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Abstract  Öz 

After the discovery of the effectiveness of the stochastic methods for 
solving real life problems, these methods have been applied to a wide 
range of problems in two types; deterministic problems and stochastic 
problems. The general opinion takes part in applying these methods to 
stochastic problems since it is preferable for realistic results. Moreover, 
those methods can also be used in dealing with deterministic models. 
This study aims to show how stochastic approaches can be applied to 
deterministic models. Thus, an algorithm based on the Monte Carlo 
simulation has been presented for solving some systems of nonlinear 
differential equations. To discuss the behavior of such models, the 
population equations have been taken into consideration. The 
considered approach has been seen to produce more accurate results 
than numerical techniques. A detailed discussion about the results has 
also been given in this work. 

 Gerçek hayat problemlerini çözmek için stokastik yöntemlerin 
etkinliğinin keşfinden sonra bu yöntemler, deterministik ve stokastik 
olmak üzere iki tipteki geniş çaplı problemlere uygulanır oldular. 
Gerçekçi sonuçlar için tercih edilebilirliğinden dolayı bu yöntemleri 
stokastik problemlere uygulamak genel kanı olmuştur. Fakat bu 
yöntemler deterministik modellerle çalışmak için de kullanılabilir. Bu 
çalışma stokastik yöntemlerin deterministik modellere nasıl 
uygulanabileceğini göstermeyi amaçlamaktadır. Bu yüzden Monte 
Carlo simülasyonu temelli bir algoritma, lineer olmayan diferansiyel 
denklem sistemlerini çözmek için sunulmuştur. Bahsi geçen modellerin 
davranışlarını tartışmak için popülasyon denklemleri ele alınmıştır. Bu 
yaklaşımın sayısal tekniklerden daha doğru sonuçlar ürettiği 
görülmüştür. Bu çalışmada sonuçlar hakkında detaylı bir tartışma 
yapılmıştır. 

Keywords: Monte Carlo method, Stochastic method, Population 
models 

 Anahtar kelimeler: Monte Carlo yöntemi, Stokastik yöntem, 
Populasyon modelleri 

1 Introduction 

Any physical event can be represented by a differential 
equation since it represents a rate of change by derivatives. The 
solutions of differential equations are important as well as 
differential equations themselves since they are needed to 
analyze the behavior of physical phenomena. Because of this 
importance, differential equations and their solutions have 
been considered in many scientific areas for many years. 

There are various solution techniques for the differential 
equations. They can be mainly grouped under three headings; 
analytical, numerical and simulation techniques. Numerical and 
simulation techniques can be considered if the problems lack of 
having an exact solution or suffer from the way of calculations. 

The Monte Carlo method is a stochastic simulation technique 
based on random sampling to model random behaviors that are 
too difficult to solve analytically [1],[2]. Although the 
introduction of the method came out in the late 1940s, a 
significant progress in the method has taken place in the last 
decades and the method has begun to be used in various fields 
of science; including statistics, engineering, computer science 
and so on. Developments in computer programming and fast 
computer tools led to enhance implementation of the Monte 
Carlo methods [3]. 

After the discovery of the effectiveness of the stochastic 
methods for solving real-life problems, these methods have 
been applied to a wide range of problems in two types; 

deterministic and stochastic. The applicability of these methods 
to stochastic problems tends to be the first option coming to 
mind since it is preferable for getting all possible results. Also 
those methods can be properly used in dealing with 
deterministic models [4]-[6]. 

When a nonlinearity occurs in somewhere, unexpected 
behaviors can come out consecutively. Nonlinear cases need 
more effort than linear ones since the equations are fairly 
harder to solve than linear equations. If it is a system of 
nonlinear equations of interest, the effort spent needs to be 
increased. 

