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 Mathematical models of the drug release have been used in the drug delivery 
(DD) field for more than 50 years by the scientists in the drug development 
process. These models not only help scientists to learn the dynamics of the drugs 
release, but also help them to save money and time by helping to design more 
effective experiments. There is no model in the literature that covers all drug 
release scenarios. Also, some system-specific models have complex 
mathematical equations and these models are not suitable for general use. Zero 
Order Model, First Order Model, Higuchi Model, Peppas Model and Hixon Crowell 
Model are used in 85% of drug release studies in total. The popularity of these 
models comes from their simplicity, easy mathematical expressions and 
implementation. In this review, mathematical derivations of these five models 
are shown in detail. The points to be considered during the derivation and the 
problems that may be encountered are carefully explained along with their 
solutions. In addition, the application of the models to drug release data and the 
points to be considered were obtained by writing from the scratch without using 
any ready software while obtaining the fit function. In this way, many problems 
are better understood, and their solutions are explained. Finally, the obtained fit 
functions are interpreted. 
 
 

© 2020 MIM Research Group. All rights reserved. 
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1. Introduction 

In the field of DD, deriving a mathematical model has been a challenging subject for 
scientists who want to predict drug release. A strong mathematical model can reduce the 
number of required experiments thanks to its prediction ability. And, these estimates 
prevent waste of time and money by helping to prepare more efficient experiments.   

Up to date, there have been many attempts to describe drug release mathematically [1-4]. 
However, these models either failed to cover the entire DD area, or designed for very rare 
special systems and were not suitable for general use. Therefore, they cannot give accurate 
results, and some of them are too complex to apply to release data. In 1961, legendary 
professor Takeru Higuchi published his famous work on mathematical modelling of drug 
delivery [5]. And his equation becomes famous because it was theoretically stable, easy to 
apply, and has wide range of use which makes him called as a “father” of mathematical 
modelling of drug delivery. His surprisingly simple description of drug release from an 
ointment base was the beginning of the quantitative treatment of drug release. After 
Higuchi, there has been modifications of his model for describing porous systems and 
different geometries [1]. 

mailto:aykutdiamond@gmail.com
http://dx.doi.org/10.17515/resm2020.178na0122


Elmas et al. / Research on Engineering Structures & Materials 6(4) (2020) 327-350 

 

328 

 

A mathematical framework has been developed for studying to drug release from 
hydroxypropyl methyl cellulose (HPMC) tablets [6, 7]. A comprehensive model has been 
developed to describe dissolution and swelling behaviors from cylindrical HPMC tablets 
[8-10]. And an extension of this study has been developed for different coordinates [11-
13]. This model was the most advanced one for the polymers undergoing erosion and 
swelling. For dissolving polymer system, first model has been developed in 1988 [14] and 
modified for macromolecular movements [15]. To overcome the blood-brain barrier, a 
finite element model was developed for central nervous system in 1997 [16]. Then, 
doxorubicin supported models developed for breast cancer [17]. Most of these models are 
based on the Fick’s diffusion equation [18] and solutions for different variations [19]. 
Unfortunately, none of these models yield perfect solution. In drug delivery studies, there 
is no model covers all the problems. When developing a model, the following issues should 
be carefully considered.  

• Only dominant features should be added to the model. Otherwise the 
equation would be too complex. 

• Theory should be supported by the experiments. 

• There is no mathematical theory that can be applied to all DD systems. 

• Theory should be abandoned when it fails, even if it is compatible with the 
experiment. 

The purpose of this article is to provide information about popular mathematical models. 
Since it is rarely encountered in the field of DD, the mathematics in deriving models is 
clearly explained and possible problems are shown with their solutions. Finally, it is shown 
that fitting procedure of the models into a release data. In the meantime, a program was 
written from scratch and the places that need attention are highlighted without using 
existing software. According to the work of Caccavo, some models are dominating the DD 
field [20]. They are, Zero Order model 18.9%, First Order model 15.6%, Higuchi model 
19.4%, Peppas model 30% and Hixon-Crowell model 7.8% of usage frequency. It is also 
focused on these models in this work. 

2. Derivation of the Models  

For models that require long calculation, intermediate steps have been neglected. This 
neglect could mislead scientists because there may be some important points that guide 
calculations. Also jumping directly to the model result, makes harder to understand the 
theoretical concept of the model derivations. 

The drug begins to dissolve in a special solvent such as water, blood, or gastric liquid. 
However, the dissolved molecules are not immediately dispersed into all the solvent called 
“bulk liquid”. An imaginary layer occurs on the surface of the drug called “stagnant liquid”. 
In sink conditions, concentration of the drug molecules is always considered zero for the 
simplification of the diffusion calculations. Because simplification assumes constant 
diffusion and gradient. The drug molecules will diffuse from higher concentration to the 
lesser concentration through stagnant liquid by the lead of Fick’s law of diffusion [18]. 

 

𝐽 = −𝐷𝑓
𝑑𝑐

𝑑𝑥
 

 

(1) 
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 Where  𝐽 is the amount of substance passing perpendicularly through a unit surface area 
per time known as “flux”. 𝐷𝑓  is the diffusion coefficient and 𝑑𝑐 𝑑𝑥⁄  is the concentration 

gradient. The reason for the negative sign is, the gradient operator has the negative slope 
while concentration decreases with position. But the flux is a direction independent 
absolute quantity. Which means, there is flux or there is no flux. So, there shouldn’t be a 
negative flux, that’s why negative sign is added in the equation.  

2.1. Zero Order Model 

Zero Order model based on the reaction kinetics of the chemistry. According to these 
kinetics, speed of the reaction can be described as, 

𝑅 = 𝐾0[𝐴]
0 (2) 

Where 𝑅 is the reaction speed, [𝐴]0 represents the concentration of 𝐴 which entering the 
raction with zero degree, and 𝐾0 is the zero order rate constant. Also, reaction speed can 
be written as, 

𝑅 = −
𝛥[𝐴]

𝛥𝑡
 (3) 

Where 𝑡 is time. If reaction speed can be represented with two different equations, one can 
substitute equations (2) and (3).  

