time 

decision for each state. Pi* is the collection of choices (A) 

related to the state set highest value function [V(X)]. Let β 

be the variable of discount, representing the value of the 

reward earned in the following period relative to the 

reward received in the present era. It may also represent a 

level of confidence in the dynamic model's predictions. 

Overall, predictions for the near future are more certain 

than those made for the remote future. The problem with 

the finite horizon can be expressed formally as: 

The term includes two parts, the sum of the discounted 

utility values from time t to horizon T and the discounted 

terminal reward (R(XT+1)), which is a function of the state 

the system is left in, XT+1 after the last decision has been 

made.  

The starting point in the backward iteration algorithm is to 

realize that a recursive relationship exists that identifies a 

value function for step t, denoted Vt(Xt), for each state, 

since step Vt+1(Xt+1) has already been solved. 

 
As proposed by the principle of optimality, in terms of the 

present choice alone, the Bellman equation reflects the 

problem of optimization. The first part of this equation 

consists of the immediate reward represented by the utility 

function, while the second part consists of the value 

function Vt+1(Xt+1) for the next period. Setting VT+1(XT+1) 

= R(XT+1) initializes the procedure. Then calculate the 

prior value VT(XT), then VT-1(XT-1), etc… The optimal 
action, which is the action associated with each initial state 

X0, is obtained by repeated retro-recursions from horizon 

[3] time T to present time 0 and the maximum initial value 

argument V0(X0). In addition to choosing the horizon T 

and the system's terminal value, R(XT+1), an important 

issue is the choice of a discount factor β between 0 and 1. 

In terms of a discount rate r, discounting is often indicated 

with the discount factor provided by β = 1/(1+r). 

Conservative measures are more likely to use a β of 1, 

which means that there is discount on the value of future 

system states. Future utility adds as much to the general 

goal as present utility in such circumstances. Although 

future utility discounting does not comply with the 

principle of sustainability, most streaming algorithms use 

a discount factor < 1. One reason is that many individuals 

place greater emphasis on current than future rewards, 

particularly if future rewards are risky. 

With infinite horizon problems [13], both the value 

function and the optimal strategy are time independent. It 

is possible to write the problem to be solved as: 

 
Starting with an arbitrary value function and iterating over 

an infinite horizon model with policy or value iteration 

leads the appropriate action to converge to a time-

independent function also called a stationary strategy with 

the optimal solution only depending on the state of the 

system and not on time. The first algorithm used to solve 

an MDP over an infinite horizon, called value iteration, 

follows the same procedure as earlier outlined except that 

it iteratively applies the Bellman equation until a 

convergence criterion is met. A typical convergence 

criterion is: 

 
where the norm V(Xt+1)-V(Xt) is the maximum absolute 

value of the difference between the two consecutive 

choice values for all possible states. Usually the value of E 

is selected to be small, so that when the condition in the 

previous equation is satisfied, the value function is within 

E of its optimal value. 

Another algorithm called policy iteration [14] includes 

alternating between discovering the best policy (or 

strategy) given the present value function guess and 

determining the value function connected with the present 

policy. One benefit of the algorithm for policy iteration is 

that it usually runs quicker than the value iteration 

algorithm [36]. Policy iteration can be broken down in two 

steps. 

A value function is calculated from a guessed policy in the 

first stage (evaluation) [36]. Let At be any policy 

describing the actions taken for any state Xt, so that Xt+1 is 

a function of state and action variables that can be written 
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as Xt+1 = g(Xt, At). The value function associated with this 

policy can be determined by solving a linear equation 

system, one for each state variable value.  

 
In the second stage (improvement), we discover the policy 

A' that satisfies each state value. 

 
The same procedure is carried out again (back to the first 

stage) until there is no change in the two policies A and A'. 

Here we address how to cope with uncertainty in dynamic 

programming. Because of the action taken and the present 

state, there are several feasible next states in SDP, and 

each of them has a certain probability of being achieved. 