The prey predator model is being used to represent a simple 
nonlinear system. There are various method to obtain accurate 
solutions by using numerical algorithms such that Adomian 
Decomposition Method (ADM), Fourth Order Runge Kutta 
Method (RK4) and so on [7]. On the other hand, the simulation 
techniques can be applied this type of problems as well as 
numerical ones. In this respect, some studies have been 
presented for finding the solutions of first order initial value 
problems of ordinary differential equations on the basis of 
Monte Carlo method [8]-[10]. Moreover, methods for solving 
nonlinear equations and systems of nonlinear equations have 
been created and improved day by day. But challenging parts 
are getting high stability, high accuracy and low computational 
costs [11],[12]. 

In this study, a solution of systems of first order homogeneous 
and non-homogeneous nonlinear differential equations are 
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introduced with the Monte Carlo based stochastic algorithm 
and solutions are given both qualitatively and quantitatively. To 
understand more precisely behavior of the solutions, systems 
have been considered as population systems with two different 
populations; a prey and a predator, as named the Lotka-
Volterra equation. 

2 Implementation of the method 

One of the most practical way for solving a differential equation 
is the usage of integration. Even if applying the integration to 
the system of equations may not be as easy as expected, the 
present algorithm is proposed to solve first order nonlinear 
ordinary differential equations (ODE) through the Monte Carlo 
approach [13],[14]. To be able to apply the algorithm, the 
system of differential equations is modified. The main steps of 
the implementation of the Monte Carlo method for producing 
simulated results are shown in Figure 1. 

 

Figure 1: Implementation of the Monte Carlo method. 

Let us now consider the first order differential equation in 
implicit form 

𝑑𝑦

𝑑𝑥
= 𝐹(𝑥, 𝑦) (1) 

where function 𝐹 stands for an arbitrary function involving 
dependent and independent variables of the differential 
equation. By choosing the function 𝐹 in a suitable way of the 
considered problem, a reference number is accepted to do 
comparison in the related steps of the algorithm. The reference 
number should be generated for each iteration. The first one 
can be created by using initial conditions 𝑋0 and 𝑌0 and this 
creation keeps going on for each step. The step size is 
determined by dividing uniformly the interval to 𝑚 points. Let 
us name this reference number as Classification Number (CN) 
defined as follows 

𝐶𝑁 ∶=  
𝑑𝑌

𝑑𝑋
= 𝐹(𝑋𝑛 , 𝑌𝑛) (2) 

where 𝑛 = 0,1, … , 𝑚. 

Next step, determination of upper and lower bounds for 
generating random numbers is expected to lead to more 
accurate estimation. If an exact solution is known, then the 
bounds can be chosen according to the maximum and minimum 
values of the solution in the related interval. If not, the 
estimation can be made under the consideration of the physical 
realities of the problem.  

Although it is possible to optimize the bounds as given in the 
literature [8], in reality it has not been standardized yet. The 
effect of determination a range for random variables is 
discussed in detail under the Example 1. Actually, this study 

primarily focuses on the application of realistic problems 
rather than the detailed discussion of the optimum parameters. 

After determining an upper and a lower bound, random 
numbers can be created according to these bounds for making 
a comparison with the CN. Create N positive random variables 
and N negative random variables for making a comparison with 
respect to the CN of the algorithm. 

The algorithm works according to below strategy: 

1. Define 
𝑑𝑌

𝑑𝑋
: = 𝐹(𝑋𝑛 , 𝑌𝑛), 

2. Find the upper and lower boundaries, U and L, for 
making classification of random numbers, 

3. Determine an interval and step size, then divide the 
interval m points with respect to step size, 

4. Create N random numbers, 

5. 𝐶𝑁 = 𝐹(𝑋𝑛, 𝑌𝑛) for 𝑛 = 0, … , 𝑚, 

 

 

 

3 Systems of first order nonlinear ODEs 

To analyze the behavior of the solution of the differential 
equations system, the well-known population model equation, 
the Lotka-Volterra equation, has been considered. 