𝑑[𝐴]

𝑑𝑡
= −𝐾0  

Or according to experimental conditions, one can write 𝐶 in stead of [𝐴] to represent the 
concentration. 

𝑑𝐶

𝑑𝑡
= −𝐾0  

 Then, applying simple mathematics, 

𝑑𝐶 = −𝐾0 𝑑𝑡     →      ∫ 𝑑𝐶 = −𝐾0∫𝑑𝑡

𝐶𝑡

𝐶0

  

(𝐶)|
𝐶𝑡

𝐶0
= −𝐾0𝑡     →      𝐶𝑡 − 𝐶0 = −𝐾0𝑡  

𝐶𝑡 = 𝐶0 − 𝐾0𝑡 (4) 
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Here in eqn. (4) we have a linear representation of drug release as a Zero Order model. 
Advantages and disadvantages of this linearity will be discussed in experimental analysis 
part. 

2.2. First Order Model 

For the derivation of the First Order model, mathematical theory is same as the Zero Order 
model. Eqn. (3) remains same but eqn. (2) becomes first degree of concentration of 
substance 𝐴 which enters the reaction. 

𝑅 = 𝐾1[𝐴]
1 (5) 

 Same as Zero Order model, one can substitute eqns. (3) and (5). 

𝑑𝐶

𝑑𝑡
= −𝐾1𝐶     →      

𝑑𝐶

𝐶
= −𝐾1𝑑𝑡  

∫
1

𝐶
𝑑𝐶 = −𝐾1∫𝑑𝑡     →      ln (𝐶)|

𝐶

𝐶0
= −𝐾1𝑡 

𝐶

𝐶0

  

𝑙𝑛(𝐶) − 𝑙𝑛(𝐶0) = −𝐾1𝑡  

𝑙𝑛 (
𝐶

𝐶0
) = −𝐾1𝑡 (6) 

Here one should remember the rule which is 𝑙𝑜𝑔(𝑥) = 𝑙𝑛(𝑥) 𝑙𝑛(10)⁄ . So, 

𝑙𝑛(10) 𝑙𝑜𝑔(𝑥) = ln(𝑥) (7) 

 By, substituting eqns. (6) and (7) one can get, 

𝑙𝑛(10) 𝑙𝑜𝑔 (
𝐶

𝐶0
) = −𝐾1𝑡     →     𝑙𝑛(10) = 2.303  

𝑙𝑜𝑔 (
𝐶

𝐶0
) =

−𝐾1𝑡

2.303
     →      𝑙𝑜𝑔(𝐶) − 𝑙𝑜𝑔(𝐶0) =

−𝐾1𝑡

2.303
  

𝑙𝑜𝑔(𝐶) = 𝑙𝑜𝑔(𝐶0) −
−𝐾1𝑡

2.303
 (8) 
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Eqn. (8) can be considered the final representation of First Order model. This model also 
shows similarities with Zero Order model by linearity but thanks to logarithmic 
representation of the equation, there should be some important point to focus on while 
fitting procedure, which will be discussed in experimental analysis chapter. 

2.3. Higuchi Model 

Fifty years ago professor Takeru Higuchi created his famous equation that allows 
prediction of drug release from thin ointment films [5]. Before his derivation, he made 
some assumptions to overcome same problems. These assumptions are should be taken 
into account otherwise it might cause to misuse of the model. 

• Transfer of the drug inside the ointment is slow, but inside the skin is fast. 
In these conditions one could observe stable diffusion. 

• Skin acts like a perfect sink, which means the concentration of the drug is 
ignored. So, it is assumed the concentration in the skin is never increase. 

• Concentration in the film is much more than the solubility of the drug at 
the ointment base. 

• Drug separated to the ointment base uniformly and size of the drug 
particles much less than the ointment layer thickness. 

• Speed of the drug solubility in the ointment base faster than the diffusion 
speed of the dissolved drug particles there. This assumption is important 
because diffused particle is immediately replaced by the new one. 

• Diffusion coefficient in the ointment base is stable and not dependent 
neither time nor position of the layer. 

• Edge effects are ignored. Skin surface area is much bigger than the 
thickness of the ointment film, so one can say the diffusion occurs in one 
dimension. 

• Ointment base neither dissolves nor swells. 

 

In the frame of these assumptions Higuchi made his derivations from graphic below 
(Figure 1). 
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Fig. 1 Drug diffusion from ointment, where Cini is the initial drug concentration, Cs is 
the drug solubility, horizontal axis is the diffusion direction of the molecules and the 

vertical axis is the drug concentration. 

Here we can think that the perfect sink is the human skin and the grey area is soluted drugs 
membrane. If it is donated 𝑄 is the amount of absorbed at time 𝑡 per unit area of exposure, 
and 𝐴 is the concentration of drug expressed in units/cm3, surface area of the grey 
trapezoid in Figure 1 (right hand side of the eqn. (9)) corresponds to 𝑄. 

𝑄 = ℎ (𝐴 −
𝐶𝑠

2
) (9) 

 Here, ℎ is an unknown parameter which should be fund. Rearranging Eqn. (9) 

𝑄 = ℎ (𝐴 − 
𝐶𝑠

2
)      →      𝑄 = 𝐴ℎ −

𝐶𝑠

2
ℎ  

𝑑𝑄 = 𝐴𝑑ℎ −
1

2
𝐶𝑠𝑑ℎ (10) 

Also professor Higuchi foresaw that Fick’s law [18] can be written as, 

𝑑𝑄

𝑑𝑡
= 𝐷𝐶𝑠 ℎ     →      𝑑𝑄 = 𝐷

𝐶𝑠

ℎ
𝑑𝑡⁄  (11) 