Let P be a transition matrix showing the system's 

conditional probabilities at Xt at moment t and at (in rows) 

shift to states Xt+1 (in columns) given the action. The 

transition matrix [6] is a stochastic matrix comprising non-

negative components with rows summing up to 1. The 

Bellman equation can be rewritten as the sum of the utility 

value at the present state (holding in the deterministic 

variant) and the sum of the anticipated future rewards 

produced by the transition probabilities and values of all 

possible future states. For example, the stochastic version 

of the equation is in the backward iteration procedure: 

The distinction is that the transition probability matrix is 

added. In fact, the Bellman equation's deterministic 

version can be rewritten as a special SDP case, where P is 

a 0s matrix with a single 1 in each row. In SDP, P 

comprises of probabilities of change based on stochastic 

occurrences linked to population and/or environmental 

stochasticity or action that may have an uncertain impact. 

We identify various kinds of uncertainty that can be 

accounted for. 

First, there is the natural uncertainty in the system and its 

environment that is linked to the natural and intrinsic 

procedures that occur. It's hard to assess and even harder 

to decrease, if not impossible. Second partial 

controllability is the result of the failure to apply the 

choice being taken correctly. Sometimes, actions are taken 

in an unclear manner themselves. The third sort of 

uncertainty deals with that which comes from the partial 

understanding of state variable's value. To cope with such 

uncertainty, the partially observed Markov decision 

process (POMDP) [28], [31], [35], [44] may be used, a 

procedure that can solve stochastic dynamic problems if 

we are unable to fully observe the state of the system. 

Another type of uncertainty is model uncertainty, referring 

to the absence of certainty regarding the structural 

framework that shapes the system's behaviour. The last 

form of uncertainty, called parametric uncertainty, is 

related to our limited knowledge of system dynamics 

parameters. One strategy to this problem uses the 

unknown parameters of conjugating priors [10]. If the type 

of uncertainty is unknown, reinforcement learning is an 

alternative optimization strategy to reverse iteration, 

strategy or value iteration. This technique makes 

sequential decisions when the transition probabilities or 

rewards are unknown and cannot be estimated by 

simulation. The Q-learning algorithm [47] is used in which 

the optimal value V0* and the associated action are 

estimated through a learning method of observed 

transitions and values captured with approximation 

function. 

III. DASH AND MULTIPLE COMPETING PLAYERS 

PROBLEM 

The concept of adaptive video streaming is based on the 

idea to adapt the bandwidth required by the video stream 

to the throughput available on the network path from the 

stream source to the client [32]. These algorithms can live 

at the server [26], at an intermediate network device [25] 