Let 𝑥(𝑡) represents the population of the prey species and 𝑦(𝑡) 
represents the population of the predator species, then the first 
order nonlinear ODE system is 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝛽𝑥𝑦 + ℎ𝑥,            𝑥(0) = 𝑥0 

𝑑𝑦

𝑑𝑡
= −𝛾𝑦 + 𝛿𝑥𝑦 + ℎ𝑦, 𝑦(0) = 𝑦0 

(3) 

with constant coefficients 𝛼, 𝛽, 𝛾 and 𝛿, the initial conditions 𝑥0 
and 𝑦0 and source terms ℎ𝑥 = ℎ𝑥(𝑥, 𝑡) and ℎ𝑦 = ℎ𝑦(𝑦, 𝑡) which 

represent the rate of external factors per unit time for prey 
population model and predator population model, respectively 
[15],[16]. 

A homogeneous system in real-life means that the physical 
environment of interest has been isolated from all possible 
external factors. This homogeneous system can be considered 
that two populations live in a closed area without affected by 
external factors in terms of behaviors of the population models. 
On the other hand, in the real-life problems, some external 
factors may occur and affect the number of the populations 
apart from the birth or death ratios. Since the existence of ℎ𝑥 
and ℎ𝑦 in the problem is more realistic than the non-existence 

case, we also take into consideration the nonzero cases of the 
terms ℎ𝑥 and ℎ𝑦. For the sake of being natural, all possible cases 
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of the terms ℎ𝑥 and ℎ𝑦 have been considered illustratively in 

examples. 

Constant coefficients in Equation 3, α, β, γ and δ designate rate 
constants a birth rate of a prey population, a death rate of a prey 
population, a death rate of a predator population and a birth 
rate of a predator population respectively. For each prey-
predator populations, these constants are different, i.e. they are 
unique for a system. The initial conditions 𝑥𝑜 and 𝑦0 refer to the 
number of individuals of populations before the observation 
starts. 

4 Illustrative simulations 

In this section, nonlinear first order differential equation 
systems are solved by using the Monte Carlo based algorithm. 
For each example 100000 random samples are used. For 
comparison purpose, first order nonlinear differential equation 
systems are solved by the ode45 function of MATLAB which is 
based on the Runge-Kutta method to solve ordinary differential 
equations numerically [15]. Evenly spaced interval with 
increments 0.01 has been used for systems. After the 
application of the algorithm to the problems, predicted results 
have been compared with the numerical ode45 results, the 
qualitative and quantitative behaviors have been shown in 
detail. The two results are compared by using the formula 
|𝑝 − 𝑦| where 𝑝 is the predicted solution and 𝑦 is the ode45 
solution of the given problem. To compute the results, the codes 
have been produced in MATLAB 2018a installed on a computer 
which has the properties of 2.3 GHz Intel Core i5 and 16 GB ram. 

In addition to the following simulated results, effects of the 
parameters are also discussed in this section. 

4.1 Example 1 

Let us consider a system of first order nonlinear differential 
equations in section 3 with constants 𝛼 = 0.6, 𝛽 = 0.3, 𝛾 = 0.4, 
𝛿 = 0.65, the rates of external factors are  ℎ𝑥 = ℎ(𝑥, 𝑡) = 0  and 
ℎ𝑦 = ℎ(𝑦, 𝑡) = 0  with initial conditions 𝑥0 = 2 and 𝑦0 = 1. 

The Monte Carlo based algorithm is applied to the system by 
dividing the time interval uniformly with the increment 0.01. 

Figures 2 and 3 and show the qualitative behavior of the 
algorithmic solutions compared with the numerical solutions 
obtained by the ode45. Quantitative results of the system have 
been given in a comparative way in Table 1. 

When the qualitative behavior of the solution is considered, it 
can be easily seen that there is a rapid growth for the predator 
population after the observation starts. After a while, again a 
rapid decreasing occurs since the number of prey population is 
decreasing step by step. Then the prey population starts to 
grow because of the decreasing number of predators. However, 
this growth provides the food for the predator population 
causes again being hunted. When all these observations are 
considered, the predicted and numerical results are seen to be 
in relatively good agreement. 