Where 𝐷 is the diffusion constant. Substituting eqns. (10) and (11) we can get,  

Direction of drug release 

Perfect 

sink 

h 

dh 

Cs 

Cin

i 

A 

ointment 
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𝐴𝑑ℎ −
1

2
𝐶𝑠𝑑ℎ = 𝐷

𝐶𝑠

ℎ
𝑑𝑡  

Dividing both sides by 𝑑𝑡 we get, 

𝐴
𝑑ℎ

𝑑𝑡
−
1

2
𝐶𝑠
𝑑ℎ

𝑑𝑡
=
𝐷𝐶𝑠

ℎ

𝑑𝑡

𝑑𝑡
     →      𝐴

𝑑ℎ

𝑑𝑡
−
1

2
𝐶𝑠
𝑑ℎ

𝑑𝑡
=
𝐷𝐶𝑠

ℎ
  

𝑑ℎ

𝑑𝑡
(𝐴 −

1

2
𝐶𝑠) =

𝐷𝐶𝑠

ℎ
     →      

𝑑ℎ

𝑑𝑡
(𝐴 −

1

2
𝐶𝑠) ℎ = 𝐷𝐶𝑠  

𝑑ℎ (𝐴 −
1

2
𝐶𝑠) ℎ = 𝐷𝐶𝑠𝑑𝑡     →      

(𝐴 −
1

2
𝐶𝑠)

𝐷𝐶𝑠
ℎ𝑑ℎ = 𝑑𝑡  

Both multiplying and dividing by 2 will simplify the calculations, 

2

2

(𝐴 −
1

2
𝐶𝑠)

𝐷𝐶𝑠
ℎ𝑑ℎ = 𝑑𝑡     →      

(2𝐴 − 𝐶𝑠)

2𝐷𝐶𝑠
ℎ𝑑ℎ = 𝑑𝑡  

(2𝐴 − 𝐶𝑠)

2𝐷𝐶𝑠
∫ℎ𝑑ℎ = ∫𝑑𝑡     →      

(2𝐴 − 𝐶𝑠)

2𝐷𝐶𝑠
(
ℎ2

2
) = 𝑡  

 
(2𝐴 − 𝐶𝑠)

4𝐷𝐶𝑠
ℎ2 = 𝑡     →      ℎ2 =

4𝐷𝐶𝑠𝑡

2𝐴 − 𝐶𝑠
  

ℎ = 2√
𝐷𝐶𝑠𝑡

2𝐴 − 𝐶𝑠
 (12) 

Now, ℎ can be represented by eqn (12). Substituting into Eqn. (9), 

𝑄 = 𝐴ℎ −
𝐶𝑠

2
ℎ    →      𝑄 = 2𝐴√

𝐷𝐶𝑠𝑡

2𝐴 − 𝐶𝑠
−
𝐶𝑠

2
2√

𝐷𝐶𝑠𝑡

2𝐴 − 𝐶𝑠
  

𝑄 = √
𝐷𝐶𝑠𝑡

2𝐴 − 𝐶𝑠
(2𝐴 − 𝐶𝑠)      →      𝑄 = √

𝐷𝐶𝑠𝑡(2𝐴 − 𝐶𝑠)
2

(2𝐴 − 𝐶𝑠)
  

𝑄 = √𝐷𝐶𝑠𝑡(2𝐴 − 𝐶𝑠)  

According to Higuchi, if 𝐶𝑠 ≪ 𝐴, then (2𝐴 − 𝐶𝑠) ≈ 2𝐴. So 𝑄 becomes 
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𝑄 = √2𝐴𝐷𝐶𝑠𝑡  

Here 𝐴,𝐷 and 𝐶𝑠 are constant. If they merge into one sinle constant like 𝑘 final equation 
becomes popular Higuchi model form as, 

𝑄 = 𝑘√𝑡 (13) 

As it seen from the Eqn. (13) Higuchi model is very simple equation. Zero Order and First 
Order models were linear representations of the drug release but, Higuchi model defines 
the release with square root of time which makes sense and strong relationship with the 
experiments. 

2.4. Peppas Model 

Peppas model also based on diffusion mechanics[19-21]. For the starting point, one may 
think the diffusion occurs in one dimension which is not real but simplifies the calculations. 
Figure 2 

 

 

 

 

  

Fig. 2 Diffusion from a plane sheet. C, L and x represents concentration, length and 
direction respectively. 

Defining boundary conditions as, 

𝑡 = 0     ,    − 𝐿 < 𝑥 < 𝐿     ,      𝐶 = 𝐶𝑖𝑛 (14) 

+L x 

C0             C1               C0 

-L 0 

Sheet 
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𝑡 > 0     ,     𝑥 ∓ 𝐿     ,     𝐶 = 𝐶0 (15) 

𝑡 ≥ 0     ,     
𝑑𝐶

𝑑𝑥
= 0     ,     𝑥 = 0 (16) 

 Where 𝐶𝑖𝑛 represents the initial concentration and, 

𝐶0 = 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝐶𝑒𝑥𝑡  (17) 

Where 𝐶0 is the concentration at ∓𝐿, 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒  is the surface contentration of the plane sheet 

and 𝐶𝑒𝑥𝑡  is the external concentration. After defining boundary conditions, one may focus 
on the Fick’s second diffusion equation [18]. 

𝑑𝐶

𝑑𝑡
= 𝐷

𝑑2𝐶

𝑑𝑥2
 (18) 

Where 𝐷 is the diffusion constant. In the Eqn. (18) concentration is both function of time 
and position. This differential equation is called partial differential equation and could be 
solved by separation of variables technique as, 

𝐶(𝑥, 𝑡) = 𝐶𝑥𝐶𝑡  (19) 

 If it is substituted Eqn. (19) into Eqn. (18), 

𝑑𝐶𝑡

𝑑𝑡
𝐶𝑥 = 𝐷𝐶𝑡

𝑑2𝐶𝑥

𝑑𝑥2
  

Rearranged as, 

1

𝐶𝑡

𝑑𝐶𝑡

𝑑𝑡⏟  
𝑜𝑛𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑡

=
𝐷

𝐶𝑥

𝑑2𝐶𝑥

𝑑𝑥2⏟    
𝑜𝑛𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑥

 
(20) 

 Here in Eqn. (20) two different differential equations depending different variables equal 
each other. So, both equations should be equal same constant. That constant could be 
chosen anything. In this part it is chosen −𝜆2𝐷 for the convenience of the further 
calculations. By focusing left hand side of the Eqn. (20)  

1

𝐶𝑡

𝑑𝐶𝑡

𝑑𝑡
= −𝜆2𝐷 (21) 

We get the first ordinary differential equation. And the right hand side of the Eqn. (20) 
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𝐷

𝐶𝑥

𝑑2𝐶𝑥

𝑑𝑥2
= −𝜆2𝐷 (22) 

Becomes the second ordinary differential equation. Solutions of the Eqns. (21) and (22) 
are known well by the calculus. These solutions are, 

𝐶𝑡 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝐸𝑥𝑝(−𝜆
2𝐷𝑡) (23) 

𝐶𝑥 = 𝐴 × Sin (λx) + B × Cos(λx) (24) 

Respectively. So the Eqn. (19) should be the multiplication of Eqns. (23) and (24). 