or at the client [27], [21]. With client-side protocols it is 

the player that decides what bitrate to request for any 

fragment, improving server-side scalability [1]. A benefit 

of this protocol is that the player can control its playback 

buffer size by dynamically adjusting the rate at which new 

fragments are requested. The adaptation is performed by 

varying the quality of the streamed video. Multiple video 

segments constitute a video stream lasting from as little as 

2 seconds to as much as having a 10 second chunk 

delivery rate. Segments are encoded and stored on the 

server in numerous quality versions, termed 

representations. Each version has a unique resolution, 

bitrate and/or quality. A client downloads segments using 

HTTP GET statements [7]. However, with adaptive 

streaming a client might request subsequent segments at 

different quality levels to manage varying network 

conditions, based on an estimation bandwidth. To do this it 

uses a manifest file that contains information about the 

video segments. Protocols and standards such as MPEG 

Dynamic Adaptive Streaming over HTTP (DASH), Apple 

HTTP Live Streaming (HLS), Microsoft Smooth 

Streaming (MSS) or Adobe HTTP Dynamic Streaming 

(HDS) typically use a media playlist that contains a list of 

uniform resource identifiers (URIs) that are addresses to 

media segments [38]. The process of determining the ideal 

representation for each segment to enhance the user’s 

experience is pivotal to adaptive streaming. The controller 

algorithm estimates the network bandwidth and chooses 

the next bitrate level corresponding to the available 

network bandwidth. Variations in the available bandwidth 

will result in jerky playback and disruption of the video 

playback if the throughput falls below the bit rate 

requirement of the video. This is the major challenge in 

adaptive video streaming. Selecting appropriate bitrate 

levels helps to maximize the user experience. Generally, 

higher bitrates and resolutions will give better user 

experience. For example, if a client approximates that 

there is 9.5Mb/s available in the network, it might request 

the server to stream video compressed to the highest video 

rate available, 9.5Mb/s, or the next rate below, 9.3Mb/s. If 

the client picks a video rate that is too high, the viewer 

will experience annoying re-buffering events; if they pick 
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a streaming rate that is too low, the viewer will experience 

poor video quality. 

Adaptive streaming uses the HTTP/TCP protocol stack to 

transmit video Web traffic. Thus, the development of this 

wave of HTTP-based streaming applications is not 

referred to as adaptive streaming over HTTP. The use of 

HTTP/TCP protocols for video streaming is because of the 

advantages that HTTP/TCP offers. It allows standard web 

servers and caches to be used increasing its’ cost 

effectiveness. Another advantage is that all firewalls are 

configured to support HTTP connections [46]. In addition, 

is allows better scaling as HTTP is stateless and the 

streaming session is managed by the client, thus reducing 

the load on the server. However, HTTP/TCP use reveals 

further challenges as adaptation is on top of TCPs 

congestion control algorithm, which forms nested control 

loops. As the throughput of the TCP connection depends 

on both the link capacity and the amount of congestion, 

the throughput can vary significantly over time [2]. 

In the presence of competing HTTP-based adaptive 

streaming (HAS) clients the TCP throughput does not 

always faithfully represent the fair-share bandwidth [29]. 

Three performance issues that can take place when two or 

more adaptive streaming players share a network 

bottleneck and compete for available bandwidth are 

instability, unfairness and utilization [27]. It is shown that 

in the case of two competing video flows Adaptive video 

streaming players provide a received video rate that 

oscillates around the fair share, but with an increased 

number of video level switches [18]. Depending on the 

temporal overlap of the ON-OFF [38] periods among 

competing players, they may not estimate their fair share 

correctly [21]. In the case where both players overestimate 

their fair share, they may request a video representation 

with a higher bitrate than the fair share, which causes 

network congestion. Consequently, the players measure 

that their TCP throughput is lower than their previous fair 

share estimate, and so switch down to a lower video bitrate 

level. This creates a repeating oscillatory scenario, so 

inducing instability. A scenario can also occur where some 

players are requesting chunks with lower bitrates than the 

other players. This can occur as some players observe a 

throughput lower than the fair share, while others observe 

a throughput that is more than the fair share. This means 

that some players overestimate its fair share. When some 

players overestimate their fair share, it can be that the 

system of players converge to a stable equilibrium, but 

unfair. This occurs as the players with the larger fair share 

estimates request higher bitrate video levels. Even in the 

case where two players estimate their fair share correctly, 

bandwidth underutilization can still be prevalent. This 

occurs as both players request the same lower video bitrate 

level, which causes underutilization, even though stability 

and fairness still exist. In reality, several other factors can 

play an important role in the appearance and extent of 

instability, unfairness and underutilization, such as the 

exact player adaptation algorithm, TCP dynamics, 

bandwidth fluctuations, and the variability of the video 

encoding rate [21]. We group these problems into three 

categories: The first relates to the stability of the players in 

terms of requested bitrates and video quality. The second 

is the unfairness among competing players. The third is 

the potential bandwidth underutilization when multiple 

adaptive players compete. They are described as follows: 

Instability: The instability for player 𝑖 at time 𝑡 is given in 

Equation 7, where 𝑤(𝑑)  =  𝑘 – 𝑑 is a weight function that 

puts more weight on more recent samples. 𝑘 is selected as 

20 seconds [18]. 𝐼𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  ∑ |𝑟𝑖,𝑡−𝑑 − 𝑟𝑖,𝑡−𝑑−1| ∗ 𝑤(𝑑)𝑘−1𝑑=0 ∑ 𝑟𝑖,𝑡−𝑑𝑘−1𝑑=0 ∗ 𝑤(𝑑)                
 