Since behavior of the populations is periodical when the 
external factors are isolated, different size of the time intervals 
has not been expected to affect the general behavior of the 
population in the real life situations. Therefore, the proposed 
algorithm is expected to exhibit the same behavior for various 
size of the intervals. Moreover, the algorithm and its 
restrictions should also be properly applied to different types 
of problems for producing physically suitable results. 

To discuss effects of the parameters on the behavior of the 
populations for various intervals, the equation given in 
Example 1 has also been solved for interval [0, 50] and then the 
agreement between the solutions are seen in Figures 4 and 5. 
The only difference between the two results for each one of 
Figures 4 and 5 is the amount of random numbers. The amount 
of random numbers are taken to be 100000 and 170000 for the 
corresponding figures, respectively. It can be concluded that 
the difference between the predicted and numerical results can 
be reduced when the amount of the random numbers increases 
reasonably. 

 

 

 

 

Figure 2: Comparison of the MC predictions and the 
numerical solutions of equations in Example 1 and 

differences between the results on the interval [0, 30]. 

 Figure 3: Behaviors of the population functions relative to 
each other for the equation system. 
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Table 1: Numerical results for the system of first order nonlinear differential equations in example 1. 

Time 𝑡 
The proposed 

algorithm 
solutions for 𝑥(𝑡) 

ode45 
solutions for 

𝑥(𝑡) 

Differences 
between the 

results for 𝑥(𝑡) 

The proposed 
algorithm 

solutions for 
𝑦(𝑡) 

ode45 
solutions for 

𝑦(𝑡) 

Differences 
between the 

results for 𝑦(𝑡) 

0.0100 2.0059880 2.0059818 0.0000062 1.0090035 1.0090603 0.0000567 
0.0500 2.0295352 2.0295256 0.0000096 1.0462560 1.0465326 0.0002766 
0.1000 2.0580144 2.0580012 0.0000132 1.0957273 1.0962634 0.0005360 
0.5000 2.2288696 2.2277177 0.0011519 1.6310536 1.6336544 0.0026008 
1.0000 2.1846800 2.1746169 0.0100631 2.7572478 2.7686003 0.0113524 
5.0000 0.0793320 0.0798507 0.0005187 3.1717523 3.1671811 0.0045712 

10.0000 0.1687980 0.1717176 0.0029196 0.5789502 0.5739734 0.0049767 
15.0000 1.7525588 1.7766046 0.0240458 0.7293483 0.7510186 0.0216702 
20.0000 0.0922835 0.0903390 0.0019445 3.6255798 3.5601515 0.0654282 
25.0000 0.1442134 0.1473222 0.0031088 0.6492148 0.6324381 0.0167766 
30.0000 1.4971846 1.5431068 0.0459222 0.5658317 0.5850307 0.0191989 

 

Figure 4: Results of a trial on the interval [0, 50] with 100000 
random numbers. 

 

Figure 5: Results of a trial on the interval [0, 50] with 170000 
random numbers. 

In principle, choices of the parameters; the bounds, number of 
random variables and initial conditions seem to be optional, in 
reality it is not the case. Choices of the parameters are realized 
to be effective on the accuracy of the algorithm as seen in  
Table 2 and Figure 6. Specifically the effect of the bounds is 
discussed here as given quantitively and qualitatively in the 

figure and the table. Although it is possible to optimize the 
bounds as given in the literature [8], in reality it has not been 
standardized yet. In a similar manner of the analysis of the 
bounds, effects of the rest of the parameters can be dealt with. 
Actually, this study primarily focuses on the application of such 
realistic problems rather than the detailed discussion of the 
optimum parameters. 

Table 2: The comparison of the different upper and lower 
bounds for the algorithm of Example 1. 