𝐶(𝑥, 𝑡) = 𝐶𝑥𝐶𝑡 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × (𝐴𝑆𝑖𝑛(𝜆𝑥) + 𝐵𝐶𝑜𝑠(𝜆𝑥))𝐸𝑥𝑝(−𝜆
2𝐷𝑡) (25) 

For all states, general solution of Eqn. (25), 

𝐶 =∑(𝐴𝑛𝑆𝑖𝑛(𝜆𝑛𝑥) + 𝐵𝑛𝐶𝑜𝑠(𝜆𝑛𝑥))𝐸𝑥𝑝(−𝜆𝑛
2𝐷𝑡)

∞

𝑛=0

 (26) 

Eqn. (26) will be the general solution but there are three unknown parameters like 𝐴𝑛 , 𝐵𝑛 
and 𝜆𝑛. To find these parameters one should apply the boundary conditions. But first Eqn. 
(17) should be understood well. From the Figure 2 if 𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒  and 𝐶𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  are equal, 𝐶0 =

𝐶𝑠𝑢𝑟𝑓. − 𝐶𝑒𝑥𝑡. becomes zero. That is why there is no obstacle to write concentration like 𝐶 −

𝐶0 and 𝐶0 is constant. 

𝐶 − 𝐶0 =∑(𝐴𝑛𝑆𝑖𝑛(𝜆𝑛𝑥) + 𝐵𝑛𝐶𝑜𝑠(𝜆𝑛𝑥))𝐸𝑥𝑝(−𝜆𝑛
2𝐷𝑡)

∞

𝑛=0

 (27) 

Now, let’s focus on the boundary conditions. According to Eqn. (16) while ≥ 0 , 𝑑𝐶 𝑑𝑥⁄ = 0 
, at 𝑥 = 0 mid plane. Taking derivative of Eqn. (27) according to 𝑥, at 𝑥 = 0 one get,  

𝑑𝐶

𝑑𝑥
= 0 =∑ 𝜆𝑛⏟

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

[𝐴𝑛𝐶𝑜𝑠(𝜆𝑛0) + 𝐵𝑛𝑆𝑖𝑛(𝜆𝑛0)⏟                
=0

] 𝐸𝑥𝑝[−𝜆𝑛
2𝐷𝑡]⏟        

≠0   ,   𝑡≥0

∞

𝑛=0

 (28) 

𝐴𝑛⏟
=0

𝐶𝑜𝑠(0)⏟    
=1

+ 𝐵𝑛⏟
≠0

𝑆𝑖𝑛(0)⏟  
=0

= 0     →      𝐴𝑛 = 0     ,     𝐵𝑛 ≠ 0  

𝐶 − 𝐶0 =∑[𝐵𝑛𝐶𝑜𝑠(𝜆𝑛𝑥)]𝐸𝑥𝑝[−𝜆𝑛
2𝐷𝑡]

∞

𝑛=0

 (29) 
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The parameter 𝐴𝑛 has been known and 𝐵𝑛 is not equal zero. To keep searching the 
parameters lets apply another boundary condition form Eqn. (15) as, > 0 , 𝑥 = ∓𝐿, 𝐶 =
𝐶0 → 𝐶 − 𝐶0 = 0. 

𝑎𝑡   𝑥 = 𝐿     →      𝐶 − 𝐶0 = 0 =∑[𝐵𝑛𝐶𝑜𝑠(𝜆𝑛𝐿)⏟        
=0

] 𝐸𝑥𝑝[−𝜆𝑛
2𝐷𝑡]⏟        

≠0   ,   𝑡>0

∞

𝑛=0

  

𝐵𝑛⏟
≠0

𝐶𝑜𝑠(𝜆𝑛𝐿)⏟      
=0

= 0     →      𝐶𝑜𝑠(𝜆𝑛𝐿) = 0     →      𝜆𝑛𝐿 = (2𝑛 + 1)
𝜋

2
  

𝜆𝑛 =
(2𝑛 + 1)𝜋

2𝐿
 (30) 

By substituting Eqn. (30) into Eqn. (29) we get,  

𝐶 − 𝐶0 =∑[𝐵𝑛𝐶𝑜𝑠 (
(2𝑛 + 1)𝜋𝑥

2𝐿
)]

∞

𝑛=0

𝐸𝑥𝑝 [−
(2𝑛 + 1)2𝜋2

4𝐿2
𝑡𝐷] (31) 

With Eqn. (31) there is only one parameter remains unknown which is 𝐵𝑛. To find that 
parameter the first boundary condition could be applied in Eqn. (14). After applying the 
first boundary condition, exponential part of the Eqn. (31) equals 1. Considering the 
concentration as, 𝐶 = 𝐶1 we get, 

𝐶1 − 𝐶0 =∑𝐵𝑛

∞

𝑛=0

𝐶𝑜𝑠 (
(2𝑛 + 1)𝜋𝑥

2𝐿
) (32) 

To solve the Eqn. (32) superposition theorem should be applied. Both sides of the equation 

should be multiplied by 𝐶𝑜𝑠((2𝑃 + 1)𝜋𝑥/2𝐿) and, should be integrated from −𝐿 to 𝐿. 𝑃 is 

an arbitrary parameter which will be eliminated in further steps of the calculations. 