Unfairness: Let 𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡  be the Jain fairness index (cf. 
Equation 10) calculated on the average received rates , 𝑟𝑖, 
(cf. Equation 9) at time  𝑡 over all players [17]. The 

unfairness at time t is defined as √1 −  𝐽𝑎𝑖𝑛𝐹𝑎𝑖𝑟𝑡 . A lower 

value implies a fairer allocation. 
 𝑟𝑖 =  𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑏𝑦𝑡𝑒𝑠𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙                           

 𝐽𝐹𝐼 =   (∑ 𝑟𝑖𝑛𝑖=1 )2𝑛 ∑ 𝑟𝑖2𝑛𝑖=1        
 

The utilization metric is defined as the aggregate 

throughput during an experiment divided by the available 

bandwidth in that experiment (cf. Equation 6, where 𝑡𝑝𝑖  is 

the throuput at time 𝑖 and 𝑏𝑤 is the experimental available 

bandwidth) [29].  

 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  ∑ 𝑡𝑝𝑖𝑛−1𝑖=0𝑏𝑤 . 

IV. SDP DASH-BASED APPROACHES 

A. Method A [11] 

Dynamic Adaptive Streaming over HTTP (DASH) is a 

recent MPEG standard for IP video delivery whose aim is 

the convergence of existing adaptive-streaming proprietary 

solutions. However, it does not impose any adaptation 

logic for selecting the quality of the media segments 

requested by the client, which is crucial to cope effectively 

with bandwidth fluctuations, notably in wireless channels. 

Authors therefore propose a solution to this control 

problem through Stochastic Dynamic Programming 

(SDP). This approach requires a probabilistic 

characterization of the system, as well as the definition of 

a cost function that the control strategy aims to minimize. 

This cost function is designed taking into account factors 

that may influence the quality perceived by the users. 

Unlike previous works, which compute control policies 

online by learning from experience, our algorithm solves 

the control problem offline, leading promptly to better 

results. In addition, we compared our algorithm to others 

during a streaming simulation and we analyzed the 

objective results by means of a Quality of Experience 

(QoE) oriented metric. Moreover, we conducted subjective 

tests to complete the evaluation of the performance of our 

algorithm. The results show that our proposal outperforms 
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the other approaches in terms of both the QoE-oriented 

metric and the subjective evaluation. 

B. Method B [9] 

HTTP Streaming has been a new trend for video 

delivering via IP. Currently, most of the adaptation 

algorithms developed for HTTP Streaming are qualitative, 

which means the performance metrics could only be 

shown after the streaming session. In this paper, we 

embark on this problem by discretizing the whole system. 

We then formulate an infinite horizon problem (IHP) and 

solve it by Stochastic Dynamic Programming (SDP). To 

deal with the time-varying characteristics of video bitrate, 

we estimate the instant bitrate from the previous bitrate. 

We also develop mathematical models that predict the 

average performance of the adaptation policy, which helps 

adjust the settings before a streaming session. In the 

evaluation, we compare our method with a previous work 

which applies bitrate estimation and another method which 

only applies SDP. 

V. EXPERIMENTAL SETUP 

A virtual network is setup on the same host machine 

creating a custom emulation framework. Our setup 

consists of client players, video servers, and a bottleneck 

link. The server resides on a Windows 10 machine. All 

experiments are performed on a Windows 10 client with 

an Intel(R) Core(TM)i7-5500U CPU 2.40GHz processor, 

16.00 GB physical memory, and an Intel(R) HD Graphics 

processor. It serves video data to the client(s) who are on a 

Ubuntu operating system hosted on VMware. The virtual 

machine is allocated 12GB of physical memory.  