 
Upper 
Bound 

Lower 
Bound 

Time 
𝒕 

Differences 
between 

the results 
for 𝒙(𝒕) 

Differences 
between 

the results 
for y(𝒕) 

(a) 85.00 60.00 
0.10 0.0013542 0.0022267 
1.00 0.0511746 0.0391757 

(b) 9.00 5.00 
0.10 0.0000452 0.0015794 
1.00 0.0154289 0.0290938 

(c) 7.00 3.00 
0.10 0.0000325 0.0014233 
1.00 0.0146405 0.0254132 

 

 

Figure 6: Differences between solutions of the functions for 
different bounds in Table 2 of Example 1. 

4.2 Example 2 

In Example 1, a system of first order nonlinear homogeneous 
differential equations is considered. This system can be 
considered that two population models live in a closed area 
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without affecting by external factors in terms of the behavior of 
population models. However, in the real-life examples, there 
can be external factors which affect populations positively or 
negatively apart from the birth or death ratios. 

In the following examples, it is analyzed that what happens if 
external terms are included in equations. In this respect, the 
structure of a system changed as follows: 

Let us consider a system of first order nonlinear differential 
equations in Equation 3 with constants 𝛼 = 2, 𝛽 = 1.2,  𝛾 = 0.9 
and 𝛿 = 0.4 with initial conditions 𝑥0 = 1 and 𝑦0 = 0.5 and 
with different non-homogeneous terms  ℎ𝑥 = ℎ(𝑥, 𝑡) = 0 and 
ℎ𝑦 = ℎ(𝑦, 𝑡) = 0.55. 

Since the non-homogeneous terms are added to differential 
equations, the qualitative behavior is expected to change. 
Adding to the extra rate of change to the equation of predator 
population leads to the change in the growth rates of the 
populations and this change can be observed from  

Figure 7 and 8. Also, it can be predicted that the red line is the 
qualitative behavior of the prey population since its additional 
term of a predator causes numerically lower growth rate to 
prey population. This result can also be observed by numerical 
results of Table 3. When there is no non-homogeneous term, the 
behavior of the solutions occurs like periodical oscillation. After 
adding terms to the equations, behavior becomes decaying 
oscillations. 

As is the case in all simulation techniques, the Monte Carlo 
method has advantages such as flexibility and easy 
constructions of its algorithms as well as keeping realistic 
features of nature. In this study, the proposed algorithm has 
mostly considered the aspects of its accuracy level and 
implementation cost. Even if the computational time of the 
algorithm seems to be higher than the ode45 ones for various 
amounts of random numbers, the accuracy levels are relatively 
in good agreement with the referenced results as shown in the 
Table 4. 

 

 

 

 

Figure 7: Comparison of the MC predictions and the 
numerical solutions of equations and differences between 

them. 

 Figure 8: Behaviors of the population functions relative to 
each other for the equation system. 

Table 3: Numerical results for the system of first order nonlinear differential equations in Example 2. 

Time 𝑡 
The proposed 

algorithm 
solutions for 𝑥(𝑡) 

ode45 
solutions for 

𝑥(𝑡) 

Differences 
between the 

results for 𝑥(𝑡) 

The proposed 
algorithm 

solutions for 
𝑦(𝑡) 

ode45 
solutions for 

𝑦(𝑡) 

Differences 
between the 

results for 𝑦(𝑡) 

0.0100 1.0139582 1.0140802 0.0001220 0.5029789 0.5030066 0.0000277 
0.0500 1.0713965 1.0720220 0.0006255 0.5150428 0.5151750 0.0001322 
0.1000 1.1468563 1.1481711 0.0013148 0.5304795 0.5307518 0.0002723 
0.5000 1.9067179 1.9135219 0.0068040 0.6796044 0.6810196 0.0014152 
1.0000 3.1620285 3.1718218 0.0097933 1.0048308 1.0089151 0.0040844 
2.0000 3.0779638 3.0553538 0.0226100 2.5032768 2.5019906 0.0012861 
3.0000 0.8607238 0.8843588 0.0236350 2.5137366 2.5139670 0.0002304 
4.0000 0.5163658 0.5259647 0.0095989 1.7004291 1.7197061 0.0192770 
5.0000 0.6651553 0.6671276 0.0019723 1.2662871 1.2800386 0.0137516 
6.0000 1.1679079 1.1661515 0.0017564 1.1630987 1.1720983 0.0089996 
7.0000 1.9396527 1.9334824 0.0061703 1.3708880 1.3772233 0.0063353 
8.0000 2.1051190 2.0857946 0.0193244 1.8413106 1.8384128 0.0028978 
9.0000 1.4413240 1.4429302 0.0016062 2.0234778 2.0124287 0.0110491 