(𝐶1 − 𝐶0) ∫𝐶𝑜𝑠 (
(2𝑃 + 1)𝜋𝑥

2𝐿
) 𝑑𝑥

𝐿

−𝐿

=∑𝐵𝑛 ∫𝐶𝑜𝑠 (
(2𝑃 + 1)𝜋𝑥

2𝐿
)𝐶𝑜𝑠 (

(2𝑛 + 1)𝜋𝑥

2𝐿
) 𝑑𝑥

𝐿

−𝐿

∞

𝑛=0

 

 

According to superposition theorem, 

∫𝐶𝑜𝑠 (
(2𝑃 + 1)𝜋𝑥

2𝐿
)𝐶𝑜𝑠 (

(2𝑛 + 1)𝜋𝑥

2𝐿
) 𝑑𝑥 = {

0     ,     𝑃 ≠ 𝑛
𝐿     ,     𝑃 = 𝑛

𝐿

−𝐿

  

Equality of zero will not be physical because it is known that there is a concentration of 
substance. So, it is chosen 𝑃 = 𝑛. 
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(𝐶1 − 𝐶0) ∫𝐶𝑜𝑠 (
(2𝑛 + 1)𝜋𝑥

2𝐿
) 𝑑𝑥 =∑𝐵𝑛𝐿

∞

𝑛=0

𝐿

−𝐿

 (33) 

To solve the Eqn. (33), change of variables technique is applied as, 

𝑈 =
(2𝑛 + 1)𝜋𝑥

2𝐿
     ,     𝑑𝑈 =

(2𝑛 + 1)𝜋𝑥

2𝐿
𝑑𝑥     ,     𝑑𝑥 =

2𝐿

(2𝑛 + 1)𝜋
𝑑𝑈  

𝑥 = −𝐿     →      𝑈 = −
(2𝑛 + 1)𝜋

2
     ,     𝑥 = 𝐿     →      𝑈 =

(2𝑛 + 2)𝜋

2
  

Then the Eqn. (33) becomes,  

(𝐶1 − 𝐶0) × ∫ 𝐶𝑜𝑠(𝑈) ×
2𝐿

(2𝑛 + 1)𝜋
𝑑𝑈 =∑𝐵𝑛𝐿

∞

𝑛=0

(2𝑛+1)𝜋

2

−
(2𝑛+1)𝜋

2

  

Rearranging, 

(𝐶1 − 𝐶0) ×
2𝐿

(2𝑛 + 1)𝜋
∫ 𝐶𝑜𝑠(𝑈)𝑑𝑈 =∑𝐵𝑛𝐿

∞

𝑛=0

(2𝑛+1)𝜋

2

−
(2𝑛+1)𝜋

2

  

(𝐶1 − 𝐶0) ×
2𝐿

(2𝑛 + 1)𝜋
(sin (𝑈)) |

(2𝑛+1)𝜋

2

−
(2𝑛+1)𝜋

2

=∑𝐵𝑛𝐿

∞

𝑛=0

  

(𝐶1 − 𝐶0) ×
4𝐿

(2𝑛 + 1)𝜋
𝑆𝑖𝑛 (

(2𝑛 + 1)𝜋

2
) =∑𝐵𝑛𝐿

∞

𝑛=0

 (34) 

To simplify the Eqn. (34) it is observed the behavior of the trigonometric part by assigning 
numbers for 𝑛. 

𝑛=0     →     𝑆𝑖𝑛(
(2𝑛+1)𝜋

2
)=𝑆𝑖𝑛(

𝜋

2
)=1

𝑛=1     →     𝑆𝑖𝑛(
3𝜋

2
)=−1

𝑛=2     →     1
𝑛=3     →    −1 }

 

 
=
1     𝑖𝑓     𝑛 = 𝑒𝑣𝑒𝑛

−1      𝑖𝑓     𝑛 = 𝑜𝑑𝑑
  

Then, 

𝑆𝑖𝑛 (
(2𝑛 + 1)𝜋

2
) = (−1)𝑛 (35) 

Substituting Eqn. (35) into Eqn. (34) and canceling 𝐿’s from both side, 𝐵𝑛 can be found as, 
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𝐵𝑛 =
(𝐶1 − 𝐶0)4(−1)

𝑛

(2𝑛 + 1)𝜋
 (36) 

Substituting Eqn. (36) into Eqn. (31), 

𝐶 − 𝐶0 =∑
(𝐶1 − 𝐶0)4(−1)

𝑛

(2𝑛 + 1)𝜋
𝐶𝑜𝑠 (

(2𝑛 + 1)𝜋𝑥

2𝐿
)𝐸𝑥𝑝 [−

(2𝑛 + 1)2𝜋2

4𝐿2
𝑡𝐷]

∞

𝑛=0

 (37) 

At time 𝑡 amount of substance which is transferring inside or ourside the sheet is 𝑀𝑡  can 

be found by the integration of the flux (𝑓𝑙𝑢𝑥 = 𝐷 |
𝑑𝐶

𝑑𝑥
|) at the surface. 

𝑀𝑡 = ∫𝐷 |
𝑑𝐶

𝑑𝑥
|
𝑥=−𝐿

𝑑𝑡 + ∫𝐷 |
𝑑𝐶

𝑑𝑥
|
𝑥=−𝐿

𝑑𝑡 = 2∫𝐷 |
𝑑𝐶

𝑑𝑥
|
𝑥=∓𝐿

𝑑𝑡

𝑡

0

𝑡

0

𝑡

0

  

Concentration 𝐶 is known by Eqn. (37), 𝑀𝑡  will be searched. 

|
𝑑𝐶

𝑑𝑥
|

= ∑
(𝐶1 − 𝐶0)4(−1)

𝑛

(2𝑛 + 1)𝜋
|
(−1)(2𝑛 + 1)𝜋

2𝐿
𝑆𝑖𝑛 (

(2𝑛 + 1)𝜋𝑥

2𝐿
)| 𝐸𝑥𝑝 [−

(2𝑛 + 1)2𝜋2

4𝐿2
𝑡𝐷]

∞

𝑛=0

 
 

|
𝑑𝐶

𝑑𝑥
|
𝑥=∓𝐿

=
2(𝐶1 − 𝐶0)

𝐿
∑(−1)𝑛
∞

𝑛=0

𝑆𝑖𝑛 (
(2𝑛 + 1)𝜋𝑥

2𝐿
)