TAPAS [8] is installed on Ubuntu 15.04 Linux. The 

TAPAS Adaptive Video Controller client makes different 

video segment bitrate level requests to the Apache server. 

TAPAS allow multiple instances of the player to be 

created enabling multi-client scenarios. This work 

involves the interaction between adaptive streaming 

algorithm at the controller and TAPAS player (cf. Figure 

6). All traffic between clients and servers go through the 

bottleneck, which uses VMware settings which allow 

bandwidth limits to be set during the experiment. TAPAS 

support both the HTTP Live Streaming (HLS) and 

Dynamic Adaptive Streaming over HTTP (DASH) format. 

Algorithms that uses Method A and Method B was tested 

and shown to work on both MPEG-DASH [40], and Apple 

HTTP Live Streaming (HLS) [33]. This makes it useful 

for video on demand (VOD) [15] and live streaming [41], 

for example, real-time video chats. However, the MPEG-

DASH standard is used for testing in this research paper, 

because it makes the experiments more comparable to the 

ones in the research literature, for example, [29], [18].  

The ten-minute-long MPEG-DASH video sequence 

“Elephant’s Dream”1
 is encoded at twenty different 

bitrates, between 46 Kbps to 4200Kbps and five different 

resolutions, between 320x240 to 1920x1080, is used to run 

the experiments (cf. Table II). The video is encoded at 24 

frames per second (fps) using the AVC1 codec [43]. 

Fragment duration of 2s is used and is recorded in the mpd 

playlist accordingly. All the DASH files (.m4s fragments 

and MPD playlists) are placed on the Apache server. We 

implemented three client-side algorithms in the TAPAS 

controller. The conventional approach is present by default 

and is used as a baseline in which to compare against other 

algorithms. TAPAS is lightweight in built, thus allowing 

the same receiving host to run a large number of separate 

video player instances at the same time at different 

command line interfaces. Thus, it allows the multi-client 

scenarios which are essential to the work in this paper. 

VI. RESULTS 

The first experiment illustrates five players competing at a 

20Mbps bottleneck link. Table 1 gives the results. Method 

A outperforms Method B and the Conventional. 

 Method A Method B Conventional 

Utilization 0.92 0.86 0.68 

Unfairness 0.020 0.059 0.124 

Instability 0.151 0.210 0.311 

The second experiment illustrates five players competing 

at a 20Mbps bottleneck link and stopping or pausing 

during the experiment. Table 2 gives the results. Method A 

outperforms Method B and the Conventional. 

 Method A Method B Conventional 

Utilization 0.93 0.84 0.71 

Unfairness 0.015 0.067 0.136 

Instability 0.146 0.243 0.356 

The third experiment illustrates five players competing at 

a 100Mbps bottleneck link with increasing number of 

players up to 20. Table 3 gives the results. Method A 

outperforms Method B and the Conventional. 

 Method A Method B Conventional 

Utilization 0.85 0.77 0.59 

Unfairness 0.037 0.068 0.173 

Instability 0.175 0.258 0.384 

The fourth and final experiment illustrates five players 

competing at a 20Mbps bottleneck link in bandwidth 

varying conditions. Table 4 gives the results. Method A 

outperforms Method B and the Conventional. 

 Method A Method B Conventional 

Utilization 0.83 0.73 0.55 

Unfairness 0.045 0.073 0.398 

Instability 0.194 0.280 0.401 

VII. CONCLUSION 

Stochastic Dynamic Programming (SDP) is an important 

class of optimization which has recently been used in the 

area of dynamic adaptive streaming over HTTP (DASH). 
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Though DASH is very popular method of video delivery 

in recent years it is plagued with problems when multiple 

players share a bottleneck link. Thus, this area has become 

a very active area of research. Two works which 

implement SDP in DASH are selected and their 

performances compared against the Conventional DASH 

player. It is shown that SDP works well for various 

network conditions. However, one method outperforms 

the others in the experiments conducted. Future work 

could involve the use of multipath routing protocols [22] 

between the home gateway router and the server for 

improving current performance. 
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