10.0000 1.0647100 1.0800615 0.0153515 1.7776293 1.7790701 0.0014408 
15.0000 1.4417665 1.4464625 0.0046960 1.7969120 1.7909153 0.0059967 
20.0000 1.5062519 1.5036929 0.0025590 1.7003323 1.6948991 0.0054332 
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Table 4: Numerical results for the Example 2 with different size of random variables where 𝑡1 is the computational time for proposed 
algorithm and 𝑡2 is the computational time for ode45 where N is the number of the random variables. 

 N=1000 N=10000 N=100000 

𝑡1 0.048049 sec 0.182024 sec 0.896560 sec 

𝑡2 0.029796 sec 0.011975 sec 0.015925 sec 

Time 𝑡 
Differences 
between the 

results for 𝑥(𝑡) 

Differences 
between the 

results for 𝑦(𝑡) 

Differences 
between the 

results for 𝑥(𝑡) 

Differences 
between the 

results for 𝑦(𝑡) 

Differences 
between the 

results for 𝑥(𝑡) 

Differences 
between the 

results for 𝑦(𝑡) 

0.0100 0.0003158 0.0011266 0.0000323 0.0000926 0.0001220 0.0000277 
0.0500 0.0004890 0.0056340 0.0003783 0.0004076 0.0006255 0.0001322 
0.1000 0.0002729 0.0115288 0.0009130 0.0007517 0.0013148 0.0002723 
0.5000 0.0409211 0.0456126 0.0010076 0.0050892 0.0068040 0.0014152 
1.0000 0.1829862 0.0705931 0.0264533 0.0131826 0.0097933 0.0040844 
2.0000 0.3106042 0.1433714 0.1575567 0.0098115 0.0226100 0.0012861 
3.0000 0.0199508 0.1624380 0.0383667 0.1099879 0.0236350 0.0002304 
4.0000 0.0701567 0.0800989 0.0280392 0.0861938 0.0095989 0.0192770 
5.0000 0.1454776 0.0571664 0.0955737 0.0417063 0.0019723 0.0137516 
6.0000 0.2686125 0.0540433 0.2005779 0.0346734 0.0017564 0.0089996 
7.0000 0.2123034 0.1992653 0.1867842 0.1170028 0.0061703 0.0063353 
8.0000 0.4141254 0.2130148 0.1508918 0.1353254 0.0193244 0.0028978 
9.0000 0.4497838 0.1112163 0.2410662 0.0488645 0.0016062 0.0110491 

10.0000 0.0895025 0.2241559 0.0565099 0.1312488 0.0153515 0.0014408 
15.0000 0.4467215 0.0431173 0.1423845 0.0041636 0.0046960 0.0059967 
20.0000 0.0035601 0.1132821 0.0194581 0.0273567 0.0025590 0.0054332 

 

4.3 Example 3 

Consider Example 2 with different non-homogeneous terms 
non-homogeneous terms ℎ𝑥 = ℎ(𝑥, 𝑡) = 0.34 and 
ℎ𝑦 = ℎ(𝑦, 𝑡) = 0.55. These source terms are chosen to observe 

what happens if predators increase their number of individuals 
with higher growth rate than preys. The proposed algorithm is 
applied to the equation with these parameters by dividing the 
time interval uniformly with the increment 0.01. The 
comparison of the solutions of the proposed algorithm and the 
numerical solutions obtained by ode45 have been indicated at 
Figure 9.  