⏟            
𝑥=∓𝐿   →   (−1)𝑛

𝐸𝑥𝑝 [−
(2𝑛 + 1)2𝜋2

4𝐿2
𝑡𝐷]  

𝑀𝑡 = 2𝐷∫ |
𝑑𝐶

𝑑𝑥
|
𝑥=∓𝐿

𝑑𝑡

𝑡

0

= 2𝐷∫
2(𝐶1 − 𝐶0)

𝐿

𝑡

0

∑(−1)2𝑛𝐸𝑥𝑝 [−
(2𝑛 + 1)2𝜋2

4𝐿2
𝑡𝐷]

∞

𝑛=0

 

 

𝑀𝑡 =
4𝐷(𝐶1 − 𝐶0)

𝐿
∫∑𝐸𝑥𝑝 [−

(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
] 𝑑𝑡

∞

𝑛=0

𝑡

0

 (38) 

Integration in Eqn. (38) can be solved by change of variables technique as, 

𝑈 = −
(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
   ,   𝑑𝑈 = −

(2𝑛 + 1)2𝜋2𝐷

4𝐿2
𝑑𝑡   ,   𝑑𝑡 = −

4𝐿2

(2𝑛 + 1)2𝜋2𝐷
  

𝑡 = 0     →      𝑈 = −
(2𝑛 + 1)2𝜋2𝐷0

4𝐿2
= 0  
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𝑡 = 𝑡     →      𝑈 = −
(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
  

Substituting into Eqn. (38) 

𝑀𝑡 =
4𝐷(𝐶1 − 𝐶0)

𝐿
∫ 𝐸𝑥𝑝[𝑈] ×

−4𝐿2

(2𝑛 + 1)2𝜋2𝐷
𝑑𝑈

−
(2𝑛+1)2𝜋2𝐷𝑡

4𝐿2

0

  

Rearranging, 

𝑀𝑡 =
4𝐷(𝐶1 − 𝐶0)(−4𝐿

2)

𝐿(2𝑛 + 1)2𝜋2𝐷
∫ 𝐸𝑥𝑝[𝑈]𝑑𝑈

−
(2𝑛+1)2𝜋2𝐷𝑡

4𝐿2

0

  

𝑀𝑡 =
4(𝐶1 − 𝐶0)(−4)𝐿

(2𝑛 + 1)2𝜋2
(𝐸𝑥𝑝(𝑈))|0

(2𝑛+1)2𝜋2𝐷𝑡

4𝐿2   

𝑀𝑡 = −
16(𝐶1 − 𝐶0)𝐿

(2𝑛 + 1)2𝜋2
[𝐸𝑥𝑝 (−

(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
) − 1]  

𝑀𝑡 =
16(𝐶1 − 𝐶0)𝐿

𝜋2
∑

1

(2𝑛 + 1)2
[1 − 𝐸𝑥𝑝 (−

(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
)]

∞

𝑛=0

 (39) 

For the infinite time the amount of substance entered or left the sheet can be defined as 
[21], 

𝑀∞ = 2|𝐶1 − 𝐶0|𝐿 (40) 

And the total amount of diffusing substance which has entered or left the sheet of thickness 
2𝐿 (from −𝐿 to 𝐿) at time 𝑡, 𝑀𝑡  is expressed as a fraction of the corresponding quantity 
after infinite time 𝑀∞ as, 

𝑀𝑡

𝑀∞
 (41) 

 Then substituting Eqns. (39) and (40) into Eqn. (41) we get, 

𝑀𝑡

𝑀∞
=

16(𝐶1−𝐶0)𝐿

𝜋2
∑

1

(2𝑛+1)2
[1 − 𝐸𝑥𝑝 (−

(2𝑛+1)2𝜋2𝐷𝑡

4𝐿2
)]∞

𝑛=0

2|𝐶1 − 𝐶0|𝐿
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𝑀𝑡

𝑀∞
=
8

𝜋2
∑

1

(2𝑛 + 1)2
[1 − 𝐸𝑥𝑝 (−

(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
)]

∞

𝑛=0

  

𝑀𝑡

𝑀∞
=
8

𝜋2
[∑

1

(2𝑛 + 1)2
−∑

1

(2𝑛 + 1)2
𝐸𝑥𝑝 [−

(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
]

∞

𝑛=0

∞

𝑛=0

]  

From the series rule, 

∑
1

(2𝑛 + 1)2
=
𝜋2

8

∞

𝑛=0

  

Then, 

𝑀𝑡

𝑀∞
=
8

𝜋2
[
𝜋2

8
−∑

1

(2𝑛 + 1)2
𝐸𝑥𝑝 [−

(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
]

∞

𝑛=0

]  

Rearranging 

𝑀𝑡

𝑀∞
=
8𝜋2

𝜋28
−
8

𝜋2
∑

1

(2𝑛 + 1)2
𝐸𝑥𝑝 [−

(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
]

∞

𝑛=0

  

𝑀𝑡

𝑀∞
= 1 −∑

8

(2𝑛 + 1)2𝜋2
𝐸𝑥𝑝 [−

(2𝑛 + 1)2𝜋2𝐷𝑡

4𝐿2
]

∞

𝑛=0

 (42) 

For the alternating solution Laplace transformation will result [21] 

𝑀𝑡

𝑀∞
= 4 [

𝐷𝑡

𝑙2
]
1/2

[
1

𝜋
1

2

+ 2∑(−1)𝑛𝑖𝑒𝑟𝑓𝑐
𝑛𝑙

2√𝐷𝑡

∞

𝑛=1

] (43) 

For the small times short time behavior sum part, has no effect to the summation after first 

few terms. So ∑ ≈ 1/√𝜋. 

𝑀𝑡

𝑀∞
= 4 [

𝐷𝑡

𝜋𝑙2
]
1/2

 (44) 

In Eqn. (44), constants 𝐷, 𝜋, and 𝑙 can be collected under a new constant 𝑘. 

𝑀𝑡

𝑀∞
= 𝑘𝑡1/2 (45) 

For a second limiting case, according to kinetics of zero order, the drug release rate is 
independent of time. Such situation is described by a general equation of the form 
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𝑀𝑡

𝑀∞
= 𝑘𝑡 (46) 

Most of the release falls between the Eqns. (45) and (46). So, both equations could be 
summed. 