 

Figure 9: Comparison of the MC predictions and the numerical 
solutions of equations and differences between the compared 

results. 

The behaviors of population models relative to each other are 
illustrated in Figure 10. Table 5 shows quantitative results for 
corresponding trial. 

 

Figure 10: Behaviors of the population functions relative to 
each other for the equation system. 

Since the non-homogeneous terms are added to the differential 
equations, the results change. Since the higher rate of change 
added to the equation of predator population, its growth rate 
increases and this change can be observed from Figure 9. It can 
be seen that the red line is the qualitative behavior of the prey 
population since its additional term is lower than predator one 
and this causes numerically lower growth rate than predator 
population. This result can also be observed by numerical 
results of Table 5. 

When there is no non-homogeneous term, the behavior of the 
solutions is seen to be a periodical oscillation. However, after 
adding the terms to the equations, behaviors transform 
decaying oscillations. This decaying oscillation can also be 
observed in Figure 9. The figure includes spiral lines showing 
behaviors of populations relative to each other. Moreover, the 
differences between two results seem to behave periodically, as 
well. 
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Table 5: Numerical results for the system of first order nonlinear differential equations with nonhomogeneous terms in Example 3. 

Time 𝑡 
The proposed 

algorithm 
solutions for 𝑥(𝑡) 

ode45 
solutions for 

𝑥(𝑡) 

Differences 
between the 

results for 𝑥(𝑡) 

The proposed 
algorithm 

solutions for 
𝑦(𝑡) 

ode45 
solutions for 

𝑦(𝑡) 

Differences 
between the 

results for 𝑦(𝑡) 

0.0100 1.0174345 1.0175040 0.0000695 0.5031001 0.5030100 0.0000901 
0.0500 1.0892782 1.0896238 0.0003456 0.5157248 0.5152631 0.0004617 
0.1000 1.1838269 1.1846034 0.0007765 0.5320051 0.5311173 0.0008878 
0.5000 2.1411886 2.1453872 0.0041986 0.6976956 0.6938275 0.0038681 
1.0000 3.6654637 3.6854659 0.0200023 1.0983932 1.0930748 0.0053184 
2.0000 2.8166322 2.8094390 0.0071932 2.9053176 2.8916546 0.0136630 
3.0000 0.7896117 0.8011591 0.0115474 2.6188652 2.6004778 0.0183874 
4.0000 0.7008756 0.7155807 0.0147051 1.8115697 1.8061867 0.0053830 
5.0000 1.1174976 1.1339312 0.0164336 1.4771927 1.4802482 0.0030555 
6.0000 1.7729546 1.7788439 0.0058893 1.5526819 1.5600778 0.0073959 
7.0000 1.9834693 1.9807358 0.0027335 1.9077857 1.9035250 0.0042607 
8.0000 1.5543493 1.5604023 0.0060531 2.0856559 2.0782381 0.0074178 
9.0000 1.2872653 1.3001082 0.0128429 1.9470829 1.9405551 0.0065277 

10.0000 1.3282333 1.3448332 0.0165999 1.7890159 1.7871891 0.0018268 
15.0000 1.4498878 1.4564152 0.0065274 1.8535635 1.8514698 0.0020937 
20.0000 1.4937019 1.4959447 0.0022428 1.8578928 1.8576953 0.0001975 

 

5 Conclusions and recommendation 

In this study, a Monte Carlo based stochastic algorithm has been 
developed to solve deterministic models.  

All qualitative and the quantitative results of the problems of 
interest found by the proposed algorithm have been seen to be 
consistent with the behavior of population models in nature. 
Despite the randomness in error interval, the proposed 
algorithm has been seen to produce accurate results. This study 
showed that the algorithm can be effectively used for reducing 
the computational cost. The qualitative results created by the 
proposed algorithm revealed that the structure of the algorithm 
is appropriate for physical processes represented by these 
types of differential equations. 
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