𝑀𝑡

𝑀∞
= 𝑘1√𝑡 + 𝑘2𝑡 (47) 

Eqn. (47) can be generalized as, 

𝑀𝑡

𝑀∞
= 𝑘𝑡𝑛 (48) 

Eqn. (48) is the Peppas model which is very similar to the Higuchi model. One should focus 
on the exponential part of the time which is not constant. Fitting model to the experimental 
data with variable data will be slightly different from the routine process. Which will be 
discussed in further chapters. 

2.5. Hixon Crowell Model 

Hixon Crowell model is another popular model in the field [22]. It is not as popular as 
Higuchi and Peppas model but, considering its derivation, it is worth to mention. In Hixon 
Crowell model the basic concept can be specified as, 

𝑑𝐶(𝑡)

𝑑𝑡⏟  
𝑟𝑎𝑡𝑒 𝑜𝑓 

𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
𝑐ℎ𝑎𝑛𝑔𝑒

= 𝑘(𝐶𝑠 − 𝐶(𝑡)) 
(49) 

Where 𝐶(𝑡) is the concentration depends on time, 𝑘 is constant, 𝐶𝑠 is the concentration of 
the saturated solution. Rate of change of weight described as, 

𝑑𝑤

𝑑𝑡
= 𝑘2𝑆(𝐶𝑠 − 𝐶) (50) 

 Where 𝑤, 𝑘2 and 𝑆 are wieght, constant and surface of substance at time 𝑡 
respectively. If weight of the substance dissolved at time𝑡, 

𝑤0 − 𝑤 (51) 

Then the mass in a specific volume is, 

(𝑤0 − 𝑤)

𝑉
= 𝐶 (52) 
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 Where 𝑉 is volume, and, 

𝑤𝑠

𝑉
= 𝐶𝑠 (53) 

If Eqns. (52) and (53) substituted into Eqn. (50) 

𝑑𝑤

𝑑𝑡
= −𝑘2𝑆 (

𝑤𝑠

𝑉
−
𝑤0 − 𝑤

𝑉
)      →      𝑉 (

𝑑𝑤

𝑑𝑡
) = −𝑘2𝑆(𝑤𝑠 − 𝑤0 +𝑤) (54) 

Surface varies 2/3 power of its volume. 

𝑆 = 𝑉2/3    ,     𝑉 =
𝑤

𝑑
     →      𝑆 =

1

𝑑2/3⏟
𝑘

𝑤2/3 (55) 

Where 𝑑 is density and 𝑘 is constant which represents density. Then 𝑆 is substituded into 
Eqn. (54). 

𝑉 (
𝑑𝑤

𝑑𝑡
) = −𝑘2𝑘𝑤

2/3(𝑤𝑠 − 𝑤0 + 𝑤) (56) 

Collecting constants 𝑘2 and 𝑘 into a new constant as 𝑘1 , defining  𝑤𝑠 − 𝑤0 = 𝑔 and 
rearranging Eqn. (56)  

𝑉 (
𝑑𝑤

𝑑𝑡
) = −𝑘1𝑤

2/3(𝑔 + 𝑤)     →      𝑉 (
𝑑𝑤

𝑑𝑡
) = −𝑘1(𝑔𝑤

2/3 + 𝑤5/3)  

𝑉 ×
1

(𝑔𝑤2/3 + 𝑤5/3)
𝑑𝑤 = −𝑘1𝑑𝑡  

Integrating both parts 

𝑉∫
1

(𝑔𝑤2/3 + 𝑤5/3)
𝑑𝑤 = −𝑘1∫𝑑𝑡  

𝑔1/3 = 𝑎     ,     𝑤0
1/3

= 𝑏     ,     𝑤1/3 = 𝑥     ,     𝑤 = 𝑥3     ,     𝑑𝑤 = 3𝑥2𝑑𝑥  

𝑉∫
3𝑥2

(𝑎3𝑥2 + 𝑥5)
𝑑𝑥 =

𝑉 (2√3 tan−1 [
(−𝑎+2𝑥)

√3𝑎
] + 2 ln[𝑎 + 𝑥] − ln[𝑎2 − 𝑎𝑥 + 𝑥2])

2𝑎2
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𝑎 = 𝑔1/3      →      𝑔 = (𝑤𝑠 − 𝑤0)    ,     𝑥 = 𝑤
1/3  

While concentration change of a substance is negligible. So 𝐶 is constant then 𝐶𝑠 − 𝐶 is 
constant. The rate is proportional to the surface alone, which is, 

𝑑𝑤

𝑑𝑡
= −𝑘3𝑤

2/3 (57) 

Integrating both parts, 

∫
1

𝑤2/3
𝑑𝑤 = −𝑘3∫𝑑𝑡     →       𝑤0

1/3
−𝑤1/3 = 𝑘4𝑡

𝑡

0

 (58) 

Eqn. (58) could be considered as Hixon Crowell model [22]. 

3. Experimental Analysis  

For the experimental analysis part, public data table “Cumulative % drug release data of 
all the formulations” [23] is used from the work of Madhavi [24], under the creative 
commons license by, CC BY-NC-SA 3.0 [25]. The work corresponds the dissolution 
enhancement of efavirenz by solid dispersion and PEGylation techniques. In related work, 
PEGylated compound 2 is released with time by (5,10,15,20,25,30,45,60,80,100) minutes 
with (17,22,32,34,39,42,48,50,54,57) percentage which is sufficient for fitting and testing 
the models. 

For the simplicity and linearity of the Zero Order model as seen in Eqn. (4), the fit of it does 
not require modification of axes to get a suitable representation. All the data collected in a 
suitable matrix and fitted to the function. In this article the Wolfram Mathematica 10 
software is used to perform fitting, graphing and strength test. 

For the Zero Order model it could be observed that fit does not look good enough because 
of the fit function is missing most of the data points. But when it is coming to compare 
many models visual comments might start debate. To test the strength of the models 
quantitatively it is chosen Watson’s U Square Method [26] because of the convenience of 
the data set. This test yields two results. One statistic and other P-Value. For the perfect fit 
statistic value should be equal to zero and P-Value should be equal to one. Then it could be 
commented on the strength test results comparison. Which model is strong or weak and 
which model is better? For the Figure 3  fit results, strength test yield statistic 0.0605 and 
P-Value 0.615658. 

Fitting the First Order model is slightly different from the Zero Order model, because of the 
model functions logarithmic nature as seen in Eqn. (8). For this kind of equation, it is not 
possible to draw a graph as drug release versus time, because the function represents 
logarithm of the remaining drug. To overcome this axes problem, data matrix should be 
converted to the suitable form by first, converting release data into remaining data. Second, 
convert it into a logarithmic value. Then, fitting the function will be possible. 
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Fig. 3 Fit of Zero Order model function to the drug release data. 

 

  

Fig. 4 Fit of First Order model function to the drug release data. 

As seen from the Figure 4, vertical axes is different from the Figure 3. And function behaves 
linear with negative slope thanks to nature of the function. Strength test results as statistic 
0.403509 and P-Value 0.000565739. 

As it seen, every model needs specific data set arrangements for fitting. For Higuchi model, 
drug release remains same but time varies with the power of ½ so it will not appropriate 
to use same horizontal axes with Zero and First Order models. Time part of the data matrix 
also should be converted into suitable form by adding the power of ½ to it as, 
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Fig. 5 Fit of Higuchi model function to the drug release data. 

As it seen from the Figure 5vertical axis is similar with the Zero Order model, but 
horizontal axis is converted into Higuchi form. Higuchi Eqn. (13) predicts fast diffusion for 
short term first, then release starts to get slower with time thanks to the ½ power of time. 
That makes sense for most diffusion-based release, and that is why it stands one of the 
strongest and popular model of all time. For the fit in Figure 5, Higuchi model strength test 
results 0.0445 for statistic and 0.808438 for P-Value. 

In Peppas model time varies with the power of a parameter 𝑛 as seen in Eqn. (48). In this 
case it will not be possible to generate graph for an unknown axis. But fitting procedure 
still will generate the parameters. So, data matrix could be converted into Peppas form 
with the unknown parameter 𝑛 than fitting is applied. In that way software will generate 
the most possible parameters for both 𝑘 and 𝑛 values which makes it possiple to visualize. 

As seen from the Figure 6 fit function gets close to the dataset and horizontal axes is 
converted into the Peppas form with the generated parameter. Strength test of the Peppas 
model yields, statistic 0.033 and P-Value 0.933232. 

For another popular model Hixon Crowell model to arranging data matrix is follows the 
same procedure. As seen in Eqn. (58) function represents difference between cube roots 
of the initial amount and remaining amount. Applying this difference into the data matrix, 
it easily could be getting the vertical axes. 
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Fig. 6 Fit of Peppas model function to the drug release data. 

 

  

Fig. 7 Fit of Hixon Crowell model function to the drug release data. 

It could easily be observed that the vertical axis has transformed the model suitable form 
from the Figure 7. Strength test of Hixon Crowell model results the statistic 0.425 and P-
Value 0.00039154 which is far from a good fit because the model function is stacked to the 
origin. 
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Table 1 Model fit parameters. 

Models 
Parameters 

C K n 
Zero Order Model 24.5908 22.9373 - 
First Order Model 78.3375 0.4555 - 

Higuchi Model - 47.8268 - 
Peppas Model - 49.8155 0.5968 
Hixon Crowell 

Model 
- 0.8965 - 

 

Table 2 Comparison of the strength of the fits. 

Models Statistic P-Value 
Zero Order Model 0.060500 0.615658 
First Order Model 0.403509 0.000565 

Higuchi Model 0.044500 0.808438 
Peppas Model 0.033000 0.933232 
Hixon Crowell 

Model 
0.425000 0.000391 

As seen from the  

Table 2, Higuchi and Peppas models are able to generate strong fits to the drug release 
data. 

Finally it is seen from the experimental analysis, Zero Order model and First Order model 
can be applied for the 50% of the drug release approximately for the related data. However 
Higuchi and Peppas model can generate fit function up to 60% of drug release which is end 
of the release data. But the curvature of the fit functions foreseen that, the function is able 
to produce higher percentage representation. Also Hixon model is not as good as Higuchi 
and Peppas model because of its origin dependent nature. This behavior of the models is 
obviously occurred by the experimental details. In the related data set, drug is released up 
to 57%. In many experiments sink conditions is not satisfied and due to the saturation drug 
release is slowed, or in some scenarios there are some drug carriers that prevents the fast 
release. All the related parameters should be added into the models carefully if needed 

4. Conclusions 

In the DD field, there is no comprehensive resource describing the derivation of 
mathematical models explicitly. Existing works either focus on single model or jump into 
direct result of model functions. The purpose of this review is showing explicit derivation 
of the most popular models and collecting them under one single paper. At the same time, 
the problems encountered during calculation and fitting are also discussed in detail. These 
problems are not clarified in the literature. 

The first of the two major problems is choosing the correct expression for release when 
applying boundary conditions (Eqn. (27)). There is no guide in the literature to the 
selecting boundary conditions correctly and to obtain parameters. This study might fill that 
gap by the explicit applications of the boundaries without non-dimensionalization. Second 
problem is the representation of the fitting functions in proper axes. In most of the studies, 
fitting is represented by build-in ready computer software and the obtained results are 
shown directly. Almost every specialist uses that way because it is faster and easier. But 
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there is still no guide to align the axes for the relevant model. This review also overcome 
that problem (Figure 4-Figure 7)) 

As a result, in this study it is focused on guiding the new researchers who interests to 
understand drug delivery mechanism by collecting all necessary subjects under one single 
source. Derivation, calculation, application and testing of the models have been explained 
carefully which might help scientists to take their works further in related area. Also, it is 
underlined the importance of the models that give predictions to the scientists for 
preventing waste of time and money for their experiments. In the future it will be focused 
on the relation between the reaction rate constant and activation energy by Arrhenius 
equation, which leads to the calculations to the thermodynamic studies. Thus, it is planned 
to investigate whether there is a relationship between entropy and enthalpy and the 
activation energy of the reaction. 
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